{ "cells": [ { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import matplotlib.pyplot as plt\n", "from scipy.integrate import odeint" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The sky diving problem\n", "\n", "$$\\frac{dv_x}{dt} = -\\frac{b}{m}\\sqrt{v_x^2 + v_y^2} \\cdot v_x $$\n", "$$\\frac{dv_y}{dt} = - g -\\frac{b}{m}\\sqrt{v_x^2 + v_y^2} \\cdot v_y $$\n", "\n", "$\\vec{S} = (v_x, v_y)$. To solve ODEs in python, \n", "\n", "1. define function that takes in $t$ and $\\vec{S}$ and returns $d\\vec{S}/dt$ " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def dSdt(S, t, g, m, b):\n", " vx = S[0]\n", " vy = S[1]\n", " return [\n", " -b/m * np.sqrt(vx**2+vy**2) * vx, #dvx/dt\n", " -g - b/m * np.sqrt(vx**2+vy**2) * vy #dvy/dt\n", " ]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "2. Supply the function and initial conditions to the ODE solver. Provide the times at which you want the solution" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "t= np.linspace(0, 20 ,100)\n", "m = 80\n", "g = 9.81\n", "vt = -55\n", "b = m*g/vt**2\n", "v0x, v0y = 50, 0" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "sol = odeint(dSdt, y0=[v0x, v0y], t=t, args=(g, m, b))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "vx = sol.T[0]\n", "vy = sol.T[1]" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiRklEQVR4nO3deXhU5d3/8fd3kpAFQkIWQkjY900EIqsbKu4bWq3WhVZbXLBate2jfay1fZ622vq0Wq1rpVK3qq2KdRcEERckIPsOYTUkYUsCIZDl/v2R0R/GBIYkMycz83ldV64zc86ZnK/3DB9P7rnPfcw5h4iIhB+f1wWIiEjTKMBFRMKUAlxEJEwpwEVEwpQCXEQkTMWG8mAZGRmue/fuoTykiEjYW7BgwQ7nXGb99SEN8O7du5Ofnx/KQ4qIhD0z29TQenWhiIiEKQW4iEiYUoCLiIQpBbiISJhSgIuIhKmARqGY2UagHKgBqp1zeWaWBrwIdAc2Apc653YHp0wREanvaM7AxzvnjnXO5fmf3wHMdM71AWb6n4uISIg0pwvlAmCa//E04MJmV9OIT9bt4JHZ64L160VEwlKgAe6A98xsgZlN9q/Lcs4VAviXHRt6oZlNNrN8M8svKSlpUpEfrinh/ndXs3lnRZNeLyISiQIN8HHOueHAWcAUMzsx0AM4555wzuU55/IyM791JWhArjm+B7E+H098tL5JrxcRiUQBBbhz7kv/shh4FRgJFJlZNoB/WRysIrPaJ3DxiBxeyt9KcXllsA4jIhJWjhjgZtbWzJK/egycDiwDXgcm+XebBEwPVpEA153Yi+qaWv7+8cZgHkZEJGwEcgaeBcw1s8XA58Cbzrl3gHuBCWa2Fpjgfx403TPactaQbJ79dBNllVXBPJSISFg44jhw59wGYGgD63cCpwajqMbccFIv3lxSyLOfbeLGk3uH8tAiIq1OWF2JOTgnhRP6ZDB1bgH7D9Z4XY6IiKfCKsABfnxKH3bsPchz8xqcHldEJGqEXYCP7JHG2F7pPPbhBp2Fi0hUC7sAB7jl1D7s2HtAZ+EiEtXCMsBH9Uz3n4Wv11m4iEStsAxwgJ+c1ld94SIS1cI2wEf2SGNc77qz8IqD1V6XIyIScmEb4AC3Tag7C9fVmSISjcI6wEd0S+O0AR157MP17Kk46HU5IiIhFdYBDvDTM/qx90A1j36omQpFJLqEfYD379Seicfm8PTHG9leqpkKRSR6hH2AA9w6oS+1zvGXD9Z6XYqISMhERIB3SUvieyO78uL8Lawv2et1OSIiIRERAQ7w41P7kBgXw+/fWuV1KSIiIRExAZ7RLp4bx/dixsoiPlm/w+tyRESCLmICHOCacT3ISU3kf99YSU2t87ocEZGgiqgAT4iL4edn9mNFYRmvLNzqdTkiIkEVUQEOcP7Qzgztksr9763WJfYiEtEiLsDNjF+eM4CisgM8MksX94hI5Iq4AAfI657Ghcd25ok5G9i0c5/X5YiIBEVEBjjAnWcPIC7G+J83VnhdiohIUERsgGe1T+DHp/ZhxspiZq0u9rocEZEWF7EBDnXDCntmtOU3/1nBgWrduUdEIktEB3ibWB93nzeQgh37eHLOBq/LERFpUREd4AAn9+vI2UM68dAH6/SFpohElIgPcIC7zx1EXIyPX05fjnO6QlNEIkNUBHinlARuP70vc9aU8ObSQq/LERFpEVER4ABXje7G4Jz2/Po/KyirrPK6HBGRZouaAI+N8fHbC4ewc+8B7ntbU86KSPiLmgAHGNollR+M68Fz8zbz2YadXpcjItIsURXgALef3pcuaYnc+cpSKqs0NlxEwlfUBXhSm1juvegYCnbs44EZuoemiISvgAPczGLM7Asze8P/PM3M3jeztf5lh+CV2bLG9c7gu3ldePKjDSzdWup1OSIiTXI0Z+C3ACsPeX4HMNM51weY6X8eNn5xzgDS27bhpy8v1mX2IhKWAgpwM8sFzgH+dsjqC4Bp/sfTgAtbtLIgS0mM476Lj2F1UTkPqitFRMJQoGfgDwA/B2oPWZflnCsE8C87NvRCM5tsZvlmll9SUtKcWlvc+P4duTQvl8c+XM8Xm3d7XY6IyFE5YoCb2blAsXNuQVMO4Jx7wjmX55zLy8zMbMqvCKq7zh1Ip/YJ3P7yYo1KEZGwEsgZ+DjgfDPbCPwTOMXMngWKzCwbwL8My0m32yfEcd93jmFDyT7+8M5qr8sREQnYEQPcOXency7XOdcduAz4wDl3JfA6MMm/2yRgetCqDLIT+mRy9ZhuTP24gLlrd3hdjohIQJozDvxeYIKZrQUm+J+HrTvPGkCvzLbc/vIi9lQc9LocEZEjOqoAd87Nds6d63+80zl3qnOuj3+5KzglhkZimxgevGwYO/ce5L9fXaZpZ0Wk1Yu6KzEPZ3BOCrdO6MubSwt5ZeE2r8sRETksBXg915/Ui5Hd07h7+jIKdugOPiLSeinA64nxGX++7FhiY3zc/MIXHKyuPfKLREQ8oABvQE5qIvddfAxLt5Vy/3saWigirZMCvBFnDu7ElaO78sScDcxeHZZD3EUkwinAD+OucwbSLyuZ215azPbSSq/LERH5BgX4YSTExfDXK4ZRWVXDzS98QXWN+sNFpPVQgB9B747J/HbiYD7fuIs/vb/G63JERL6mAA/AxGG5XHZcFx6ZvZ5Z6g8XkVZCAR6ge84fRP9Oydz64iK27q7wuhwREQV4oBLiYnj0yhHU1DhufG6hpp4VEc8pwI9Cj4y2/N+lQ1mytZTfvLHC63JEJMopwI/S6YM6ccPJvXh+3mZezt/idTkiEsUU4E1w+4S+jO2Vzl2vLdNd7UXEMwrwJoiN8fHQ5cPIaBfPdc/ks2PvAa9LEpEopABvovR28Tx+1Qh27jvIlOcWUqWLfEQkxBTgzTA4J4V7Lx7CvIJd/PbNlV6XIyJRJtbrAsLdxGG5LNtWxlNzCxiQncx3j+vqdUkiEiV0Bt4C7jyrPyf0yeCu15Yxf2NY31lORMKIArwFxMb4ePjy4eR2SOL6ZxboSk0RCQkFeAtJSYrjyavzOFhTy4/+sYB9B6q9LklEIpwCvAX17tiOhy4fxurtZdzyz0XU1OrO9iISPArwFnZyv4786rxBzFhZxH3vrPK6HBGJYBqFEgSTxnZnfclenpizgZ4ZbblspEamiEjLU4AHyd3nDmTjzgruem0ZuR2SOL5PhtcliUiEURdKkMTG+Hj4e8PoldmOG55dwJqicq9LEpEIowAPovYJcUz9wXEktInhB3+fT3G5bowsIi1HAR5kOamJTJ10HLv2HeSH0/KpOKjhhSLSMhTgITAkN4WHLh/Gsm2l3PS87m4vIi1DAR4ipw3M4jcXDOaDVcX8cvoynNMYcRFpHo1CCaErR3ejsHQ/f521nuyURG4+tY/XJYlIGFOAh9hPT+9HYWklf3p/DVnt4zV7oYg02RG7UMwswcw+N7PFZrbczH7tX59mZu+b2Vr/skPwyw1/ZsZ9Fx/DiX0zufOVpcxYUeR1SSISpgLpAz8AnOKcGwocC5xpZqOBO4CZzrk+wEz/cwlAXIyPR68YzpCcFKY8v5AFmzQFrYgcvSMGuKuz1/80zv/jgAuAaf7104ALg1FgpGobH8vU7x9H59RErnk6Xxf6iMhRC2gUipnFmNkioBh43zk3D8hyzhUC+Jcdg1ZlhEpvF88/rhlJfKyPq56ax5ZdmkdcRAIXUIA752qcc8cCucBIMxsc6AHMbLKZ5ZtZfklJSRPLjFxd0pJ45tpRVFbVctVT8ygp1x3uRSQwRzUO3Dm3B5gNnAkUmVk2gH9Z3MhrnnDO5Tnn8jIzM5tXbYTq1ymZqd8/jqKyA1w99XNK91d5XZKIhIFARqFkmlmq/3EicBqwCngdmOTfbRIwPUg1RoUR3Trw+FUjWFdczrVPz9cl9yJyRIGcgWcDs8xsCTCfuj7wN4B7gQlmthaY4H8uzXBi30z+ctkwFm7ezXXPLOBAdY3XJYlIK2ahvKQ7Ly/P5efnh+x44erl/C387F9LOH1gFo9cMZzYGM14IBLNzGyBcy6v/nolQyt0SV4X7jlvIO+tKOL2lxfr3poi0iBdSt9KfX9cD/YdrOGP764mITaG3180BJ/PvC5LRFoRBXgrNmV8byqranjog3XEx/n49fmDMFOIi0gdBXgrd9uEvlRW1fDkRwXEx/r4xdkDFOIiAijAWz0z4xdnD+BAdS1PflRAbIyPn5/RTyEuIgrwcGBm3HPeIKprHY/OXk+cz7jt9H5elyUiHlOAhwmfz/jfCwZTU+P4ywfr8PmMn5zW1+uyRMRDCvAw4vMZv79oCLXO8cCMtTgHt05QiItEKwV4mPH56m4IAfDgzLWAQlwkWinAw1D9EHfAraf10RebIlFGAR6mvgpxM/jLzLVU19TyM41OEYkqCvAw5vMZ9150DDE+H4/MXk9VTa3GiYtEEQV4mPP5jN9NHExcjPHkRwVU1TjuPnegLrsXiQIK8AhgZvz6/EHExfh4am4BlVU1/HbiEGIU4iIRTQEeIcyMu84ZQGJcDA/PWkdlVQ33XzJUU9GKRDAFeAQxM356Rj8S28Twx3dXU1lVy4OXH0t8bIzXpYlIEOj0LAJNGd+bu88dyDvLt/PDafm6PZtIhFKAR6hrju/BHy4+ho/X7eDqp3SjZJFIpACPYJce14WHLh/O4q17uPyJzygpP+B1SSLSghTgEe6cY7J58uo8Cnbs45LHPmHLrgqvSxKRFqIAjwIn9+vIsz8cxe6KKr7z2CesKSr3uiQRaQEK8CgxolsHXrpuDM7BJY99yoJNu7wuSUSaSQEeRfp1SubfN4wlrW0bvvfkPGasKPK6JBFpBgV4lOmSlsS/rh9D/07JXPfsAl6av8XrkkSkiRTgUSi9XTzP/2g043pn8PN/L+HBGWtxznldlogcJQV4lGobH8tTk/K4aHgOf56xhjtfWUp1Ta3XZYnIUdCl9FEsLsbH/10ylM4piTw8ax1FZZU8/L3htI3Xx0IkHOgMPMp9NX/KbycO5sM1JVz6+KcUlVV6XZaIBEABLgBcMaobT006joId+5j4149Ztb3M65JE5AgU4PK18f078tJ1Y6iudVzy6Kd8uKbE65JE5DAU4PINg3NSeG3KOHI6JHLN0/N55rNNXpckIo1QgMu3dE5N5F83jOWkvpn88rVl/Po/y6mp1TBDkdZGAS4Nahcfy5NX53HNuB78/eONXDttPmWVmpJWpDU5YoCbWRczm2VmK81suZnd4l+fZmbvm9la/7JD8MuVUIrxGXefN5DfTRzC3LU7uOiRT9i0c5/XZYmIXyBn4NXA7c65AcBoYIqZDQTuAGY65/oAM/3PJQJ9b1RX/nHtSHbsPcAFf/2YT9bt8LokESGAAHfOFTrnFvoflwMrgRzgAmCaf7dpwIVBqlFagbG9Mpg+ZRyZ7eK5aurnPP1xgS6/F/HYUfWBm1l3YBgwD8hyzhVCXcgDHRt5zWQzyzez/JISDUsLZ93S2/LKjWMZ368j9/xnBT//1xIOVNd4XZZI1Ao4wM2sHfBv4CfOuYCv8nDOPeGcy3PO5WVmZjalRmlFkhPieOKqEdx8Sm9eXrCV7z7+GYWl+70uSyQqBRTgZhZHXXg/55x7xb+6yMyy/duzgeLglCitjc9n3HZ6Px67cjhri8o576G5zNuw0+uyRKJOIKNQDHgKWOmc+9Mhm14HJvkfTwKmt3x50pqdOTib16aMo31CHFf8bR5T56pfXCSUAjkDHwdcBZxiZov8P2cD9wITzGwtMMH/XKJMn6xkXrtpHOP7d+Q3b6zgxy98wb4D1V6XJRIVjjhvqHNuLmCNbD61ZcuRcNQ+IY7HrxzB43M28Md3V7FqezmPXTmc3h2TvS5NJKLpSkxpET6fccPJvXj22lHs3neQ8x/+mOmLtnldlkhEU4BLixrbO4M3bz6BQZ3bc8s/F/GLV5dSWaWhhiLBoACXFtcpJYEXfjSa60/qxfPzNjPxkU/YULLX67JEIo4CXIIiNsbHHWf156lJeRSW7ufch+byysKtXpclElEU4BJUpw7I4u1bTmBw5xRue2kxt720iL0apSLSIhTgEnTZKYk8/6NR3HxKb177Yhvn/uUjlmzd43VZImFPAS4hERvj47bT+/HCj0ZzoLqWix75hMc+XK8bRYg0gwJcQmpUz3TevuUEJgzM4t63V3HF3z5j2x7NpSLSFApwCbnUpDY8csVw/vCdY1i6tZQzH5ijMeMiTaAAF0+YGZfmdeHtW06kT8d23PLPRUx5fiG79x30ujSRsKEAF091TU/ipevG8LMz+vHe8u2c/sAcZq3SxJYigVCAi+diY3xMGd+b16aMIy2pDT94ej4/e3kxpft1E2WRw1GAS6sxqHMKr/94HFPG9+KVL7Zxxp/nMHu1zsZFGqMAl1YlPjaGn53Rn1dvHEtyQizf//t8bntpEXsq1DcuUp8CXFqlY3JTeePm4/nxKb15fdGXnPanD3lraaFuGCFyCAW4tFrxsTHcfno/pt80jk4pCdz43EImP7NA9+AU8VOAS6s3qHMKr904jl+c3Z+P1pYw4U9zmPbJRl3FKVFPAS5hITbGx+QTe/H+rScxrGsqv3p9ORc98jHLtpV6XZqIZxTgEla6pCXxj2tG8uBlx7JtTyXnPzyXe15fTlmlhhxK9FGAS9gxMy44NoeZt5/EFaO6Me3TjZxy/4e8+sVWfckpUUUBLmErJTGO/7lwMNOnjCOnQyK3vriY7z7+GSu+LPO6NJGQUIBL2DsmN5VXbxjLvRcNYW1xOec+9BF3vbZU86pIxFOAS0Tw+YzLRnZl9k/Hc/WY7rzw+RZOvn82f/+4gKqaWq/LEwkKBbhElJSkOO45fxBv33ICQ3JS+PV/VnDGA3OYubJI/eMScRTgEpH6ZiXzzLUjeWpSHji4dlo+V/xtnoYdSkRRgEvEMjNOHZDFu7eeyK/OG8jKwjLOfWgut764iK27K7wuT6TZLJR/Vubl5bn8/PyQHU/kUGWVVTw6ez1T5xbgHFw5uhs3ndKbtLZtvC5N5LDMbIFzLu9b6xXgEm2+3LOfB2es5eUFW0hqE8uPTujJNcd3JzkhzuvSRBqkABepZ11xOX98dzXvLi+iQ1Ic15/Ui6vHdCexTYzXpYl8gwJcpBFLtu7h/vfWMGdNCZnJ8Vx/Ui+uGNWVhDgFubQOCnCRI/i8YBd/fn8Nn27YScfkeG44uReXj1SQi/cU4CIB+nT9Th6YsYZ5BbvIaBfP5BN7cMWobrSNj/W6NIlSjQX4EYcRmtlUMys2s2WHrEszs/fNbK1/2aGlCxbxyphe6bx43RhenDya/p2S+d1bqzj+vg94cMZa3dpNWpVAxoE/DZxZb90dwEznXB9gpv+5SEQZ1TOdZ384ilduHMuIbh3484w1jLv3A3775grdFUhahYC6UMysO/CGc26w//lq4GTnXKGZZQOznXP9jvR71IUi4WzV9jIenb2eN5YUYsAFx+Yw+cSe9OuU7HVpEuGa1QfeQIDvcc6lHrJ9t3OuwW4UM5sMTAbo2rXriE2bNjXpP0Cktdiyq4Kn5hbw4vwt7K+q4cS+mfzw+B6c0CcDM/O6PIlAngX4oXQGLpFk976DPP/5Zp7+ZCMl5Qfom9WO74/twcRhORpLLi2qyV9iNqLI33WCf1ncnOJEwlGHtm2YMr43c/9rPPdfMpRYn49fvLqUMffO5Pdvr2TLLs23IsHV1HFRrwOTgHv9y+ktVpFImImPjeE7I3K5eHgO8zfu5ulPCnhyzgaemLOBU/t35MrR3TixTyY+n7pXpGUdMcDN7AXgZCDDzLYCv6IuuF8ys2uBzcAlwSxSJByYGSN7pDGyRxpf7tnP8/M288/5m5mxspiuaUlcPrIrl+TlktEu3utSJULoQh6RIDpQXcM7y7bz/LzNzCvYRVyMMWFgFpcd15Xje2forFwCoisxRTy2rric5+dt4ZUvtrKnooqc1EQuycvl4uG5dElL8ro8acUU4CKtRGVVDe+tKOLF+Zv5eN1OAMb1Tufi4bmcMaiTLtmXb1GAi7RCW3dX8O8F2/jXwi1s2bWfpDYxnDm4ExOH5TC2VwYx6mIRFOAirVptrSN/025eWbiVN5cUUn6gmo7J8Zw3tDMXHNuZITkpukgoiinARcJEZVUNM1cWM33RNmatLqaqxtEtPYnzjunMuUOz6ZeVrDCPMgpwkTBUWlHFu8u38/riL/lk/Q5qHfTKbMs5Q7I5a0g2/TspzKOBAlwkzJWUH+Cd5dt5a0kh8wp2Uuuge3oSZwzuxJmDOjE0N1XDEiOUAlwkgpSUH+D9FUW8vayQT9fvpLrW0TE5ntMGZjFhYBZjeqbrTkIRRAEuEqFKK6qYtbqY91ZsZ/bqEioO1pDUJobje2dw2oAsTu6fScfkBK/LlGZQgItEgcqqGj7dsJOZK4uYubKYwtJKAIbkpDC+XyYn9ctkaG4qsTFNncdOvKAAF4kyzjlWFpYza3Uxs1YVs3DzbmodpCTGcXzvDE7ok8EJfTPJSU30ulQ5AgW4SJQrrahi7rodfLimmA/XlFBUdgCAnhltGdc7g3G90xndM53UpDYeVyr1KcBF5GvOOdYV72XO2h18tLaEzwt2UXGwBjMYmN2eMT3TGds7nbzuabRPiPO63KinABeRRh2srmXx1j18vG4Hn67fyReb93CwphafwcDO7RnVI53juqdxXPcOpGs63JBTgItIwCqrali4aTfzCnYxr6Au0A9U1wLQM7Mtx3VLY0T3DuR160CPjLa6mCjIGgtwTXsmIt+SEBfD2N4ZjO2dAdTNa75sWymfF+xm/sZdvLN8Oy/mbwGgQ1Icw7p2YHjXVIZ17cCQ3BR1u4SIAlxEjig+NoYR3dIY0S2NG+hFba1jw4695G/czcLNu1m4eQ8frKq7Na4Z9Mpsx9DcVIZ2SWFITgoDstvrwqIgUBeKiLSI0ooqFm/dw+Ite1i0ZQ+Lt5ayY2/dSJdYn9E3K5khOSkMzk1hUOf2DOjUnsQ2CvVAqA9cRELKOUdhaSVLtu5hydZSlm4rZdm2UnZXVAHgM+iZ2Y4B2e0ZmN2eAdnJDMxuT2ZyvPrU61EfuIiElJnROTWRzqmJnDk4G6gL9S9LK1m+rZTlX5axorCMhZt285/FX379urS2bejfKZm+Wcn08y/7ZLVTv3oDFOAiEjJmRk5qIjmpiZw+qNPX60srqlhRWMbq7WWs2l7Oyu3lvJS/hYqDNV/vk52SQJ+sZHpntqN3x3b0yWpHr8x2pLWN3guPFOAi4rmUpDjG9EpnTK/0r9fV1jq27dnP6u3lrCkuZ23RXtYUlfN5wU4qq2q/3q9DUhy9MtvRM7MtPTPb0SOjLT0z2tI1PYn42MjuY1cfuIiEla+CfV3xXtaX+H+K97Fhx76vvzSFutEwnVMS6ZHRlm7pSXRLT6Jr2v9/nNQmfM5f1QcuIhHB5zO6pCXRJS2J8f07fmNbWWUVBSX72LhzHwU76n427qzgzaWF7PF/efqVjHZtyO1Q93u6dEj0L5PI6ZBI59SEsDh7V4CLSMRonxDH0C6pDO2S+q1teyoOsnlXBZt3VbBpZwVbd9c9XrRlN28tLaSm9pu9EZnJ8V/31+d0SCQ7JYHslLpwz05JJL1tG8/vgKQAF5GokJrUhtSkNhyTm/qtbdU1tWwvq2TLrv1s27Ofbbv3s3V3BV+W7mdFYRkzVhZ9PZXAV9rE+MhKiadT+wSy2ifQqX0CnVLqHme1T6Bjcjwd28cHtatGAS4iUS82xkduhyRyOyQ1uN05x859ByncU8mXpfsp3LOf7WUH2F66n8LSSpZtK2XGyqJvfLn6leT4WDLbx/O7iUMY3TO9gd/ejLpb9LeJiEQgMyOjXTwZ7eIZkpvS4D7OOcr2V1NUXklRWSVFZQcoLq+kuOwAJeUHSE1q+XHsCnARkRZgZqQkxZGSFEffrOSQHFM3xhMRCVMKcBGRMKUAFxEJU80KcDM708xWm9k6M7ujpYoSEZEja3KAm1kM8FfgLGAgcLmZDWypwkRE5PCacwY+EljnnNvgnDsI/BO4oGXKEhGRI2lOgOcAWw55vtW/7hvMbLKZ5ZtZfklJSTMOJyIih2pOgDc0CcC3pjZ0zj3hnMtzzuVlZmY243AiInKo5lzIsxXocsjzXODLRvYFYMGCBTvMbFMTj5cB7Gjia4NJdR0d1XV0VNfRaa11QfNq69bQyibPB25mscAa4FRgGzAf+J5zbnkTCzzS8fIbmg/Xa6rr6Kiuo6O6jk5rrQuCU1uTz8Cdc9VmdhPwLhADTA1WeIuIyLc1ay4U59xbwFstVIuIiByFcLoS8wmvC2iE6jo6quvoqK6j01rrgiDUFtJ7YoqISMsJpzNwERE5hAJcRCRMtboAP9IEWVbnL/7tS8xseAhq6mJms8xspZktN7NbGtjnZDMrNbNF/p+7g12X/7gbzWyp/5j5DWz3or36HdIOi8yszMx+Um+fkLSXmU01s2IzW3bIujQze9/M1vqXHRp5bdAma2ukrj+a2Sr/+/SqmaU28trDvudBqOseM9t2yHt1diOvDXV7vXhITRvNbFEjrw1mezWYDSH7jDnnWs0PdcMR1wM9gTbAYmBgvX3OBt6m7krQ0cC8ENSVDQz3P06mbvx7/bpOBt7woM02AhmH2R7y9mrgPd0OdPOivYATgeHAskPW/QG4w//4DuC+pnwWg1DX6UCs//F9DdUVyHsehLruAX4awPsc0vaqt/3/gLs9aK8GsyFUn7HWdgYeyARZFwD/cHU+A1LNLDuYRTnnCp1zC/2Py4GVNDDvSysV8vaq51RgvXOuqVfgNotzbg6wq97qC4Bp/sfTgAsbeGlQJ2trqC7n3HvOuWr/08+ou7o5pBppr0CEvL2+YmYGXAq80FLHC9RhsiEkn7HWFuCBTJAV0CRawWJm3YFhwLwGNo8xs8Vm9raZDQpRSQ54z8wWmNnkBrZ72l7AZTT+D8uL9gLIcs4VQt0/QKBjA/t43W7XUPeXU0OO9J4Hw03+rp2pjXQHeNleJwBFzrm1jWwPSXvVy4aQfMZaW4AHMkFWQJNoBYOZtQP+DfzEOVdWb/NC6roJhgIPAa+FoiZgnHNuOHXzsk8xsxPrbfeyvdoA5wMvN7DZq/YKlJft9t9ANfBcI7sc6T1vaY8CvYBjgULquivq86y9gMs5/Nl30NvrCNnQ6MsaWHdUbdbaAjyQCbKOehKtlmBmcdS9Qc85516pv905V+ac2+t//BYQZ2YZwa7LOfelf1kMvErdn2WH8qS9/M4CFjrniupv8Kq9/Iq+6kbyL4sb2Merz9kk4FzgCufvKK0vgPe8RTnnipxzNc65WuDJRo7nVXvFAhcBLza2T7Dbq5FsCMlnrLUF+Hygj5n18J+9XQa8Xm+f14Gr/aMrRgOlX/2pEiz+PrangJXOuT81sk8n/36Y2Ujq2nZnkOtqa2bJXz2m7kuwZfV2C3l7HaLRMyMv2usQrwOT/I8nAdMb2CeQz2KLMrMzgf8CznfOVTSyTyDveUvXdeh3JhMbOV7I28vvNGCVc25rQxuD3V6HyYbQfMaC8c1sM7/VPZu6b3LXA//tX3c9cL3/sVF3K7f1wFIgLwQ1HU/dnzZLgEX+n7Pr1XUTsJy6b5I/A8aGoK6e/uMt9h+7VbSX/7hJ1AVyyiHrQt5e1P0PpBCoou6M51ogHZgJrPUv0/z7dgbeOtxnMch1raOuT/Srz9hj9etq7D0Pcl3P+D87S6gLmOzW0F7+9U9/9Zk6ZN9Qtldj2RCSz5gupRcRCVOtrQtFREQCpAAXEQlTCnARkTClABcRCVMKcBGRMKUAFxEJUwpwEZEw9f8A2/7hDAkwApUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(t, vx)" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAD4CAYAAAAJmJb0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiOUlEQVR4nO3deXxU9b3/8ddnZrIvJCELkIRNCAiKKBHcUKgbWhWt1R/VtrZq7VX4tfa2tlp/td7b622r3a6t1qVateq1LlWpIu6KgoIB2XdZAwTCmoSQ/fv7YwYacUKAZHJmJu/n43Eec+Z8z5nz4czw5vA9mznnEBGR+OTzugAREYkchbyISBxTyIuIxDGFvIhIHFPIi4jEsYDXBbSWm5vr+vfv73UZIiIxZe7cududc3nh2qIq5Pv3709ZWZnXZYiIxBQzW99Wm7prRETimEJeRCSOKeRFROKYQl5EJI4p5EVE4ljEQ97MJpjZCjNbbWa3Rnp9IiLyLxENeTPzA/cBFwDDgK+Z2bBIrlNERP4l0nvyo4HVzrk1zrkG4BlgYmevpGJPHf/1ylJ27W3o7I8WEYlpkQ75QmBjq/floWkHmNkNZlZmZmWVlZVHtZKqukb+8uFanp6z4egrFRGJQ5EOeQsz7XNPKXHOPeScK3XOleblhb0qt10lBRmcMSiXv320nsbmlqP6DBGReBTpkC8Hilu9LwI2R2JF157Rn4qqOl5bXBGJjxcRiUmRDvlPgMFmNsDMEoFJwNRIrGhcST4DctN49MO1kfh4EZGYFNGQd841AVOA14FlwLPOuSWRWJfPZ3z79P7M37ibeRt2RWIVIiIxJ+LnyTvnpjnnSpxzxzjn7orkui4/qYiM5ID25kVEQuLqite0pABfG92X1xZXsHn3Pq/LERHxXFyFPMA3T+2Hc47HZ63zuhQREc/FXcgXZady4fG9eXr2BqrrGr0uR0TEU3EX8gDfGTuQ6vom/v7JxvZnFhGJY3EZ8icUZzF6QA5/nbmOJl0cJSLdWFyGPAT35jft3qeLo0SkW4vbkD97aD4Dc9N4+IM1OOfaX0BEJA7Fbcj7fMZ1YwewsHwPs9fu9LocERFPxG3IQ/DiqJ5piTw0Y43XpYiIeCKuQz45wc81p/XnneXbWFFR7XU5IiJdLq5DHoIXR6Uk+HlwxmdelyIi0uXiPuSzUhOZNLqYqfM3s0m3OhCRbibuQx7g+rEDccAjH+jGZSLSvXSLkC/MSuGSE/rwzCcb2F2r58CKSPfRLUIe4LtnDaS2oZknPlrvdSkiIl2m24T80F6ZfGloPn+duZbahiavyxER6RLdJuQBJo8/hl21jTw9e4PXpYiIdIluFfKj+uVwysAcHv5gDfVNzV6XIyIScd0q5AEmjx/E1qp6/jFvk9eliIhEXLcL+TMG5TKiqAcPvP+ZbkMsInGv24W8mXHTuEGs31HLq4u2eF2OiEhEdbuQBzhvWAGD89O5793VtLToNsQiEr+6Zcj7fMaULw1i5dYa3liqh4qISPzqliEPcNGIPgzMTePet1froSIiEre6bcj7fcZN4wexdEsVby/b5nU5IiIR0W1DHmDiyD70zUnl3ndWaW9eROJStw75BL+Pm8Ydw8LyPby/stLrckREOl2HQt7MrjCzJWbWYmalB7XdZmarzWyFmZ3fsTIj5ysnFVGYlcL/vK29eRGJPx3dk18MfAWY0XqimQ0DJgHDgQnA/Wbm7+C6IiIx4OOm8cfw6YbdzFi13etyREQ6VYdC3jm3zDm3IkzTROAZ51y9c24tsBoY3ZF1RdIVo4opzErh92+u1N68iMSVSPXJFwIbW70vD037AjO7wczKzKysstKbfvHEgI/J4wcxf+Nu3lPfvIjEkXZD3szeMrPFYYaJh1oszLSwu8jOuYecc6XOudK8vLzDrbvTfXVUsG/+D2+pb15E4kegvRmcc+ccxeeWA8Wt3hcBm4/ic7pMYsDH//3SIG79xyLeW1HJ+KH5XpckItJhkequmQpMMrMkMxsADAbmRGhdnebyUUUUZafw+7fUNy8i8aGjp1BeZmblwKnAq2b2OoBzbgnwLLAUmA5Mds5F/VM6Evw+vnf2YBaW7+HNpVu9LkdEpMMsmvZYS0tLXVlZmac1NDW3cO7vZ5AU8DHte2Px+cIdXhARiR5mNtc5VxqurVtf8RpOwO/j5nMGs7yimld0v3kRiXEK+TAuHtGHIQUZ/OHNlXp6lIjENIV8GD6f8YNzS1izfS8vfqpnwYpI7FLIt+H84QUcX9iDP7y1ivqmqD9mLCISlkK+DWbGj84fwqbd+3hmzsb2FxARiUIK+UM4c3AuYwbk8Md3VrG3vsnrckREjphC/hDMjB9PGMr2mgb+OnOt1+WIiBwxhXw7RvXL5pxjC3jw/TXs2tvgdTkiIkdEIX8Ybjl/CDUNTTzw/mdelyIickQU8odhSK8MLhtZyGOz1rF59z6vyxEROWwK+cP0g3NLcA7+8NZKr0sRETlsCvnDVJyTyjdO7cfzc8tZubXa63JERA6LQv4ITBk/iLSkAHdPX+51KSIih0UhfwSy0xK5cdwxvLVsG3PW7vS6HBGRdinkj9C3TxtAr8xk/nvaMj1YRESinkL+CKUk+vn3c0uYv3E30xZVeF2OiMghKeSPwuWjihjaK4NfT1+um5eJSFRTyB8Fv8/46YXHsmFnLX/7aL3X5YiItEkhf5TOLMnjzJI8/vjOanbX6nYHIhKdFPId8NMLh1Jd18if3lntdSkiImEp5DtgaK9MrhhVzOMfrWPd9r1elyMi8gUK+Q764XklJPh9/PK1ZV6XIiLyBQr5DsrPTGby+EG8vmQrsz7b7nU5IiKfo5DvBNedMYDCrBR+8coymlt0gZSIRA+FfCdITvBz6wVDWbaliufn6nmwIhI9FPKd5KIRvRnVL5t7Xl9BdV2j1+WIiAAK+U5jZvz84mFsr2nQKZUiEjU6FPJmdo+ZLTezhWb2oplltWq7zcxWm9kKMzu/w5XGgBFFWVxZWsSjM9eyprLG63JERDq8J/8mcJxzbgSwErgNwMyGAZOA4cAE4H4z83dwXTHhlvOHkhzw84tXlnpdiohIx0LeOfeGc64p9PZjoCg0PhF4xjlX75xbC6wGRndkXbEiLyOJ7509mHdXVPLO8q1elyMi3Vxn9slfC7wWGi8EWp9mUh6a9gVmdoOZlZlZWWVlZSeW451rTuvPwLw0fvHKMt2lUkQ81W7Im9lbZrY4zDCx1Ty3A03AU/snhfmosCeQO+cecs6VOudK8/LyjubPEHUSAz5+fvFw1m7fyyMfrvW6HBHpxgLtzeCcO+dQ7WZ2DXARcLb716OSyoHiVrMVAZuPtshYdFZJHucNK+CPb69m4shCCrNSvC5JRLqhjp5dMwH4CXCJc662VdNUYJKZJZnZAGAwMKcj64pFP7toGC3OcderOggrIt7oaJ/8n4AM4E0zm29mDwA455YAzwJLgenAZOdct+ucLs5JZcr4QUxbVMEHq+LjeIOIxBaLpodRl5aWurKyMq/L6FR1jc2c/4cZ+H3G9O+fSWJA15+JSOcys7nOudJwbUqcCEtO8HPnxcNZU7mXhz9Y43U5ItLNKOS7wPih+UwY3ot7317Fxp217S8gItJJFPJd5I6Lh+H3GXe8vJho6iITkfimkO8ifbJS+PdzS3h3RSWvL6nwuhwR6SYU8l3oW6f1Z2ivDP7jn0upqW9qfwERkQ5SyHehgN/HXZcdT0VVHb97Y6XX5YhIN6CQ72Kj+mVz9Zi+PDZrLQvLd3tdjojEOYW8B348YSi56Unc+sIimppbvC5HROKYQt4DmckJ/Mclw1m6pYq/zlzndTkiEscU8h6ZcFwvzjm2gN+9uVLnzotIxCjkPWJm/OfE4fgMfvriIp07LyIRoZD3UJ+sFG69YCgfrNrO83PLvS5HROKQQt5jV4/px+j+OfzilaVsq67zuhwRiTMKeY/5fMavLj+euqYW7nhpidfliEicUchHgYF56fzgnBKmL6lg2qItXpcjInFEIR8lvjN2AMcX9uBnLy1mR0291+WISJxQyEeJgN/Hb644geq6Ju54Wd02ItI5FPJRZEivDL5/zmBeXbSFVxeq20ZEOk4hH2W+e+ZARhT14GcvL2a7um1EpIMU8lEm4Pfx2ytOoKauidt1kZSIdJBCPgoNLsjgh+eV8PqSrbz46SavyxGRGKaQj1LXjx3Iyf2z+fnLS9i0e5/X5YhIjFLIRym/z/jtFSNpdo5bnltAS4u6bUTkyCnko1jfnqn87KJhzPpsB4/NWud1OSISgxTyUW7SycWcPTSfX01fzoqKaq/LEZEYo5CPcmbGr786gszkAN9/5lPqGpu9LklEYohCPgbkpidxzxUnsLyimrunr/C6HBGJIR0KeTP7hZktNLP5ZvaGmfVp1Xabma02sxVmdn7HS+3exg/J55pT+/HozLW8v7LS63JEJEZ0dE/+HufcCOfcSOAV4A4AMxsGTAKGAxOA+83M38F1dXu3XXgsJQXp/PDZBVRW62pYEWlfh0LeOVfV6m0asP88v4nAM865eufcWmA1MLoj6xJITvBz79dOpLqukX9/dr5OqxSRdnW4T97M7jKzjcDVhPbkgUJgY6vZykPTwi1/g5mVmVlZZaW6IdoztFcmd1w8jA9WbeehD9Z4XY6IRLl2Q97M3jKzxWGGiQDOududc8XAU8CU/YuF+aiwu53OuYecc6XOudK8vLyj/XN0K1eN7suFx/fiN6+v4NMNu7wuR0SiWLsh75w7xzl3XJjh5YNmfRq4PDReDhS3aisCNndOyWJm/PIrIyjITGbK05+yp7bR65JEJEp19Oyawa3eXgIsD41PBSaZWZKZDQAGA3M6si75vB4pCfzpqhPZVl3HD59boLtVikhYHe2T/1Wo62YhcB7wfQDn3BLgWWApMB2Y7JzTVTyd7MS+2dx2wbG8tWwrf/lgrdfliEgUCnRkYefc5Ydouwu4qyOfL+379un9mbN2J7+avpwT+2ZR2j/H65JEJIroitcYZ2bcfcUICrNSmPL0p3qalIh8jkI+DmQmJ/Dnr5/ErtoGpjw9j6bmFq9LEpEooZCPE8P79OC/Lzuej9fs5J7XdX8bEQlSyMeRy0cV8Y1T+vHgjDVMW7TF63JEJAoo5OPMzy4axol9s/jRcwt0/3kRUcjHm8SAjwe+Poq0pADfeaKM3bUNXpckIh5SyMehgsxkHvj6KCr21DHl6U91IFakG1PIx6lR/bL5r0uP48PV2/nla8vbX0BE4lKHLoaS6HblycUs3VLFIx+upaQgnf9zcl+vSxKRLqY9+Tj3/758LGMH53L7i4v56LMdXpcjIl1MIR/nAn4ff7rqJPr1TOXGp+aybvter0sSkS6kkO8GeqQk8Oi3TsaAax//RGfciHQjCvluol/PNB78RinlO/dxw9/mUt+km4KKdAcK+W5k9IAc7rliBHPW7uSW5xbqGbEi3YDOrulmJo4sZNPufdw9fQVF2Sn8eMJQr0sSkQhSyHdDN551DOW79nH/e5/Rq0cy3zy1v9cliUiEKOS7ITPjPy8Zzraqen4+dQm56UlceHxvr8sSkQhQn3w3FfD7+OPXTmRU32xufmY+sz7b7nVJIhIBCvluLCXRz1+uKaVfz1RueGIuizft8bokEelkCvluLis1kSeuG02PlAS++egcVm/T7YlF4olCXujdI4Unrx+Dz4yr/zKbjTtrvS5JRDqJQl4AGJCbxpPXj6ausYWr/zKbij11XpckIp1AIS8HDO2VyePXjmZHTT1XPfwx26oV9CKxTiEvnzOyOIvHrh1NRVUdVz08m+019V6XJCIdoJCXLzi5fw6PfutkynfVcvXDs9mhoBeJWQp5CeuUgT155JqTWbdjr/boRWKYQl7adPqgXB791sms37mXSQ99zLYq9dGLxJpOCXkz+5GZOTPLbTXtNjNbbWYrzOz8zliPdL3TB+Xy2LdHs3n3PiY99LHOuhGJMR0OeTMrBs4FNrSaNgyYBAwHJgD3m5m/o+sSb5wysCdPXDuabdX1fPWBWazfoadLicSKztiT/z3wY6D1zcknAs845+qdc2uB1cDoTliXeKS0fw5Pf2cMe+ub+OoDH7GiQlfGisSCDoW8mV0CbHLOLTioqRDY2Op9eWiaxLARRVk8+91TMeDKBz/i0w27vC5JRNrRbsib2VtmtjjMMBG4Hbgj3GJhpoV9DJGZ3WBmZWZWVllZeWTVS5cbXJDB8/92Gj1SErjq4dm8u3yb1yWJyCG0G/LOuXOcc8cdPABrgAHAAjNbBxQB88ysF8E99+JWH1MEbG7j8x9yzpU650rz8vI6+ueRLtC3ZyrP33gqA/PSuP6JMp4r29j+QiLiiaPurnHOLXLO5Tvn+jvn+hMM9pOccxXAVGCSmSWZ2QBgMDCnUyqWqJCfkczfv3sqpw7syS3PL+RP76zCOT0zViTaROQ8eefcEuBZYCkwHZjsnGuOxLrEO+lJAR791slcdmIhv3ljJT95YSGNzS1elyUirXTa4/9Ce/Ot398F3NVZny/RKTHg43dXnkDfnFT+5+1VbNq9j/uvHkWPlASvSxMRdMWrdAIz4wfnlvDbK05gztqdfOX+mazdrnPpRaKBQl46zeWjinjyujHsqm3k0vtm8uEqPTdWxGsKeelUYwb25OXJp9MrM5lr/jqHRz9cqwOyIh5SyEunK85J5YWbTuNLQ/P5z1eWcvPf57OvQcfdRbygkJeISE8K8ODXR/Gj80qYumAzl90/U/e8EfGAQl4ixuczpnxpMI99O/ikqYvu/ZDXFm3xuiyRbkUhLxF3Vkke/5xyBgPz07nxqXncOXUJ9U3qvhHpCgp56RLFOak8991Tufb0ATw2ax1f/fNHrKms8boskbinkJcukxjwccfFw3jwG6PYuKuWL9/7IX//ZIPOvhGJIIW8dLnzh/fite+PZWRxFj95YRE3PTWPnXsbvC5LJC4p5MUTvXuk8OT1Y/jJhKG8tWwr5/1+Bm8v2+p1WSJxRyEvnvH7jBvHHcPUKWeQm57IdY+XcctzC9izr9Hr0kTihkJePHds70ymTjmDyeOP4R+fbuLc373PG0sqvC5LJC4o5CUqJAZ83HL+UF666XR6pidxw9/mMvnpeWyrrvO6NJGYppCXqHJ8UQ+mTjmdH55bwptLtnL2b9/nbx+vp7lFZ+CIHA2FvESdBL+P/3v2YKbfPJYRRT342UuL+cqfZ7GwfLfXpYnEHIW8RK2Beek8ed0Y/mfSSDbt2sfE+2Zy6wsL2VFT73VpIjFDIS9RzcyYOLKQd390FtefMYDn55Yz7jfv8ZcP1ujWCCKHQSEvMSEjOYHbvzyM6TeP5aS+2fzXq8s493czeHXhFl0xK3IICnmJKYPyM3j82tE8ce1oUhP9TH56HpfeP4tZn+kpVCLhKOQlJp1Zkser3xvL3ZePYFtVHVc9PJtvPDKbBRt3e12aSFSxaPqvbmlpqSsrK/O6DIkxdY3NPPnxeu57dzW7ahv50tB8bj5nMCOKsrwuTaRLmNlc51xp2DaFvMSLmvomHp+1jodmrGHPvkbGD8lj8vhBlPbP8bo0kYhSyEu3Ul3XyOOz1vHozHXs3NvAmAE53DjuGM4qycPMvC5PpNMp5KVbqm1o4pk5G3loxhoqquoYUpDB9WMHcMnIPiQF/F6XJ9JpFPLSrTU0tfDPBZt5+IM1LK+oJi8jiavH9OWqMX3Jz0j2ujyRDlPIiwDOOWas2s5jM9fy7opKEvzGhcf35uox/Ti5f7a6ciRmHSrkAx384DuB7wCVoUk/dc5NC7XdBlwHNAPfc8693pF1iXSUmXFWSR5nleSxdvteHp+1jhfmlfPy/M2UFKTztdF9uXRkIdlpiV6XKtJpOrQnHwr5Gufcbw6aPgz4X2A00Ad4Cyhxzh3yOnTtyUtXq21o4pUFW3hy9noWlu8h0e/jvOEFXFlazOmDcvH7tHcv0S9ie/KHMBF4xjlXD6w1s9UEA/+jCK1P5KikJga48uRirjy5mKWbq3i2bCMvzd/EKwu3kJ+RxKUnFnLpyEKO7Z2h7hyJSZ0R8lPM7JtAGfBD59wuoBD4uNU85aFpIlFrWJ9M7rxkOLddOJR3l2/jhXmb+OvMtTw0Yw2D8tO5eEQfLj6hNwPz0r0uVeSwtdtdY2ZvAb3CNN1OMMi3Aw74BdDbOXetmd0HfOScezL0GY8A05xzL4T5/BuAGwD69u07av369R3444h0rp17G5i2aAv/XLCZOet24hwM7ZXBhON6ccFxvSkpSNcevniuS86uMbP+wCvOueNCB11xzv0y1PY6cKdz7pDdNeqTl2hWsaeOaYu2MH1xBZ+sDwZ+35xUzh1WwLnDCijtl03Ar9tBSdeLWMibWW/n3JbQ+A+AMc65SWY2HHiafx14fRsYrAOvEi+2Vdfx5tKtvLl0K7NW76ChuYWM5ABnluQxfkg+Zw7OJT9T5+BL14jkgde7zWwkwe6adcB3AZxzS8zsWWAp0ARMbi/gRWJJfkYyV4/px9Vj+lFT38QHKyt5b0Ul767YxqsLtwDBbp2xg3M5fVAuowfkkJoYqfMcRNqmi6FEOpFzjiWbq/hw9XZmrKykbN0uGppbSPAbI4uzOGVgT0YPyGFUv2yFvnQaXfEq4pF9Dc2Urd/JzNU7+Oiz7SzeXEVziyPgM4b3yWRUvxxK+2dzUt9sevVQ944cHYW8SJSoqW9i7vpdzF6zg7L1u1iwcTf1TS0A9O6RzIl9szihKIvji3pwfGEPMpITPK5YYoEXF0OJSBjpSYEDt1aA4M3Tlmzew6cbdvPpxt18umEX0xZVHJh/YG4awwt7MLxPJsP7ZDK0VyZ5GUlelS8xSCEv4qHEgI8T+2ZzYt/sA9N21NSzaNMeFpbvYfGmPcxbv4t/Lth8oD03PYlje2dQUpBBSUE6gwsyGJSfTqb2+iUMhbxIlOmZnsS4IfmMG5J/YNquvQ0sq6hi2ZZqlm2pYkVFNU/NXk9dY8uBeQoykxiUn87A3HQG5qUxIDc4FGal6Pz9bkwhLxIDstMSOe2YXE47JvfAtOYWR/muWlZurWH1thpWbavms8q9vDR/E9V1TQfmS/AbxdmpFOek0q9nKn1zUinKTqUoO4Xi7FQyUwK6ajeOKeRFYpTfZ/TrmUa/nmmcO6zgwHTnHNtrGli7fS/rtu9l3Y7gsGFnLfM27PrcPwAQPE5QmJVCn6xkemel0KdHMr17pNCrRzIFmckUZCbpAHAMU8iLxBkzIy8jibyMJEYP+OJDzHfXNlC+ax/lu2rZuHMfm3aHhl37WFC+h517G76wTGqin4LMZPIyksgPfXZuehJ56UnkZiTSMy2JnunB15REPVoxmijkRbqZrNREslITOa6wR9j2usZmKvbUUVFVx9aqOir21LG1qp6t1XVsq6pjyeYqKqvrqalvCrt8SoKfnLREctISyUpNIDs1kezUBHrsf01JICv02iMlgczkBDJTEkgK+NRtFAEKeRH5nOQEP/1z0+ifm3bI+WobmthR08D2mnq21zSwc+/+1wZ27W1gV20DO2sb2bCzlt21jezZ13jIz0vwGxnJCWQmB0hPDpCRlEBGcoD0pABpScFp6UkBUhP9pCUFSEsMkJrkD74m+kNDgJTQeIIONgMKeRE5SqmJAVJzAhTnpB7W/M0tjj37Gg8Mu2sbqKprYs++Rqr2NVJd10RVXfC1pq6RmvomNuyspaa+KTjUNdHUcvgXbwZ8RkqCn+REf/A1wUdygp/kgJ+k/eMJfpIDPpISfCQF/CQFgq+JAR9JAR+JoSEp4CPR7yPBH3y//zXR7yMhYMH3ofaA30jwBacHfD4S/Obp/1AU8iLSJfw+O9CNc7Tqm5rZW9/M3vomahua2dvQdGB8X0Nz8LWxmX0NwWl1jS0H3tc1tlDXFJyvuq6Jyup66ptaqGtspqGp5cD4kfxDcrj8PiPgC/5j4PcZCX4LTQv+o+D3GWcPzef2Lw/r9HVHV8ivWAHjxnldhYhEqaTQ8MXDyZ3HETxDqcVBi3O4tl751/v98+9fdv+04PtQe2gcQvM6cAQXagEykgJwT+ffvyi6Ql5ExGNG8Ayl4DPcY/9AcHSF/JAh8N57XlchIhJbDtHnr8PPIiJxTCEvIhLHFPIiInFMIS8iEscU8iIicUwhLyISxxTyIiJxLKoe5G1mlcD6DnxELrC9k8rpTKrryKiuI6O6jkw81tXPOZcXriGqQr6jzKysrSeWe0l1HRnVdWRU15HpbnWpu0ZEJI4p5EVE4li8hfxDXhfQBtV1ZFTXkVFdR6Zb1RVXffIiIvJ58bYnLyIirSjkRUTiWMyFvJlNMLMVZrbazG4N025mdm+ofaGZndQFNRWb2btmtszMlpjZ98PMM87M9pjZ/NBwR6TrCq13nZktCq2zLEy7F9trSKvtMN/Mqszs5oPm6bLtZWaPmtk2M1vcalqOmb1pZqtCr9ltLHvI32ME6rrHzJaHvqsXzSyrjWUP+b1HoK47zWxTq+/rwjaW7ert9fdWNa0zs/ltLBuR7dVWNnTp7yv4qKrYGAA/8BkwEEgEFgDDDprnQuA1go90OQWY3QV19QZOCo1nACvD1DUOeMWDbbYOyD1Ee5dvrzDfaQXBizk82V7AmcBJwOJW0+4Gbg2N3wr8+mh+jxGo6zwgEBr/dbi6Dud7j0BddwI/Oozvuku310HtvwXu6Mrt1VY2dOXvK9b25EcDq51za5xzDcAzwMSD5pkIPOGCPgayzKx3JItyzm1xzs0LjVcDy4DCSK6zE3X59jrI2cBnzrmOXOncIc65GcDOgyZPBB4PjT8OXBpm0cP5PXZqXc65N5xzTaG3HwNFnbW+jtR1mLp8e+1nZgZcCfxvZ63vMGtqKxu67PcVayFfCGxs9b6cL4bp4cwTMWbWHzgRmB2m+VQzW2Bmr5nZ8C4qyQFvmNlcM7shTLun2wuYRNt/8bzYXvsVOOe2QPAvKpAfZh6vt921BP8XFk5733skTAl1Iz3aRveDl9trLLDVObeqjfaIb6+DsqHLfl+xFvLhHmR48DmghzNPRJhZOvACcLNzruqg5nkEuyROAP4IvNQVNQGnO+dOAi4AJpvZmQe1e7m9EoFLgOfCNHu1vY6El9vudqAJeKqNWdr73jvbn4FjgJHAFoJdIwfzbHsBX+PQe/ER3V7tZEObi4WZdsTbK9ZCvhwobvW+CNh8FPN0OjNLIPglPuWc+8fB7c65KudcTWh8GpBgZrmRrss5tzn0ug14keB/AVvzZHuFXADMc85tPbjBq+3Vytb93Vah121h5vHqt3YNcBFwtQt13h7sML73TuWc2+qca3bOtQAPt7E+r7ZXAPgK8Pe25onk9mojG7rs9xVrIf8JMNjMBoT2AicBUw+aZyrwzdBZI6cAe/b/tyhSQv19jwDLnHO/a2OeXqH5MLPRBLf9jgjXlWZmGfvHCR60W3zQbF2+vVppc+/Ki+11kKnANaHxa4CXw8xzOL/HTmVmE4CfAJc452rbmOdwvvfOrqv1cZzL2lhfl2+vkHOA5c658nCNkdxeh8iGrvt9dfbR5EgPBM8GWUnwqPPtoWn/BvxbaNyA+0Lti4DSLqjpDIL/jVoIzA8NFx5U1xRgCcEj5B8Dp3VBXQND61sQWndUbK/QelMJhnaPVtM82V4E/6HZAjQS3Hu6DugJvA2sCr3mhObtA0w71O8xwnWtJthPu/939sDBdbX1vUe4rr+Ffj8LCQZR72jYXqHpj+3/XbWat0u21yGyoct+X7qtgYhIHIu17hoRETkCCnkRkTimkBcRiWMKeRGROKaQFxGJYwp5EZE4ppAXEYlj/x8nmZA7rdEPrAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(t, vy)\n", "plt.axhline(vt, color='r')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How long until one reaches terminal velocity?" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "ind = np.abs(vy - vt)/np.abs(vt) < 0.01" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([17.17171717, 17.37373737, 17.57575758, 17.77777778, 17.97979798,\n", " 18.18181818, 18.38383838, 18.58585859, 18.78787879, 18.98989899,\n", " 19.19191919, 19.39393939, 19.5959596 , 19.7979798 , 20. ])" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "t[ind]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.5" } }, "nbformat": 4, "nbformat_minor": 4 }