{ "cells": [ { "cell_type": "markdown", "id": "illegal-copying", "metadata": {}, "source": [ "from sympy import Matrix, symbols, sin, cos, trigsimp, init_printing, I, \\\n", " simplify, Eq, solve, expand, lambdify, diff, solveset, exp, factor, Sum" ] }, { "cell_type": "code", "execution_count": 2, "id": "sunrise-accent", "metadata": {}, "outputs": [], "source": [ "init_printing()" ] }, { "cell_type": "code", "execution_count": 3, "id": "linear-bridal", "metadata": {}, "outputs": [], "source": [ "from scipy import optimize\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "import os\n", "import pandas as pd\n" ] }, { "cell_type": "code", "execution_count": 4, "id": "annoying-junction", "metadata": {}, "outputs": [], "source": [ "%matplotlib inline" ] }, { "attachments": { "diode-measure-3.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAACuCAYAAAAbBsDhAAAACXBIWXMAAA7DAAAOwwHHb6hkAAAAGXRFWHRTb2Z0d2FyZQB3d3cuaW5rc2NhcGUub3Jnm+48GgAAIABJREFUeJzt3XtYE1feB/BvQiAhCRBuBUHkolZEtCpYVLy2UKWyS6mXrW3d1mpxe7PaWnHFra5rXbysBdfdfbBPWxW1T9W1rla3CiIUKKsVa1EQKorKVblDiNzCef+wzktIQMCEhOH3eZ48wszJzBnMN3Nm5swZwbhx49j06dPx6aefoqNFixbh7t27OHPmjNY8QojpEy5evBjx8fFoamrSmFFXV4ejR49i8eLFRqoaIeRxCSorK5mrqysOHjyI8PBwbsZnn32GyMhIlJSUQCKRIDc3F7GxsSgoKIBUKsXEiROxevXqLheuVqtRV1fH/d7Q0IDm5mYAQFtbG2pra7s1T6VScV9APZnX0tICpVLZaf2am5vR0NDQ6fympiaoVCoIBAIoFAqdZcRiMaRSKaKjo+Hl5dXpsggxBgFjjL300ktQqVQ4fvw4NyMwMBBjx47FP/7xD6hUKnh4eOC1115DcHAwampqkJGRobNZ39727dvx0UcfGXobtFhaWkIikWhNt7a2hpmZWafvs7GxgVAofOTyO35xVVZWIjAwEDKZDAsWLMC8efN6V3FC9EzAGGNnzpzBnDlzUFRUBCcnJ+Tl5cHb2xsXL16En58f8vLy4OPjg+rqalhbW3d74enp6Thx4gSkUinEYvGDFXbYG3Y1r31QezKvr61ZswZbtmwBAGzYsAHr1683Wl0IaU8EAEFBQXBxcUF8fDxWrVqFPXv24KmnnoKfnx8AwMvLC/7+/hg+fDjmzp2LWbNmISQkBBYWFl0uPDAwEIGBgYbfCkKITkIAEAqFeP3117Fnzx6o1WrEx8drnFwzNzdHamoqdu/eDbVajSVLlsDPz6/L41tCiPFxB5yvv/46cnJy8Mknn6C8vByvvPKKRkELCwuEhYUhLi4Ot2/fRkFBAdLS0vq8woSQ7hM9/MHT0xMzZ87Exo0bER4eDgcHB67Q5cuXcezYMcyaNQuOjo5ISUmBWq2Gt7e3USpNCOkeUftfPvroI9jb22P58uUahezs7HDr1i289dZbuH//PoYOHYpTp07Bw8OjL+tKCOkhjYDPnj0bs2fP1io0ZMgQ7Nmzp6/qRAjRk0df9CWE9FsUcEJ4jAJOCI9RwAnhMQo4ITxGASeEx0SPLkKIaamoqEBubi6amprg4uICb29vCAQCY1fLJNEenPQbGRkZCA4OhrOzM6ZOnYqgoCD4+PjAzc0NW7Zs0Rq0hFDAST+xc+dOTJ06FYmJiVCr1RrziouLsWbNGkyfPh2VlZVGqqFpoia6nsXHx8Pe3h6LFi2CjY1Nn623tbUV+fn5uHr1KsrKyvDuu+/22boN7ciRI1ixYgUYYxAIBAgJCUFISAhsbGzw888/Y8+ePaisrMT58+cRHh6O5OTkbg3cMSAw8tgiIyMZAI2XTCZjb775Jrt06ZLe11dQUMC+/fZbFh0dzebOncuGDBnCLCwsmLW1NTMzM2OTJk1ibW1tel+vMTQ1NTFXV1cGgJmbm7MjR45olbl37x57+umnub99fHy8EWpqmijgenDt2jW2dOlSJpPJtIIOgAUEBLAvv/ySqVSqHi23qqqKpaamsri4OLZs2TLm7+/PZDIZk0qlTKFQMHNzc431CAQC5uzszMrLyw20pX3v5MmT3PatXr2603K3bt1iFhYWDAALDg7uwxqaNgq4HtXW1rK4uDg2ZswYnUG3sbFhERER7MqVK1rvbWpqYp999hmLiIhgEyZMYFZWVszS0pLZ2dkxqVSqc3kdX3K5nOXm5hphyw0nOjqa277MzMwuy06fPp0BYE5OTn1UO9NHATeQixcvsoiICGZpaakzjIGBgezQoUOsubmZMcZYRUUF8/HxYQKBoFth7vgSi8UsISHByFutfxs3buS2MScnp8uyISEhDABTKBR9VDvTRwE3sLKyMrZ582bm5uamM5guLi7s448/ZoWFhUytVrPPP/+cyeVyJhQKux1uqVTKYmNjjb2pBrF//35uO3ft2tVpOaVSyWxtbRkA5u/v34c1NG0UcD2rqKhgaWlp7LPPPmOrVq1izz//PPPy8npkYM3MzNgLL7zAvvvuO5aVlcXs7Oy6tTeXSqVsyZIlxt5sg6mqquJaQQqFguXn52uVaWtrY0uXLuX+Jps3bzZCTU2TgDHGune+nTzEGMPt27eRl5eHnJwc5ObmIjc3F9euXUN5eXmPl+fg4AAfHx94e3tjxIgRCAkJQXNzMwICArrsvCEWi+Hv74/k5GSIRPy84pmYmIhXXnkF9+7dA/BgdKG1a9dizpw5sLGxweXLl7F9+3YkJSUBAAYPHoycnBxYWVkZs9omgwLehZaWFhQWFiI7Oxs5OTm4efMmsrOz8fPPP/dqRNlBgwZh1KhR8PLygo+PD0aNGoVRo0Zh0KBBGuXOnj2LlStX4sqVK50uSygUwtXVFVlZWUYdE95QcnJy8MEHH+D06dPdfo+trS0SExMxfvx4A9asf+Hn134P1dTU4MaNG1yAc3JykJ2djby8PK1eU49iYWGBwYMHcwF++K+3tzdkMlmX771+/TqioqJw+PBhbppAIICu72C5XI6kpCTehbu6uhpbtmzBp59+yj3KSigU4uWXX4a7uzt27dql8Xiqh2bNmoV//vOf9PioDgbkHrygoABbt27lmth3797t8TLs7OwwcuRIjBw5EiNGjOB+9vDw6HEvqpqaGkRHRyMmJoZrkgsEAsybNw9+fn7YtGmTRotBKpXi5MmTmDFjRo/rbapaW1vxxRdfYN26dRqHOQEBAYiNjUVAQACABw/FPHPmDLKzs3H//n0MHjwYzz77LEaOHGmsqps24x3+G8+5c+d6dAlKLpezOXPmsJiYGJacnMzu3bunl3qo1Wq2d+9e5uTkpLG+CRMmsB9++IExxlhpaSmTSCQaPeTi4uL0sn5TcfbsWa2+A4MHD2Z79+7lTY88YxmQAU9PT+/VtWYATCKRMC8vLxYUFMQWLVrEIiMjWVxcHDt+/Di7ePEiKy4u7taH8ty5c+ypp57SWLarq6vOD7VCoeDC/fbbbxvqz9Lnrl+/zubPn691VWD9+vXs/v37xq4eLwzIJnpRURE++eQTFBUVobCwECUlJb06+90ZmUyGIUOGwMXFBa6urnBzc4OLiwvc3NwgEonwxRdf4MiRI1x5qVSK9957D+vWrYNcLtdanre3N27cuIHAwECcPXu2yyek9gdKpRLbt29HdHS01iHJ9u3bMWTIECPXkD8GZMB1aWxsRHFxMUpKSnDnzh2UlJSgqKgIRUVFKCkpQWFhIcrKynp80u1R7Ozs8Oyzz+LQoUOdlhkxYgSam5vx888/9+jprqamra0N+/fvx+rVqzXOe0yYMAExMTGYPHmyEWvHTxTwHlCr1SgrK+P2+u1bAIWFhSguLkZxcXGPBx6QSCS4f/9+p/O3b9+OuXPnwtPT83E3wWjOnz+P999/H+fPn+emubi4YP369Vi6dCnd3mkgFHA9UavVyM/Px5UrV5CUlIQzZ87gxo0b3XqvQCCAWq3m5bBDRUVFWLt2Lfbv389d7rO0tMTy5csRFRVFHVIMjK6D90JRURGuXr2KK1eu4OrVq7h69SpycnLQ2NjY7WVYWFhw18hHjx6Ntra2fn9s3Z5KpcLWrVuxZcsWjb9LaGgodu7c2a9bI/0JBbwLtbW1yM/PR3Z2NjIzM5GTk4OsrCyu22R3icViBAYGYsKECRo92CQSiYFqbjyMMRw5cgSrVq3CnTt3uOnjx49HTEwMpk6dasTaDTwU8F9dv34dGRkZGnvmoqKiHi3DzMxM4ySch4cHYmJiEBYWpu/qmqQff/wRK1aswA8//MBNc3BwwLp16/Duu+/yqoXSbxjr+pypWbhwYbevhVtZWTE/Pz+2aNEi9t577zEfHx+N+XZ2diwmJoa1trYae7P6RHFxMYuIiNC4Y87c3JwtX76c1dbWGrt6AxoF/Ffh4eFdhtrf3599/vnnrKCggDHGWElJCYuIiGBmZmZaH+rq6mrjbkwfUalULDo6mllZWWn8rUJDQ3Xe1mlohYWF7NSpU+zo0aMsIyODtbS09HkdTA0F/FeLFy/u1v3X3t7ebPLkyVojtQQFBbGrV68aezP6zPHjx5mnp6fW3+bUqVN9XpezZ8+ySZMmaf1fKRQKtnbtWqZUKvu8TqaCAt5ObW0tS0hIYJGRkSwwMFBrUENdL5FIxKZMmcLi4uIGRMAzMzPZ1KlTdR6SGGOPGR0d/cjBNHx9fVlJSUmf180UUMC7UF9fzxISEtg777zD7O3tu3V87uzszObPn89iYmLYxYsXeXOzRHl5OVu+fLnWIUlERITRRnE9cOAAVxehUMgWLFjA9u7dy44ePcr+/Oc/c8MtA2B+fn4DsslOAe9CRUWF1ofazMyMPf3002zatGmdDqjY/uXo6MhCQ0NZdHQ0S01N5QZZ7C+am5tZTEwMs7a2NqlDksbGRubs7MyABwNOnjx5UqtMbW0tmzlzJlfn3bt3G6GmxkUB1+Hhh9rGxkbjQ/3MM8+wrKwsrlxLSwu7ePEii46OZqGhodxdX1295HI5CwoKYuvXr2cJCQmssbHRiFvatePHj7OhQ4dq1P/JJ59kJ06cMHbV2LfffsvVKSoqqtNypaWl3BfxtGnT+rCGpoG6qnaQmJiIFStWIDs7m5s2bNgwbN68GfPnz+/yvWq1GpcvX0ZaWhrS09ORlJT0yGdlSaVSjBs3DlOmTEFQUBCmTJli9A4wubm5WLlyJb777jtumkKhwJo1a7By5UpYWFgYsXYPbN26FZGRkQCAzMzMLodpCg4ORmJiIszNzTF9+nSD12327Nn48MMPDb6ebjH2N4ypyM3NZXPmzNHa265fv77Xe1m1Ws0uX77MYmNj2dy5c9kTTzzR7WvtxnzJ5XKNQ5K33nrL5J6WsmnTJq6Ouh4k0V7H/1dDv954440++is82oDvydbZGGCvvPIKtm3bBicnp0cuQ6VSoaKiAvfu3UN5eTkqKipQUVGB8vJyjWkKhQLl5eU6x1gzJSNHjsSPP/6ImTNnIiYmBmPGjDF2lbQMHz6c+/n06dPw9fXVWa6+vh7p6ekAHnQZdnV1NXjdHB0dDb6O7hqwTfTOxgCbPn06tmzZAjc3N5SWlqKkpATV1dXcq+O00tJSVFdX67VuCoUCCxYs0Osye8LX15c7bDBVdXV1cHV1hVKphK2tLb7//nutkKvVarzxxhvYt28fACA6Oppr1uvbv//9b+Tn53N3ypmKARnwpKQkrFixQmNYYnNzc8hkMjQ0NKClpcXgdbCzs4OjoyMcHBy4l5OTExwcHDB8+HCEhoYavA793bZt27B69WoAgJWVFVauXInQ0FBYW1sjKysLO3bswP/+9z8AgLu7O7Kzsx85sm1v/fa3v8WJEydgb2+PiooKg6yjNwZUwPPz87F27VqNYYn1QSQS6Qyqg4MDF+L20xwcHHj7oIK+xBjD4sWLsXfv3i7LOTo64uzZsxg9erTB6mKqAR8Qn7LOxgAbPHgwCgsLe7w8oVCIYcOGYcKECQgICICfnx+8vLzg7Oys76qTLggEAnz55ZcICAjAhg0btG7jFQgECA8PR0xMDNzc3IxUS+Pi9R78UWOAlZWV4ezZs7h58yYKCgpw69atHg+31J6lpSW8vLzg6ekJLy8vjZ89PT0N1jwkQFNTE1JSUpCdnY36+nq4u7tj5syZfTaAo6nuwXkb8JSUFKxYsQKXL1/mprm6uuLjjz/ucgyw6upq3Lx5U+fr1q1baGtr63WdbG1tueB3fA0ZMoSa7f3Yw4Db2dk9su9DX+JdwAsLCxEVFWWQMcAaGxtRUFDA7fE7/ltfX9/rZZubm8Pd3V1jj/8w/H5+fr1eLukbYWFhOH78uMkFnDe7jK7GAPv73/8ODw+Px16HRCLhHlGkS1d7/zt37qC1tbXTZbe0tCA/Px/5+fka00UiUZ+c1Sf81O8DzkxoDDBbW1v4+fnp3OM2NjYiNTUV3333HU6dOoXc3NxuLfNxDgkI6dcBN8UxwKqrq/HLL7/g2rVr+OWXX5CXl4e8vDxcv36d6ynXE7a2tmCM8XJIZWJ4/TLgxcXFiIyMxMGDB7njbLFYjBUrVvTJWNutra24c+cO1/xu//zwmzdv9nh5IpEIQ4YM0XhuePsTcIT0Vr8MeG1tLQ4dOsSFOzQ0FDExMRg6dKhe19P+mLp9iHNycrp8EklnHp5F7xhivg6hPJA8bGGZ2jnrfhlwHx8fLFu2DImJifj0008xe/bsXi+rpaUFhYWFOvfEvdkbm5ubw83NTSvIvr6+1BGG9Ll+GXAA2LJlC8Ri8WMfZzs5OfXqZhEnJyd4e3tjxIgRePLJJ7mfPTw86Ho2MRn99pMolUr1shylUtnlfLlcjuDgYIwcOVIj0AqFQi/rJ8SQ+m3A9UGtVj/yGrNSqURCQgLu3bsHpVIJiUQy4J+r9dNPP2H37t24ceMG1Go1XFxcMHHiRMybNw9OTk5ISkrC119/jQ0bNmDQoEHc+1QqFVauXAknJyds3LhRY5k//PAD9u7dizVr1sDT0xPNzc3IyspCZmYmrly5ApFIhJiYmL7e1P6vb8eXMD15eXls37597O2332Zjx45lIpHokSN2CAQCNmLECPbaa6+xf/3rX+zy5csD5ikmO3fuZAKBgI0ePZqtWLGCrVq1ioWFhTGpVMr27NnDGGMsPT2dAWD79u3TeG9CQgI3SkxNTY3GvHfeeYdZWFiwhoYGxhhjMTExXFmpVMpsbGz6ZgN7KSwsjAFgtra2xq6KhgEf8I6USiVLTU1lMTExbP78+czJyalbw/TIZDIWGBjIli9fzg4dOsTu3r1r7E3RO7VazWxsbFhQUBBTq9Ua82pra1lxcTFj7MGglTKZjC1ZskSjzLp161hAQACzsrLSGrhx1KhRbMqUKdzvOTk5LC0tjSmVSrZ48WIKeC8N6Ca6LjKZDFOmTMGUKVPw/vvvAwBKSkqQmZmJ9PR0pKWl4eLFi1p3nTU0NCA9PR3p6enYuXMnxo0bh0uXLhljEwymtLQUtbW1mDFjhtbNOtbW1rC2tgbw4EpCYGAgkpOTNcokJyfj2WefhUKhQEpKCjeoRXl5OXJychAVFcWV7aw7sKljdJms/3FxcYGLiwt+85vfAHhwLJmZmYmMjAxkZGTg/PnzKC0t1XhPb66TmzonJyfIZDJ8/fXXWLhwYZedcGbMmIEzZ86gsLAQbm5uUKlUuHDhAtatWweZTIZvvvmGK5uSkgLGGGbMmNEHW2EYptrTUPc9k6RLUqkUU6dOxerVq/HNN9+gpKQEBQUFiI2N5cq0v+GFL0QiEWJjY5Gbm4uhQ4di1KhRWLp0KQ4fPgyVSqVR9mFYU1JSAAAZGRloa2tDYGAgpk2bhp9++gm1tbUAHuzZxWIxJk+e3KfbMxBQwPXEw8OD28MD/Aw4ACxZsgRZWVn405/+BIVCgYMHD2LBggUYM2YMcnJyuHL+/v6Qy+VcMz0lJQV+fn6Qy+WYMGECLCwskJaWxs0LCAiApaWlMTaJ1yjgetT+A8rXgAOAt7c3Nm7ciPT0dFRWViIuLg63b9/Gm2++yZXpeByenJzMPXRALBZj4sSJSE5ORnl5ObKzs/t189yUUcD1qH1/cj4HvD1LS0tERETghRdewPnz5zVOPs6YMQM3btzAL7/8ggsXLmg8VWTatGlITk7G999/3++Pv00ZBVyP2ge8qamJd/dyd7U9jY2NEAqFGmfXH4Y2Ojoara2tCAwM5OY9PA4/fvw4JBIJJk2aZLB6D2T99iz6J598ojHAg5OTE4YPH47w8HDI5XKNsiqVCj/99BMyMzORm5sLmUyGbdu26b1OYrEYAoEA7EH/AjQ1NfHquLK0tBShoaF45513MHXqVHh5eaG8vBx79+7FyZMnMW/ePJibm3Pl/f39YWVlhfj4eIwdOxY2NjbcvIkTJ8LMzAwHDx7U+Ty2uro6XLhwAcCDy5Stra1ITEwE8OB8x7Bhw/pgix+orKzEW2+9BaVSqbPnY2trKzf2X319Pfz9/bl5uu5z8PX1xbFjx/rmzLtRr8I/Bj8/P2Zvb8/mz5/PwsPD2fjx4xkA5uXlpfWw97/+9a8MePA8a5lMxpydnQ1WL4lEwnV+qaqqMth6jKGmpoY999xzGtuIX3ubLViwQKt3GmOMhYSEMADsgw8+0JoXGBjIALANGzZozbtw4UKnnYrWrl1rkO3ryrRp0/T27LKkpKQ+q3e/HXTR398f5ubmyMjI4KZ99dVXePnllxEVFYVNmzZx07Ozs3H//n2MGTMGv//975GSkqJ13Vpf7OzsuG/tkpISjb7YfKFSqVBQUICysjI4ODjAw8NDY+/csWxTUxOkUinEYrHGvIaGBjQ3N0Mmk2k9sbS1tbXTQSwlEkmft4yOHDnyyKfLdsdLL72Er776qtP5p06dwn/+8x/ud6lUCkdHR4wfPx7PPPOMzie7FhQU4OLFi8jMzER1dTUWLlz4/+c0+uyrRM/8/PzYxIkTNaap1WomkUhYWFhYp+/73e9+Z9A9+KBBg7hv6hs3bhhsPaRvtba2Mg8Pj8fac0ulUnbr1q0u1/PwqamhoaFs/vz57LnnnmM+Pj5MKBQyR0dHduDAAa33yGQyrpssALZr1y5uHq9OslVVVaGpqYnrMmkMA/FM+kBgZmaGiIiIx1rGunXr4O7u3q2ycXFxOHToEE6fPo3s7Gzk5eXBx8cHr776Ko4cOaJR9vDhwyguLuaew9Zevw54Q0MDMjMzkZmZidOnT2PevHkQiUSP/R/xOAbKtfCB6M033+z1ocGwYcPwwQcf9Hrdw4YNw7fffgsXFxesXr1ao897SEgIXFxcdL6vXwf8ypUr8Pf3h7+/P2bPno3z58/jxIkTRn3sbfs9OB/7ow9kDg4OeOmll3r13tjYWK1zED0ll8vx8ssvo6CgANeuXevWe/p1wMeOHYsbN27g+vXrOHbsGOzt7REVFWXUBwVQE53fevPs77CwMDz//PN6Wf+oUaMAPDix1h39OuASiQReXl4YNmwYwsLCcPjwYVy6dAk7duwwap0eooDzz9ixY3vUQhSLxXrtc/HwLHp3x9jv1wHvaNKkSZg7dy42b96Mqqoqo9SBjsH577333ut22cjISAwfPlxv6y4pKQHw4Jnn3cGrgAPAxx9/DKVSib/97W/ctJqaGiQmJiIxMRF3795Fc3Mz93t3mzrdRcfg/Pfiiy9i8ODBjyzn7u6OyMhIva779OnTEIvFGD9+fLfK8y7go0ePxosvvoidO3eivLwcAJCVlYXg4GAEBwcjOTkZVVVV3O/79+/X6/qpic5/IpEIf/jDHx5ZbseOHXob/RcA9u3bh8TERCxevLjby+23fdGTkpI67cu7f/9+qFQqrk/65MmTO22y67tHFDXRB4Zly5Zh06ZNnf4fBwUF4cUXX+z18lNTU2Fvb4/W1lbcvn0bJ06cwKlTpxAYGKh1TH/p0iVUVVWhqKgIAJCXl8f12++3PdlM1bvvvsv1XNq6dauxq0MM6PXXX9fZY83CwoJdu3atV8t82JOt/cvZ2ZmFhISwffv26Ry9Nzg4uNPec/12D26qqIk+cCxfvhx79uzRmv7+++/D29u7V8v88MMP8fbbbwMAhEJhp3382zt69Ginl4Yp4HpGAR84xo0bh8mTJ2s8vtrMzExjdNiekkgkPX4QZcfbo9vj3Uk2Y6OADywdL5kpFIpu7XX7CgVczyjgA8u8efM0nhqrz7Pm+kBNdD3z9fXFiBEjIBQKuW6FpH8qKytDcXEx93t9fT1aW1u539VqNerq6jBu3Dj897//BfDgBqjdu3dzZRhjqKmp0VhuY2Mj10di9uzZBh2PjgKuZ3K5HHl5eQBM7ykXpGf27dvX444qVVVVWLZsWbfLW1lZGTTg1EQnpBOP++z57lCr1QZdPu3BCenErFmzYGVlBZFIBCsrK4157YeZunnzJrfXtrS0RGpqKvdzxzPiCoVCo4NWT8+Y9xQFnJBO+Pr6wtfX95HlsrKyuJ+FQiH8/PwMWa0eoSY6ITxGASeExyjghDwmU310MEABJ4TXKOCE8BgFnBAeo4ATwmMUcEJ4jAJOCI9RwAnhMQo4ITxGASeExyjghDym9j3ZTG0MAAo4ITxGASeExyjghPAYBZwQHqOAE8JjFHBCeIwCTgiPUcAJ4TEKOCE8RgEn5DENGTKE+zk4ONiINdFGASfkMbV/eIGtra0Ra6KNAk4Ij1HACeExCjghPEYBJ4THKOCE8BgFnBAeo4ATwmMUcEJ4jAJOCI9RwAnhMQo4ITxGASeExyjghPAYBZwQHqOAE8JjFHBCeIwCTgiPUcAJ4TEKOCE8RgEnhMco4ITwGAWcEB6jgBPCYxRwQniMAk4Ij1HACeExCjghPEYBJ4THKOCE8BgFnBAeo4ATwmMUcEJ4jAJOCI9RwAnhMQo4ITxGASeExyjghPAYBZwQHqOAE8JjFHBCeExk7Ar0J8eOHcOuXbtgZ2cHd3d32NjYQC6Xw8rKCtbW1rCxsYGZmRni4+MBAM7OzsjMzIREIoGlpaXGsszMzGBtba1zHiH6QgHvgalTp6K1tRX5+fm4c+cOSktLUV9fD6VSidraWtTW1kKpVKKpqUnjfY2Njbh//77OZf7xj3/E5s2b+6L6ZAASMMaYsSsxEKnVatTV1dEe3ISdO3cO27dvh4WFBTw9PTVabAqFAnK5HDKZDDKZDLm5uQAAGxsbuLq6QqFQaC3PysoKUqkUMpmsz7aBAk5IJ1QqFRISEpCfn4+CggKutVZXV4eamhoolUo0NDRAqVRqvbe6ulrnMhcuXIiDBw8auuocCngXGGM4cOAAdu3aBXt7ezg5OeGJJ56AWCyGVCqFVCqFWCyGlZUVRCIRFAoFBAIBBAKBzm/wh7raa5uZmcHd3d1Qm0SMSKkXXROKAAABtUlEQVRUQiAQ0B7clJSXlyMtLQ1FRUUoKytDRUUFd0zd0NCA5uZm1NXVQa1Wa3xrd/YNDgBNTU1QqVQ65w0aNAglJSV63w4yMFHACWnnxIkT2LFjB8zNzTFo0CA4OTnB3Nwc1tbWsLCwgEwmg6WlJSQSCeRyOczNzQF03SoDwLXudPH09Ox03uOigBPSjlKpxLlz51BcXIzS0lLcvXsXLS0tqK+v51peKpUKTU1NqK+vR2trK4Cur5QAQG1tLdra2nTOa2xshFgsNsj2UMDbUavVOHDgALZt2wY7OzvY29vDzs4OdnZ2EAqF3LE38OBsacdpnX1Lty/zKO33Cu098cQTkMvlj7F1ZCCigHdQVlaG8+fPo6qqClVVVaisrERVVRUYYxrHzjU1NZ1O66i5uRkNDQ3dWv/D4/qO4uPj8eqrrz7GlpGBiAJOBqy2tjYcOHAAO3bsgEwm41pstra2sLCwgFAohI2NDQBAJpN1Ok2Xzlpiuuhq+dnZ2XV5Jaa7KOBkQKutrUVqaqpGi62mpgbNzc1cZyTg/1tWuqbp8vA4vbt16Hh8/pe//AXr1q17jC174P8AtB4CVJ/ogngAAAAASUVORK5CYII=" } }, "cell_type": "markdown", "id": "mineral-detail", "metadata": {}, "source": [ "![diode-measure-3.png](attachment:diode-measure-3.png)" ] }, { "cell_type": "markdown", "id": "finnish-patient", "metadata": {}, "source": [ "In this scenario we have a variable resistor pot R1 and a switch R1 (which is a push down switch non-toggle switch). We measure the voltage across the variable terminal of R1 with the switch open. This allows us to calculate the impedance of R1 with the switch open. Then we close the swith and measure the voltage across the diode $V_D$. Knowing the voltage across the diode and also knowing the resistance as established before we can easily calculate the voltage across the variable resister and also the current flowing through it. Because the resistor and diode are in series this must also be the current flowing through the diode." ] }, { "cell_type": "code", "execution_count": 12, "id": "religious-montgomery", "metadata": {}, "outputs": [], "source": [ "data = [(2.24, .640), (1.12, .560), (.880, .560), (.480, .480), (.400, .400), (.280, .280), \n", " (.800, .640), (.960, .640), (1.2, .560), (1.44, .640), (1.60, .640), (1.84, .640),\n", " (2.08, .640), (2.56, .640), (3.04, .640), (3.92, .720), (4.88, .960),\n", " (4.72, 0.880)]" ] }, { "cell_type": "code", "execution_count": 13, "id": "continued-parts", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
VRVD
00.280.28
10.400.40
20.480.48
30.800.64
40.880.56
50.960.64
61.120.56
71.200.56
81.440.64
91.600.64
101.840.64
112.080.64
122.240.64
132.560.64
143.040.64
153.920.72
164.720.88
174.880.96
\n", "
" ], "text/plain": [ " VR VD\n", "0 0.28 0.28\n", "1 0.40 0.40\n", "2 0.48 0.48\n", "3 0.80 0.64\n", "4 0.88 0.56\n", "5 0.96 0.64\n", "6 1.12 0.56\n", "7 1.20 0.56\n", "8 1.44 0.64\n", "9 1.60 0.64\n", "10 1.84 0.64\n", "11 2.08 0.64\n", "12 2.24 0.64\n", "13 2.56 0.64\n", "14 3.04 0.64\n", "15 3.92 0.72\n", "16 4.72 0.88\n", "17 4.88 0.96" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1 = pd.DataFrame(list(zip(*data))).T\n", "df1.columns=['VR', 'VD']\n", "df1 = df1.sort_values('VR', axis='rows').reset_index(drop=True)\n", "df1" ] }, { "cell_type": "markdown", "id": "narrow-consistency", "metadata": {}, "source": [ "R1 = (VR/5volts)\\*1000 since we are using a 1K variable pot. The current is therefore the difference between the voltage drop across the diode and 5V divided by the variable resistor impedance." ] }, { "cell_type": "code", "execution_count": 14, "id": "bulgarian-helmet", "metadata": {}, "outputs": [], "source": [ "df1['R1'] = 1000-df1['VR']/5*1000\n", "df1['ID'] = (5 - df1['VD'])/df1['R1']" ] }, { "cell_type": "code", "execution_count": 15, "id": "valuable-spray", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
VRVDR1ID
00.280.28944.00.005000
10.400.40920.00.005000
20.480.48904.00.005000
30.800.64840.00.005190
40.880.56824.00.005388
50.960.64808.00.005396
61.120.56776.00.005722
71.200.56760.00.005842
81.440.64712.00.006124
91.600.64680.00.006412
101.840.64632.00.006899
112.080.64584.00.007466
122.240.64552.00.007899
132.560.64488.00.008934
143.040.64392.00.011122
153.920.72216.00.019815
164.720.8856.00.073571
174.880.9624.00.168333
\n", "
" ], "text/plain": [ " VR VD R1 ID\n", "0 0.28 0.28 944.0 0.005000\n", "1 0.40 0.40 920.0 0.005000\n", "2 0.48 0.48 904.0 0.005000\n", "3 0.80 0.64 840.0 0.005190\n", "4 0.88 0.56 824.0 0.005388\n", "5 0.96 0.64 808.0 0.005396\n", "6 1.12 0.56 776.0 0.005722\n", "7 1.20 0.56 760.0 0.005842\n", "8 1.44 0.64 712.0 0.006124\n", "9 1.60 0.64 680.0 0.006412\n", "10 1.84 0.64 632.0 0.006899\n", "11 2.08 0.64 584.0 0.007466\n", "12 2.24 0.64 552.0 0.007899\n", "13 2.56 0.64 488.0 0.008934\n", "14 3.04 0.64 392.0 0.011122\n", "15 3.92 0.72 216.0 0.019815\n", "16 4.72 0.88 56.0 0.073571\n", "17 4.88 0.96 24.0 0.168333" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df1" ] }, { "cell_type": "code", "execution_count": 43, "id": "unlimited-kidney", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiP0lEQVR4nO3df5hcZX338fdnl/yCEJMmukg2mghRDF4BcRugqF2LPgS0RBuvNlhFsDbSyi8VCVp/tdZegj8qKg8xIipCiQqoqY2CivNYLGASCNEQqGtAswQEQgJsSMKG/T5/nLNwMnt2dzbZM7Nn83ld11yZOfd9n/nM2cl899xn9hxFBGZmZtWaGh3AzMxGJhcIMzPL5QJhZma5XCDMzCyXC4SZmeVygTAzs1wuELZPJM2UFJIOaHSW4SBpvaT2vRj3t5JuKiDPv0p6VNJDw73ukURSu6TOzOO9+jmkY0PS4cOVbX/mAjFKSbpR0r/kLF8g6aG8D/Sy/8cajvwRcWREVAZ5nj5FMSKuiYj/sy/PnfM8M4APAHMi4pCc9uoP1Yqknem43mWvl3R/ztjZad+rq5afKOkeSU9J+rmkF2faJOliSVvS2yWSlGn/pKRfS9ot6RP78tpr+TlY8VwgRq9vAO/I/gdOvQO4JiJ21z/SwBq5FzJC94BeDGyJiIeHMGY78NEa+l0GrMoukDQNuCEd/yfAauDbmS6LgTcDRwFzgTcB78m0dwAXAv81hLw2grlAjF7fJ/lP/preBZKmkPynvmqoK5M0QdLnJP1e0uOSbpE0IdPlbyX9IZ0O+afMuHmSbpW0TdKDkr4saWymPSS9V9Jvgd+myy6VtEnSE5LWSMq+hmZJH5b0O0lPpu0zJP0i7XKXpC5Jf5P2f5Oktenz/4+kuZl13S9piaR1wHZJB6TLXp/JvjrN8UdJn0+H9j7XtvS5jpd0hqRbMus+UtJPJD2Wjv1wP9v1eZKukvRIum0/IqkpzfAT4ND0Ob5R44/qi8BpA+1JSVoEbAN+VtX0V8D6iPhuROwEPgEcJemItP2dwOciojMiHgA+B5zROzgivhkRPwKeHCxk+n76hqStku4G/rSqPftzGCfpC5I2p7cvSBqX6fvB9L21WdK7qtYzTtJn0/fmHyUtrXrf2gBcIEapiNgBfAc4PbP4r4F7IuKuvVjlZ4FXAX9GUnguBHoy7a8GXgacCHxM0svT5c8A7wOmAcen7f9Yte43A8cCc9LHq4Cj0+f5D+C7ksanbe8HTgNOASYB7wKeiojXpu1HRcTEiPi2pGOAK0l+y50KfAVYkf1wSdf1RmByzl7VpcClETEJOIxkewL0Ptfk9LluzQ6SdDDwU+DHwKHA4fT9MO71JeB5wEuAPyf5eZ0ZET8FTgY2p89xRj/jqz0AfJXkw70PSZOAfyGZuqp2JPDseyMitgO/S5f3aU/vH8ne+TjJNj0MOImk+PTnn4DjSN4TRwHzgI8ASJoPXAC8AZgNvL5q7MXAS9OxhwPTgY/tZeb9T0T4NkpvJB/ajwMT0se/BN43QP8ADs9Z3gTsIPnwrW6bmY5rzSz7FbCon+c4H/he1XP+xSCvY2vvcwP3AgtqyQ9cDnyyqs+9wJ+n9+8H3lXVfj/w+vT+L4B/Bqb185oPyCw7A7glvX8acGcNP59mYBfJMYbeZe8BKun9dqBzgPF7tAMV4N3A89Of+5EkH5j3Z/pcCixJ738CuDrT9jXg01XP8UvgjPT+M8ARmbbZ6XZQ1ZirgU8M8to3AvMzjxdXvZbsz+F3wCmZtpN6XxPJLwCfzrS9tPd9AIhkyu2wTPvxwH37+n9rf7l5D2IUi4hbgEeABZJeQrIb/x/w7LdEutLbawZaD8lv/+NJ/qP2J/stm6eAienzvFTSD5UcGH8C+Ld0fVmbsg8kfUDShnQqaxvJb9i9Y2YMkiPrxcAH0umlbem6ZpD8Vp/73FX+juQD5x5JqyS9qcbnrTXjNGAs8PvMst+T/Ja71yLiEeDLJHsKz5J0NEnB+Pd+hnaR7JVlTeK5KaPq9klAV6SfvEN0KHtu+9/31zHtW72NDs209bee5wMHAmsyP/8fp8utBi4Qo99VJNMW7wBuiog/wrPfEpmY3v57kHU8CuwkmQ4YqsuBe4DZkUzVfJjkN7usZz9g0mK1hGQ6bEpETCb5bbh3zKYh5NgEfCoiJmduB0bEtXnPXS0ifhsRpwEvIJmquE7SQQONGWLGR4FukkLW60Uk00T76jPA60imBXu1k+z9/EHJ12YvABZKuiNtX08yhQNA+loPS5f3aU/vr2fvPEhSSHu9aIC+m+m7jTbXsJ5HSfZ8j8z8/J8XERP3MvN+xwVi9LuK5LfGvwe+uTcriIgekl35z0s6ND1QfHzVXH5/DgaeALrSg53/UEP/3SR7PgdI+hh7/tZ6BfBJJV/TlKS5kqambX8kmcvv9VXgLEnHpn0PkvTG9BjBoCS9XdLz09e/LV38TJqtp+q5sn4IHCLp/PQg6cGSjq3uFBHPkBzX+FTa58Ukx1iuru47VBGxjeQg8oWZxctIPvCPTm9LSb5xdFLa/j3gFZIWpsd8Pgasi4h70vargPdLmi7pUJLjGN/oXbmkMem4JpKf3XhJzf1E/A7wIUlTJLUC5wzwcq4FPiLp+Uq+afUxnttG3wHOkDRH0oEkxzZ6t0EPyXvg3yW9IM04XdJJWE1cIEa5iLgf+B/gIGDFPqzqAuDXJAeQHyP5jbqW988FwNtIpim+yp5fm8xzI/Aj4H9Jpgt2sucUwudJPhRuIik8XwN6v5XyCeCb6XTCX0fEapLC+GWS4xgdZL51U4P5wHpJXSRz94siYmdEPAV8Cvhl+lzHZQdFxJMkB03/kmTq7bckv83nOYdknnwjcAvJFOCVQ8g4kEtJClpvrqci4qHeG8mU0c50Sqp3amph+tq2knxxYFFmfV8B/pPkffAbkuLylUz7V0l+Yz+N5MDyDpI91zz/TPLzvY/kZ/mtAV7Hv5J85XZd+tx3pMuI5FtTXwBuJvn53lw1dkm6/LZ0ivOnJF+msBpo76YPzcxstPMehJmZ5XKBMDOzXC4QZmaWywXCzMxyjcQTlO21adOmxcyZMwtb//bt2znooIMKW38Rypa5bHnBmeulbJnLknfNmjWPRkTuHw+OqgIxc+ZMVq9eXdj6K5UK7e3tha2/CGXLXLa84Mz1UrbMZckrqd+/YvcUk5mZ5XKBMDOzXC4QZmaWywXCzMxyuUCYmVkuFwgzsxLb0rWLuzZtY0vXrmFf96j6mquZ2f7kB2sfYMn16xjT1ER3Tw+XLJzLqUfv0/Wm9uA9CDOzEtrStYsl169jZ3cPT+7azc7uHi68ft2w7km4QJiZlVDn1h2MadrzI3xMUxOdW3cM23O4QJiZlVDrlAl09/Tssay7p4fWKRP6GTF0LhBmZiU0deI4Llk4l/Fjmjh43AGMH9PEJQvnMnViLVcCro0PUpuZldSpR0/nhMOn0bl1B61TJgxrcQAXCDOzUps6cdywF4ZenmIyM7NcLhBmZpar0AIhab6keyV1SLoop/0ISbdK2iXpgqq2yZKuk3SPpA2Sji8yq5mZ7amwYxCSmoHLgDcAncAqSSsi4u5Mt8eAc4E356ziUuDHEfFWSWOBA4vKamZmfRW5BzEP6IiIjRHxNLAcWJDtEBEPR8QqoDu7XNIk4LXA19J+T0fEtgKzmplZlSK/xTQd2JR53AkcW+PYlwCPAF+XdBSwBjgvIrZXd5S0GFgM0NLSQqVS2ZfMA+rq6ip0/UUoW+ay5QVnrpeyZS5b3jxFFgjlLIsaxx4AHAOcExG3S7oUuAj4aJ8VRiwDlgG0tbVFkdeALcs1ZrPKlrlsecGZ66VsmcuWN0+RU0ydwIzM41Zg8xDGdkbE7enj60gKhpmZ1UmRBWIVMFvSrPQg8yJgRS0DI+IhYJOkl6WLTgTuHmCImZkNs8KmmCJit6SzgRuBZuDKiFgv6ay0famkQ4DVwCSgR9L5wJyIeAI4B7gmLS4bgTOLympmZn0VeqqNiFgJrKxatjRz/yGSqae8sWuBtiLzmZlZ//yX1GZmlssFwszMcrlAmJlZLhcIMzPL5QJhZma5XCDMzCyXC4SZmeVygTAzs1wuEGZmlssFwszMcrlAmJlZLhcIMzPL5QJhZma5XCDMzCyXC4SZmeUqtEBImi/pXkkdki7KaT9C0q2Sdkm6IKe9WdKdkn5YZE4zM+ursAIhqRm4DDgZmAOcJmlOVbfHgHOBz/azmvOADUVlNDOz/hW5BzEP6IiIjRHxNLAcWJDtEBEPR8QqoLt6sKRW4I3AFQVmNDOzfhRZIKYDmzKPO9NltfoCcCHQM4yZzMysRkVek1o5y6KmgdKbgIcjYo2k9kH6LgYWA7S0tFCpVIaWcgi6uroKXX8Rypa5bHnBmeulbJnLljdPkQWiE5iRedwKbK5x7AnAqZJOAcYDkyRdHRFvr+4YEcuAZQBtbW3R3t6+T6EHUqlUKHL9RShb5rLlBWeul7JlLlvePEVOMa0CZkuaJWkssAhYUcvAiPhQRLRGxMx03M15xcHMzIpT2B5EROyWdDZwI9AMXBkR6yWdlbYvlXQIsBqYBPRIOh+YExFPFJXLzMxqU+QUExGxElhZtWxp5v5DJFNPA62jAlQKiGdmZgPwX1KbmVkuFwgzM8vlAmFmZrlcIMzMLJcLhJmZ5XKBMDOzXC4QZmaWywXCzMxyuUCYmVkuFwgzM8vlAmFmZrlcIMzMLJcLhJmZ5XKBMDOzXC4QZmaWywXCzMxyFVogJM2XdK+kDkkX5bQfIelWSbskXZBZPkPSzyVtkLRe0nlF5jQzs74Ku6KcpGbgMuANQCewStKKiLg70+0x4FzgzVXDdwMfiIg7JB0MrJH0k6qxZmZWoCL3IOYBHRGxMSKeBpYDC7IdIuLhiFgFdFctfzAi7kjvPwlsAKYXmNXMzKoUeU3q6cCmzONO4NihrkTSTOCVwO39tC8GFgO0tLRQqVSG+hQ16+rqKnT9RShb5rLlBWeul7JlLlvePEUWCOUsiyGtQJoIXA+cHxFP5PWJiGXAMoC2trZob28fYszaVSoVilx/EcqWuWx5wZnrpWyZy5Y3T5FTTJ3AjMzjVmBzrYMljSEpDtdExA3DnM3MzAZRZIFYBcyWNEvSWGARsKKWgZIEfA3YEBGfLzCjmZn1o7AppojYLels4EagGbgyItZLOittXyrpEGA1MAnokXQ+MAeYC7wD+LWktekqPxwRK4vKa2ZmeyryGATpB/rKqmVLM/cfIpl6qnYL+ccwzMysTvyX1GZmlssFwszMcrlAmJlZLhcIMzPL5QJhZma5XCDMzCyXC4SZmeVygTAzs1wuEGZmlssFwszMcrlAmJlZLhcIMzPL5QJhZma5XCDMzCyXC4SZmeUqtEBImi/pXkkdki7KaT9C0q2Sdkm6YChjzcysWIUVCEnNwGXAySRXiTtN0pyqbo8B5wKf3YuxZmZWoCL3IOYBHRGxMSKeBpYDC7IdIuLhiFgFdA91rJmZFavIS45OBzZlHncCxw73WEmLgcUALS0tVCqVIQetVVdXV6HrL0LZMpctLzhzvZQtc9ny5imyQORdUzqGe2xELAOWAbS1tUV7e3uNTzF0lUqFItdfhLJlLltecOZ6KVvmsuXNU+QUUycwI/O4Fdhch7FmZjYMiiwQq4DZkmZJGgssAlbUYayZmQ2DwqaYImK3pLOBG4Fm4MqIWC/prLR9qaRDgNXAJKBH0vnAnIh4Im9sUVnNzKyvIo9BEBErgZVVy5Zm7j9EMn1U01gzM6sf/yW1mZnlcoEwM7NcLhBmZpbLBcLMzHK5QJiZWS4XCDMzy+UCYWZmuVwgzMws16AFQtI7Jd0haXt6Wy3p9HqEMzOzxhnwL6nTQnA+8H7gDpKzrB4DfEYSEXFV4QnNzKwhBtuD+EfgLRHx84h4PCK2RcTNwMK0zczMRqnBCsSkiLi/emG6bFIRgczMbGQYrEDs2Ms2MzMrucHO5vpySetylgt4SQF5zMxshBi0QNQlhZmZjTgDTjFFxO8Hug22cknzJd0rqUPSRTntkvTFtH2dpGMybe+TtF7SbyRdK2n83r1EMzPbGwMWCElPSnoi5/akpCcGGdsMXAacDMwBTpM0p6rbycDs9LYYuDwdOx04F2iLiFeQXFVu0V68PjMz20sDTjFFxMH7sO55QEdEbASQtBxYANyd6bMAuCoiArhN0mRJL8xkmyCpGzgQ2LwPWczMbIiKvOTodGBT5nEncGwNfaZHxGpJnwX+QPJtqZsi4qa8J5G0mGTvg5aWFiqVyvCkz9HV1VXo+otQtsxlywvOXC9ly1y2vHmKLBDKWRa19JE0hWTvYhawDfiupLdHxNV9OkcsA5YBtLW1RXt7+75kHlClUqHI9RehbJnLlhecuV7KlrlsefMUebK+TmBG5nErfaeJ+uvzeuC+iHgkIrqBG4A/KzCrmZlVKbJArAJmS5olaSzJQeYVVX1WAKen32Y6Dng8Ih4kmVo6TtKBkgScCGwoMKuZmVUpbIopInZLOhu4keRbSFdGxHpJZ6XtS4GVwClAB/AUcGbadruk60hOELgbuJN0GsnMzOqjyGMQRMRKkiKQXbY0cz+A9/Yz9uPAx4vMZ2Y2VFu6dtG5dQetUyYwdeK4RscpVKEFwsxsNPnB2gdYcv06xjQ10d3TwyUL53Lq0dMbHaswvqKcmVkNtnTtYsn169jZ3cOTu3azs7uHC69fx5auXY2OVhgXCDOzGnRu3cGYpj0/Msc0NdG5dfSe2NoFwsysBq1TJtDd07PHsu6eHlqnTGhQouK5QJiZ1WDqxHFcsnAu48c0cfC4Axg/polLFs4d1QeqfZDazKxGpx49nRMOn+ZvMZmZWV9TJ44b9YWhl6eYzMwslwuEmZnlcoEwM7NcLhBmZpbLBcLMzHK5QJiZWS4XCDMzy+UCYWZmuQotEJLmS7pXUoeki3LaJemLafs6Scdk2iZLuk7SPZI2SDq+yKxmZranwgqEpGbgMuBkYA5wmqQ5Vd1OBmant8XA5Zm2S4EfR8QRwFH4kqNmZnVV5B7EPKAjIjZGxNPAcmBBVZ8FwFWRuA2YLOmFkiYBrwW+BhART0fEtgKzmplZlSLPxTQd2JR53AkcW0Of6STXoX4E+Lqko4A1wHkRsb36SSQtJtn7oKWlhUqlMlz5++jq6ip0/UUoW+ay5QVnrpeyZS5b3jxFFgjlLIsa+xwAHAOcExG3S7oUuAj4aJ/OEcuAZQBtbW3R3t6+L5kHVKlUKHL9RShb5rLlBWeul7JlLlvePEVOMXUCMzKPW4HNNfbpBDoj4vZ0+XUkBcPMzOqkyAKxCpgtaZakscAiYEVVnxXA6em3mY4DHo+IByPiIWCTpJel/U4E7i4wq5mZVSlsiikidks6G7gRaAaujIj1ks5K25cCK4FTgA7gKeDMzCrOAa5Ji8vGqjYzMytYoRcMioiVJEUgu2xp5n4A7+1n7Fqgrch8ZmbWP/8ltZmZ5XKBMDOzXC4QZmaWywXCzMxyuUCYmVkuFwgzM8vlAmFmZrlcIMzMLJcLhJmZ5XKBMDOzXC4QZmaWywXCzMxyuUCYmVkuFwgzM8vlAmFmZrkKLRCS5ku6V1KHpIty2iXpi2n7OknHVLU3S7pT0g+LzGlmZn0VViAkNQOXAScDc4DTJM2p6nYyMDu9LQYur2o/D9hQVEYzM+tfkXsQ84COiNgYEU8Dy4EFVX0WAFdF4jZgsqQXAkhqBd4IXFFgRjMz60eRBWI6sCnzuDNdVmufLwAXAj0F5TMzswEUeU1q5SyLWvpIehPwcESskdQ+4JNIi0mmp2hpaaFSqQw9aY26uroKXX8Rypa5bHnBmeulbJnLljdPkQWiE5iRedwKbK6xz1uBUyWdAowHJkm6OiLeXv0kEbEMWAbQ1tYW7e3tw/YCqlUqFYpcfxHKlrlsecGZ66VsmcuWN0+RU0yrgNmSZkkaCywCVlT1WQGcnn6b6Tjg8Yh4MCI+FBGtETEzHXdzXnEwM7PiFLYHERG7JZ0N3Ag0A1dGxHpJZ6XtS4GVwClAB/AUcGZReczMbGiKnGIiIlaSFIHssqWZ+wG8d5B1VIBKAfHMzGwA/ktqMzPL5QJhZma5XCDMzCyXC4SZmeVygTAzs1wuEGZmlssFwszMcrlAmJlZLhcIMzPL5QJhZma5XCDMzCyXC4SZmeVygTAzs1wuEGZmlssFwszMcrlAmJlZrkILhKT5ku6V1CHpopx2Sfpi2r5O0jHp8hmSfi5pg6T1ks4rMqeZ7WlL1y7u2rSNLV27Gh3FGqiwK8pJagYuA94AdAKrJK2IiLsz3U4GZqe3Y4HL0393Ax+IiDskHQyskfSTqrFmVoAfrH2AJdevY0xTE909PVyycC6nHj290bGsAYrcg5gHdETExoh4GlgOLKjqswC4KhK3AZMlvTAiHoyIOwAi4klgA+B3qFnBtnTtYsn169jZ3cOTu3azs7uHC69f5z2J/ZSSy0IXsGLprcD8iHh3+vgdwLERcXamzw+BT0fELenjnwFLImJ1ps9M4BfAKyLiiZznWQwsBmhpaXnV8uXLC3k9AF1dXUycOLGw9RehbJnLlhdGV+Yd3c9w3yPbeSbzudAsMev5BzFhTHM9I/ZRtu1clryve93r1kREW15bYVNMgHKWVVejAftImghcD5yfVxwAImIZsAygra0t2tvb9ypsLSqVCkWuvwhly1y2vDC6Mm/p2sX7Lr6Znd09zy4bP6aJX576aqZOHFfHhH2VbTuXLW+eIqeYOoEZmcetwOZa+0gaQ1IcromIGwrMaWapqRPHccnCuYwf08TB4w5g/JgmLlk4t+HFwRqjyD2IVcBsSbOAB4BFwNuq+qwAzpa0nOTg9OMR8aAkAV8DNkTE5wvMaGZVTj16OiccPo3OrTtonTLBxWE/VliBiIjdks4GbgSagSsjYr2ks9L2pcBK4BSgA3gKODMdfgLwDuDXktamyz4cESuLymtmz5k6cZwLgxW6B0H6gb6yatnSzP0A3psz7hbyj0+YmVmd+C+pzcwslwuEmZnlcoEwGwF8agsbiQo9BmFmg/OpLWyk8h6EWQP51BY2krlAmDVQ59YdQ1puVk8uEGYNdNDY5j1OawGws7uHg8Y29rxHZuACYdZQmx/P31Pob7lZPblA2H5p9X1b+PxN97L6vi0NzfHEju4hLTerJ3+LieRA4Wg878yWrl3s6H6GLV27Gv66RtI2fvsVt3FLR1IYvnhzB685fCrfevdxDcny5M7dQ1puVk/7/R7ED9Y+wAkX38zbr7idEy6+mRVrH2h0pGHR+7rue2R7w1/XSNrGq+/b8mxx6PXfHVsatifRufWpIS03q6f9ukCM1q8YZl/XMxENfV0jbRv/4rePDml58fq7YFcxF/IyG4r9ukB0bt3BmKY9N8GYpqbSf8VwJL2ukZQF4LWzpw1pedFe/sLJQ1puVk/7dYFonTKB7p49v2LY3dND65QJDUo0PEbS6xpJWQDaZk3lNYdP3WPZaw6fStusqf2MKNbxh03tc9pipcvNGm2/LhCj9epZ2dfVLDX0dY3Ebfytdx/Hde85jnP/4nCue89xDTtADcn2uXTR0YxthnHNTYxthksXHV3696CNDoV+i0nSfOBSkgsGXRERn65qV9p+CskFg86IiDtqGTtcRuvVs3pf169uvaXh1xMeidu4bVbj9hqqjcTtYwYFFghJzcBlwBtIrj29StKKiLg70+1kYHZ6Oxa4HDi2xrHDZrRePWvqxHFMGNM8Il7baN3Gw8Xbx0aiIqeY5gEdEbExIp4GlgMLqvosAK6KxG3AZEkvrHGsmZkVqMgppunApszjTpK9hMH6TK9xLACSFgOLAVpaWqhUKvsUeiBdXV2Frr8IZctctrzgzPVStsxly5unyAKRd03p6i9399enlrHJwohlwDKAtra2aG9vH0LEoalUKhS5/iKULXPZ8oIz10vZMpctb54iC0QnMCPzuBXYXGOfsTWMNTOzAhV5DGIVMFvSLEljgUXAiqo+K4DTlTgOeDwiHqxxrJmZFaiwPYiI2C3pbOBGkq+qXhkR6yWdlbYvBVaSfMW1g+RrrmcONHaw51yzZs2jkn5fyAtKTAMadU6GvVW2zGXLC85cL2XLXJa8L+6vQRE+50utJK2OiLZG5xiKsmUuW15w5nopW+ay5c2zX/8ltZmZ9c8FwszMcrlADM2yRgfYC2XLXLa84Mz1UrbMZcvbh49BmJlZLu9BmJlZLhcIMzPL5QJRRdJ8SfdK6pB0UU77AknrJK2VtFrSqxuRsyrTgJkz/f5U0jOS3lrPfP1kGWw7t0t6PN3OayV9rBE5qzINup3T3GslrZf0/+qdsSrLYNv4g5nt+5v0vfEnjciayTRY5udJ+k9Jd6Xb+MxG5KzKNFjmKZK+l35u/ErSKxqRc69EhG/pjeSP8n4HvITkdB93AXOq+kzkuWM3c4F7RnrmTL+bSf448a0jPTPQDvyw0e+JIWaeDNwNvCh9/IKRnLeq/18CN5dgG38YuDi9/3zgMWDsCM/8GeDj6f0jgJ81cjsP5eY9iD0NeprxiOiK9CcNHETjry5f66nRzwGuBx6uZ7h+lPF07rVkfhtwQ0T8ASAiGrmth7qNTwOurUuy/tWSOYCD04uNTSQpELvrG3MPtWSeA/wMICLuAWZKaqlvzL3jArGn/k4/vgdJb5F0D/BfwLvqlK0/g2aWNB14C7C0jrkGUtN2Bo5PpxJ+JOnI+kTrVy2ZXwpMkVSRtEbS6XVL11et2xhJBwLzSX6BaKRaMn8ZeDnJyTt/DZwXET00Ti2Z7wL+CkDSPJJTW7TWJd0+coHYU02nGY+I70XEEcCbgU8WHWoQtWT+ArAkIp4pPk5Nasl8B/DiiDgK+BLw/aJDDaKWzAcArwLeCJwEfFTSS4sO1o+aT5lPMr30y4h4rMA8tagl80nAWuBQ4Gjgy5ImFRtrQLVk/jTJLw5rSfbk76Sxez01K/Sa1CVUyynKnxURv5B0mKRpEdGok3LVkrkNWJ7slTMNOEXS7oj4fl0S9jVo5oh4InN/paT/W4Lt3Ak8GhHbge2SfgEcBfxvfSL2yVLre3kRjZ9egtoynwl8Op3m7ZB0H8m8/q/qE7GPWt/LZwKkU2P3pbeRr9EHQUbSjaRgbgRm8dwBpyOr+hzOcwepjwEe6H08UjNX9f8GjT9IXct2PiSznecBfxjp25lk6uNnad8Dgd8ArxipedN+zyOZxz+oke+JIWzjy4FPpPdb0v9/00Z45smkB9KBvye5zHJDt3WtN+9BZERtpyhfSHINi25gB/A3kf7kR3DmEaXGzG8F/kHSbpLtvGikb+eI2CDpx8A6oAe4IiJ+M1Lzpl3fAtwUyV5PQ9WY+ZPANyT9mmR6Z0k0bq+y1swvB66S9AzJt9z+rlF5h8qn2jAzs1w+SG1mZrlcIMzMLJcLhJmZ5XKBMDOzXC4QZmaWywXCbJikp9g4qWrZ+ZJWStoh6U5JG9Izer6zUTnNauW/gzAbPteS/FXyjZlli4APkpzh9ZUAkl4C3CCpKSK+Xv+YZrXxHoTZ8LkOeJOkcQCSZpKcM6gz2ykiNgLvB86td0CzoXCBMBsmEbGF5JxA89NFi4Bvk3+SvDtIziFkNmK5QJgNr95pJhj4JHh5ZwE1G1FcIMyG1/eBEyUdA0yIiDv66fdKYEPdUpntBRcIs2EUEV1ABbiSfvYe0mMTnyW5zoXZiOVvMZkNv2uBG3huqgngMEl3AuOBJ4Ev+RtMNtL5bK5mZpbLU0xmZpbLBcLMzHK5QJiZWS4XCDMzy+UCYWZmuVwgzMwslwuEmZnl+v9DZFdrNVcBFgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "\n", "x = np.linspace(0.2, 0.74, 1000)\n", "ax.set_title('V-I characteristic of BC547 as diode')\n", "ax.set_ylabel('current $I_D$ (mA)')\n", "ax.set_xlabel('voltage $V_D$')\n", "\n", "ax1 = df1.plot('VD', 'ID', kind='scatter', ax=ax)\n", "ax1.grid()" ] }, { "cell_type": "markdown", "id": "secondary-humanitarian", "metadata": {}, "source": [ "Lets try a simple linear regression to see where that gets us" ] }, { "cell_type": "code", "execution_count": 17, "id": "advised-mason", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.19206313, -0.09912839])" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "z = np.polyfit(df1['VD'], df1['ID'], 1)\n", "# Create the polynomial from the coefficients\n", "p = np.poly1d(z)\n", "# View the coefficients themselves\n", "p.c" ] }, { "cell_type": "code", "execution_count": 18, "id": "aerial-stuff", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[ 0.19206313 -0.09912839]\n", "[0.00808523 0.00185739]\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAroAAADsCAYAAACbtQXaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAA900lEQVR4nO3dd3xc9ZX//9eRLPfeZKuAbWxjG7ANFi0007EBOzSnbQopLEkISTYJJFm+m2yy+YVkN7u/7H6TsIRfCrtJwI4DFsSELkzHMkguNDsGouZeZcuypDm/P+6VGcuyNZJmNHdG7+fjMQ/P3DJz5lo6c3Tnc8/H3B0RERERkWyTk+4ARERERERSQYWuiIiIiGQlFboiIiIikpVU6IqIiIhIVlKhKyIiIiJZSYWuiIiIiGQlFbrSbWb2GzP7l/D+eWb2VrpjAjCz75rZ/6bhdc3Mfm1mO83sla4cEzPrZ2avm9m4VMV5lNc9LPZw2efNbLOZ1ZvZqE4+361mdmdqohXJfMqfR7yu8mdqYuu1uViFbi9kZo+a2ffaWb7QzDaZWZ921rmZTe7oud39WXc/MVmxRo2ZTQiPxRHHKM65wKVAkbuf0faYmNm7ZnZJBy91E7DC3Td1M97OflgdFruZ5QH/Dlzm7oPdfXs7r3G3mb1lZjEz+1Sb1XcDf2dmY7v6HkSiRPmz65Q/282fs81slZntD/+d3UFMl5jZq2a2z8yqzGxR3DoPl9eHt3vidu21uViFbu/0G+DjZmZtln8c+J27N/d8SN3TQeLsaccD77r7vm48x98D/5OkeDqjbez5QH9g3TH2qQS+ALzadoW7HwAeAT6R5DhF0uU3KH+mUq/Jn2bWF1gG/C8wAvgtsCxc3t72M4DfA/8IDANmA6vabDYrLKoHu/tnWxf26lzs7rr1shswANgNnB+3bARwgOCXpL19HJh8lHW/Af4lvD8XqI5b9y7wdWB1+Jr3A/3j1l8FVAC7gBeAmXHrvgn8FdgLvA5cE7fuU8DzwH8AO1pfv01c3wX+GL7mXoJCbFbc+gJgKbAVeAe4NW7dGUA5sAfYDPx7uPxv4bGoD29nt3nNz4THsSVc/8/xx4Qg+caAhnD9be3EfVy4vk+b/7OfAO+Fx/G5cNlhxzvumF8CXAEcBJrC16qMe9+l4XHbAHzuKLH/AdgX936f6uDn6jngU+0s/xjwdLp/7nXTLRk3lD9b1yt/djN/ApcBNYDFLfsbcMVRflZ+D3z/GD+bR/05C9f3ylyc9gB0S9N/PPwSuCfu8d8DFcfYvjuJ+pUwOYwE3gBuDtedBmwBzgRygU+G2/cL198Q7pcDfChMGuPDdZ8CmoEvAX2AAe3E9d0wSV0P5BF8YLwT3s8h+Ev4n4C+wCRgI3B5uO+LwMfD+4OBs8L7E8Jj0ecYx+pTwHNxj9s7JpccY/8rgXVtlv0MKAMKw2P1AaBf2+du+/zhMfjfNuufAX5OcKZhNsEH1cVHib3D9xu37dEK3dOAHen+mddNt2TdUP5U/kxC/gS+CjzSZtnDwNeOsv1G4PvAGqCO4EzwyDY/Z7XAJuBPwIQ2+/fKXKyhC73Xb4EbzGxA+PgT4bJU+E93r3X3HcBDBMkB4HPAf7v7y+7e4u6/BRqBswDcfUm4X8zd7wfWE5wpaFXr7v/l7s3u3nCU117l7n909yaCsVL9w+c/HRjj7t9z94PuvpHgw+vD4X5NwGQzG+3u9e7+UrIORgKGE5xBAcDMcoBPA19295rwWL3g7o2dfWIzKyYYR3a7ux9w9wrgHoKvXVNlL8HXbCLZQvlT+TMZ+XMwwRnmeLuBIUfZvih8reuAKQRnpf8rbv0FBMX1NIKC9+E2w1J6ZS5WodtLuftzBH+JLjSzSQSJ6/cAZrYubjD7eUl4ufgLAvYT/HJDMJ7pa2a2q/UGFBOchcDMPmFmFXHrTgZGxz1XVQKvfWgbd48B1eHzHw8UtHntbxOMqYLga6ipwJtmttLMrurMG+6mnRye6EYTfMD8NQnPXUDwF/3euGXvEZzpSJUhHJnMRTKW8qfyZ9yy7uTPemBom2VDiSvU22gAfu3ub7t7PfD/APNbV7r7ivAPj13Al4GJwPS4/XtlLo7SAHTpefcSnIk4EXjM3TcDuPtJPfT6VcAP3P0HbVeY2fEEZwguBl509xYzqwDiLwDxBF6jOO45cwj+Iq4l+NruHXef0t5O7r4e+Ei4z7XAH8PWMIm8Zkc6eo7VwCQz6+PBhS3bCMZ+nUBw4Ve8fcDA1gdmlguMOcZr1QIjzWxIXLI+jmCcWKpM58i4RTKd8qfyJ3Qvf64j+GPF3L31tWYSDLVoz+p2YjoW5/D/816Zi3VGt3e7l2DQ/edI3ddux/JL4GYzO9MCg8zsSjMbAgwi+CXdCmBmNxKckeisOWZ2bfj1zVcIvtp7iWDc2x4zu93MBphZrpmdbGanh6/3d2Y2JjyLsSt8rpYwnhjBmLSu2nys/d29mrivGcMYfgX8u5kVhLGebWb9gLeB/uFxywPuIBh7Fv9aE8IPHNy9iuCilR+aWX8zm0lw9uV3XX0zZtbXzPoTJNS88Hnjc8sFBFf7imQT5U/lz+7mzzKC43KrBb1/bwmXP3WU7X8N3Ghmk8xsIHA7wZhezOwkC1qV5ZrZYIKL72oIxnW36pW5WIVuL+bu7xL80g4iuIq0p1+/nOBD4v8SfN20gWAwP+7+OsEv6osEyeYUgquEO2sZwYUYOwnGNl3r7k3u3gJcTTDe7R2Cv/rv4f3xS1cA68ysHvgp8OFwTNZ+4AfA8+FXdmd1IaYfAneE+3/9KNv8N4eP+/o6wQUIKwmu9v0RkOPuuwlae91DkNT2EXy92GpJ+O92M2tt//URgnFctcADwHfc/fEuvI9WjxF8pfYBgl6NDcD5AGEBPJ/0FAIiKaP8qfxJN/Onux8EPkjwzcAugrHEHwyXY2YfM7N1cdv/iuAPrJcJhkw0AreGq/MJOmTsIbhobQJwVTi+ulfnYnv/bLmIREV4tuE1gqt569IdT1eZ2ZeAYne/Ld2xiEjvkC35M5l6cy5WoSsiIiIiWUlDF0REREQkK6nQFREREZGspEJXRERERLKSCl0RERERyUq9esKI0aNH+4QJExLeft++fQwaNCh1ASkOxaE4sjaOVatWbXP3MR1vmT0yNcd2hWJPD8WeHlGM/ag51t177W3OnDneGU8//XSntk8VxXE4xXE4xXG4qMQBlHsE8l5P3jI1x3aFYk8PxZ4eUYz9aDlWQxdEREREJCup0BURERGRrKRCV0RERESykgpdEZFO2F7fSGXVLrbXN6Y7FBER5aQO9OquCyIinbGsoobbl64mLyeHpliMH183kwWzC9Mdloj0UspJHdMZXRGRBGyvb+T2pas50BRjb2MzB5pi3LZ0tc6iiEhaKCclRoWuiEgCqnc2kJdzeMrMy8mhemdDmiISkd5MOSkxKnRFRBJQNGIATbHYYcuaYjGKRgxIU0Qi0pspJyVGha6ISAJGDe7Hj6+bSf+8HIb060P/vBx+fN1MRg3ul+7QRKQXUk5KjC5GExFJ0ILZhZwzeTTVOxsoGjFAHygiklbKSR1ToSsi0gmjBvfTh4mIRIZy0rFp6IKIiIiIZCUVuiIiIiKSlVToioiIiEhWilSha2ZXmNlbZrbBzL7ZzvppZvaimTWa2dfbrHvXzNaYWYWZlfdc1CIiIiISRZG5GM3McoGfAZcC1cBKMyt199fjNtsB3Ap88ChPc6G7b0tpoCIiIiKSEaJ0RvcMYIO7b3T3g8B9wML4Ddx9i7uvBJrSEaCIiIiIZI4oFbqFQFXc4+pwWaIceMzMVpnZTUmNTEREREQyTmSGLgDWzjLvxP7nuHutmY0FHjezN919xREvEhTBNwHk5+dTVlaW8AvU19d3avtUURyKQ3FkXhwiItLzolToVgPFcY+LgNpEd3b32vDfLWb2AMFQiCMKXXe/G7gboKSkxOfOnZtwgGVlZXRm+1RRHIpDcWReHCIi0vOiNHRhJTDFzCaaWV/gw0BpIjua2SAzG9J6H7gMWJuySEVEREQk8iJzRtfdm83sFuBRIBf4lbuvM7Obw/V3mdk4oBwYCsTM7CvADGA08ICZQfCefu/uf0nD2xARERGRiIhMoQvg7suB5W2W3RV3fxPBkIa29gCzUhudiIiIiGSSKA1dEBERERFJGhW6IiIiIpKVVOiKiGSRBKZSNzP7z3D9ajM7LW7dr8xsi5mtbbPPSDN73MzWh/+O6In3IiLSXSp0RUSyRNxU6vMILtT9iJnNaLPZPGBKeLsJ+EXcut8AV7Tz1N8EnnT3KcCT4WMRkchToSsikj06nEo9fHyvB14ChpvZeIBwkp0d7TzvQuC34f3fAh9MRfAiIskWqa4LIiLSLe1NpX5mAtsUAnXHeN58d68DcPe6cAbKdmXD7JNdodjTQ7GnRybFrkJXRCR7JDKVenenWz+mbJh9sisUe3oo9vTIpNg1dEFEJHskMpV6V6Zb39w6vCH8d0s34xQR6REqdEVEskciU6mXAp8Iuy+cBexuHZZwDKXAJ8P7nwSWJTNoEZFUUaErIpIl3L0ZaJ1K/Q1gcetU6q3TqRPMPrkR2AD8EvhC6/5m9gfgReBEM6s2s8+Eq+4ELjWz9cCl4WMRkcjTGF0RkSySwFTqDnzxKPt+5CjLtwMXJzFMEZEeoTO6IiIiIpKVVOiKiIiISFZSoSsiIiIiWUmFroiIiIhkJRW6IiIiIpKVVOiKiIiISFZSoSsiIiIiWUmFroiIiIhkJRW6IiIiIpKVVOiKiIiISFZSoSsiIiIiWUmFroiIiIhkJRW6IiIiIpKVVOiKiIiIZKjt9Y1UVu1ie31jukOJpEgVumZ2hZm9ZWYbzOyb7ayfZmYvmlmjmX29M/uKiIiIZJNlFTWc86On+Lt7XuacHz1FaUVNukOKnMgUumaWC/wMmAfMAD5iZjPabLYDuBX4ty7sKyIiIpIVttc3cvvS1RxoirG3sZkDTTFuW7paZ3bbiEyhC5wBbHD3je5+ELgPWBi/gbtvcfeVQFNn9xURERHJFtU7G8jLObyMy8vJoXpnQ5oiiqZOF7pmNig8g5pshUBV3OPqcFmq9xURiZwU5loRyQJFIwbQFIsdtqwpFqNoxIA0RRRNfTrawMxygA8DHwNOBxqBfma2FVgO3O3u65MQi7WzzJO9r5ndBNwEkJ+fT1lZWYIvAfX19Z3aPlUUh+JQHJkXR0d6MNeKSBYYNbgfP75uJrctXU1eTg5NsRg/vm4mowb3S3dokdJhoQs8DTwBfAtY6+4xADMbCVwI3GlmD7j7/3YzlmqgOO5xEVCb7H3d/W7gboCSkhKfO3duwgGWlZXRme1TRXEoDsWReXEkoKdyrYhkiQWzCzln8miqdzZQNGKAitx2JFLoXuLubcfE4u47gKXAUjPLS0IsK4EpZjYRqCE4s/HRHthXRCQKeirXikgWGTW4nwrcY+hwjG57iRfAzM4xs58da5vOcPdm4BbgUeANYLG7rzOzm83s5vA1x5lZNfAPwB1mVm1mQ4+2b3djEhHpKT2Va0VEepNEzugeYmazCc6ULgLeAf6UzGDcfTnBWLT4ZXfF3d9EMCwhoX1FRDJRqnOtiEhvkcjFaFMJhgJ8BNgO3A+Yu1+Y4thERHoN5VoRkeRL5Izum8CzwNXuvgHAzL6a0qhERHof5VoRkSRLpI/udcAm4Gkz+6WZXUz77bxERKTrlGtFRJIskYvRHnD3DwHTgDLgq0C+mf3CzC5LcXwiIr2Ccq2ISPIlPDOau+9z99+5+1UEF4RVAN9MVWAiIr2Rcq2ISPJ0WOia2RFfnbn7Dnf/b3e/6GjbiIhI4pRrRUSSL5Ezuk+b2ZfM7Lj4hWbW18wuMrPfAp9MTXgiIr2Gcq2ISJIl0nXhCuDTwB/Cmcd2Af2BXOAx4D/cvSJVAYqI9BLKtSIiSdZhoevuB4CfAz8Pp58cDTS4+64UxyYi0mskK9ea2RXATwkK5Hvc/c426y1cPx/YD3zK3V891r7hBBZ3ERTezcAX3P2Vrr1TEZGek/DFaBBMP+nudSpyRURSp6u51sxygZ8B84AZwEfMbEabzeYBU8LbTcAvEtj3x8A/u/ts4J/CxyIikdepQldEJGq21zdSWbWL7fWN6Q4lCs4ANrj7Rnc/CNwHLGyzzULgXg+8BAw3s/Ed7OvA0PD+MKA21W9ERCQZEhmjKyISScsqarh96WrycnJoisX48XUzWTC7MN1hpVMhUBX3uBo4M4FtCjvY9yvAo2b2bwQnSD6QvJBFpDu21zdSvbOBohEDGDW4X7rDiZwuFbpmZu7uyQ5GRCRR2+sbuX3pag40xThADIDblq7mnMmjsybZdyHXttd+rO3+R9vmWPt+Hviquy81s0XA/wdc0m4AZjcRDIkgPz+fsrKyBMIO1NfXd2r7KFHs6dHbY9/d0ET1zgaM4Je1aMQAhg3IS0Z4x5TK4769IcbAPGNAn+R0U+x0oWtmnwI+bmb7gL8Bt7v7vqREIyKSoOqdDeTl5BwqcgHycnKo3tmQFYVuF3NtNVAc97iII4cZHG2bvsfY95PAl8P7S4B7jhaAu98N3A1QUlLic+fO7SDk95WVldGZ7aNEsadHb459e30j5/zoKQ405R5a1j+vmedvPz/lOTDZx33HvoP8eU0dD1XU8sq7O/jRdacw7/TjOt4xAV05ozvX3S8GMLOZwHeA25ISjYhIgopGDKApFjtsWVMsRtGIAWmKKOm6kmtXAlPC9mQ1wIeBj7bZphS4xczuIxiasNvd68xs6zH2rQUuIJia+CJgfTffm4h0U6b/sV/f2Mzjr2+itKKWZ9dvoznmTBk7mK9fNpVzJo9O2ut0pdDd03rH3Vebmcb5ikiPGzW4Hz++bia3tRmjmwkJPkGdzrXu3mxmtwCPErQI+5W7rzOzm8P1dwHLCVqLbSBoL3bjsfYNn/pzwE/DGA4QDk0QkfTJxD/2G5tbeOatrSyrrOXJNzZzoClG4fABfPa8SSycXcC0cUNI9gSQXSlSzzKz/wRWhbe+SY1IRCRBC2YXcs7k0dl6IUaXcq27LycoZuOX3RV334EvJrpvuPw5YE7CkYtIymXKH/stMefljdtZVlHLI2vr2HOgmZGD+nLDnGIWzi7gtONGkJOTutnNO13ouvsZZlZEkPQWAROSHZSISKJGDe4XucSeDMq1ItKRqP6x7+6srt7NsopaHl5dy5a9jQzqm8vlJ49jwawCzpk8mrzcnulw22Gha2Y/B9YAq4E17r7H3asJLmhYluL4RER6BeVaEemKKP2xv2HLXkoraimtrOXd7fvpm5vDhdPGsGBWIRdPH0v/vNyOnyTJEjmjWwHMJLgw4WQz28vhyfi+1IUnItJrVKBcKyIZpnZXAw9V1rKsopbX6/aQY/CBE0bzhbmTufzkcT3S7uxYErm44e74x+FXaTOBU4ArCWbPERGRblCuFZGuSMeEEXsPOv/70nuUhu3AAGYXD+efrprBVTPHM3Zo/x6JIxFdGaPb+lXaERcsiIhIcijXikhHenJ2yH2NzTz++maWVdSw4u39tPhaJoftwK6eVcDxowal5HW7S63BRERERDJMT8wO2djcwoq3t7GsooYn4tqBXT4hj1uuPovp45PfDizZVOiKiIiIZJhUTRjREnNefmc7pRW1LF9zeDuwBbMLmHPcCFaseIYZBUOT8TZSLuFC18x+5O63d7RMRES6TrlWRBKRzAkjWtuBlVbW8lBlXDuwk8Zx9ewCzu3BdmDJ1pkzupcCbRPtvHaWdZmZXQH8lGBWnnvc/c426y1cP59gRp9Pufur4bp3gb1AC9Ds7iXJiktEpAelPNeKSOZLxoQRG7bUU1pRc1g7sLknjmHh7EIumjaWAX17vh1YsiXSR/fzwBeASWa2Om7VEOCFZAViZrnAzwiSfDWw0sxK3f31uM3mAVPC25nAL8J/W13o7tuSFZOISE/pqVwrItmjKxNGtLYDK62sZV1t0A7s7BNGRaYdWLIlckb398AjwA+Bb8Yt3+vuO5IYyxnABnffCGBm9wELgfhCdyFwbziF5UtmNtzMxrt7XRLjEBFJh57KtSKSRRKZMGLHvoMsX1NHaWUtr7wTpJNZEW0HlmyJ9NHdDew2sxuBawmmoewDYGa4+/eSFEshUBX3uJrDz9YebZtCoA5w4DEzc+C/2/akFBGJsh7MtSLSC7S2AyutrGXF21tpjjmTxw7ma5cG7cAmjI5mO7Bk68wY3QeB3cAqoDEFsbTXn8I7sc057l5rZmOBx83sTXdfccSLmN0E3ASQn59PWVlZwgHW19d3avtUURyKQ3FkXhyd8CCpzbUikqUONsd45u2th7UDKxjWn8+cN5GFswozoh1YsnWm0C1y9ytSFklwdrY4/vWA2kS3cffWf7eY2QMEQyGOKHTDM713A5SUlPjcuXMTDrCsrIzObJ8qikNxKI7Mi6MTUp1rRSSLxLcDe2TtJnY3NDFyUF+un1PEwtmFzDluBDk5vau4jdeZQvcFMzvF3dekKJaVwBQzmwjUEMz3/tE225QCt4Tjd88Edrt7nZkNAnLcfW94/zJAX/OJdMHbm/ey4u2tfPa8SekOpbdKda4VkQzn7qyp2c2yiuCisq17GxkYtgNbkOHtwJKtM4XuucCNZraR4Os0A9zdZyYjEHdvNrNbgEcJ2ov9yt3XmdnN4fq7CKbCnA9sIGgvdmO4ez7wQHg6vg/we3f/SzLiEukN9hxo4uHKOhaXV1FRtYu8XOPKmeMZP6zz/Ril21Kaa0Ukc23YUk9pZS2lFTW8u30/uTmGu9O/Tw4tsRgXnjiGC08cm+4wI6Uzhe68lEURcvfltJnXPSxwW+878MV29tsIzEp1fCLZxN15+Z0dLF5ZxfK1dRxoijE1fzB3XDmda04tTNoUktJpKc+1IpI5anc18PDqWpZVBO3AzOADJ4zi42cdz48ffZPGZjjQnJopgLNBZwrdvwEfAya5+/fM7DhgHPBeSiITkZSo293A0lXVLFlVzXvb9zOkXx+uPa2IRSXFzCoa1usuVIgg5VqRXm7nvoMsX1vHsorD24H9n7AdWP7Q/lRW7aJvbi6Nzc2H9kvGFMDZpjOF7s+BGHARwfjXvcBS4PQUxCUiSdTY3MKTb2zh/pVVPLt+KzGHsyaN5MsXT2HeyeOzYvabLKJcK9IL7Wts5ok3NrOs4v12YCeMGcQ/XDqVBe20A0vmFMDZrDOF7pnufpqZvQbg7jvNrG+K4hKRJHijbg+Ly6t48LUadu5vYvyw/nzxwslcP6eI40f1jh6KGUi5VqSXaG0HVlpZyxOvb6ahqeVQO7AFswqYMX7oUb9lS8YUwL1BZwrdpnCaXgcwszEEZx1EJEL2NTn/89J7LCmvYnX1bvJyjctmjGPR6cWcO3k0ub24zUyGUK4VyWKt7cB+vbaRLz/zBLsbmhgxMI/r5hSyYFYhJccn3g6sK1MA9zadKXT/E3gAGGtmPwCuB+5ISVQi0imxmPPSxu3cX17F8tX7aYqtZdq4IXzn6hksnF3IyEE6IZhBlGtFskxrO7DSiloeWl3L5j2N9MuF+TMLWTCrgHOndL0dWCJTAPdmCRe67v47M1sFXEzQ7uaD7v5GyiITkQ7V7Grgj+XVLFlVRfXOBob078N5RX346oKzOLnw6F95SXQp14pkj79urac07HX7zrZ95OUac08cy4JZBfTd9haXXzw73SFmvYQKXQs+LYvc/U3gzdSGJCLHcqCphcdf38zi8iqe27ANdzhn8ii+cfmJXH7SOF56/llOKRqW7jClC5RrRTJf3e4GHqoMitu1NUE7sLMnjeLmCyZxxUnjGTYwD4CysrfTHGnvkFCh6+5uZg8Cc1Ibjogczdqa3Swpr+LBilp2NzRROHwAt140hevnFFE8cmC6w5MkUK4VyUzx7cBWvrsDd5hVNOywdmCpsr2+UWN0j6EzY3RfMrPT3X1lyqIRkcPs2n+QZRW1LC6vYl3tHvr2yeHyk8axqKSIc04Y3avnL89iyrUiGeBo7cC+ekn77cBSYVlFDbe36bqwYHZhyl83k3Sm0L0Q+Hszew/Yh6alFEmJWMx5/q/buH9lFY+t28zBlhgnFw7lewtPYsGsAoYP1IVlWU65ViSiDjbHWPH2VpbFtQMbP6w/nzl3IgtmH7sdWLJtr2/k9qWrOdAU4wCaGe1oOjNG92Y0M49IylTt2M+SVdUsXVVNza4Ghg3I46NnHscNJUWcVKAxt72Bcq1I9MRiwXTppZU1LF+z6VA7sGtPK2Th7M61A0um6p0N5OXkHCpyQTOjtaczY3T/w901bkwkiQ40tfDouk0sLq/i+Q3bMYNzJ4/mW/Onccn0fPrnacay3kS5ViQa3J21NXtYVlFzqB3YwL65XDYjn4WzC7vVDixZNDNaYjRGV6SHtfZTXFxexbKKWvYeaKZoxAD+4dKpXDeniMLhqUlSumAhYyjXiqRJe+3ALpg6ljuuLOCS6fmRmi5dM6MlprNjdG82s3fRuDGRTtux7yAPvlbD4vIq3ty0l359cph38jgWlRRz1qRRKf3qSxcsZBTlWpEeVLe7gYcr61hWWXNYO7C/P38S805+vx1YFC2YXciM8UOpqNrF7OLhTM4fku6QIqczhe68lEUhkqVaYs6z67eyuLyKx1/fTFOLM6toGP/ywZO5elYBwwakPoHqgoWMo1wrkmI79x3kkbWbWFZRwytx7cDuuHI6V88qSGk7sGTSSYyOdabQ/eRRln8vGYGIZJP3tu9jSXk1f1xVzaY9BxgxMI+PnzWBRacXMW3c0B6NRRcsZJxu5VozuwL4KZAL3OPud7ZZb+H6+cB+4FPu/mpH+5rZl4BbgGbgz+5+W2felEi6tbYDK62o5ZmwHdikMYP4ysVTWTC7gIk90A4smXQSIzGdKXT3xd3vD1wFaFpKkVBji/OnV6tZXF7FSxt3kGNw/tQxfOfqGVw8PZ++fdJz4YIuWMg4Xc61ZpYL/Ay4FKgGVppZqbu/HrfZPGBKeDsT+AVw5rH2NbMLgYXATHdvNLOx3XqHIj2ktR1YaWUtj7dpB3b1rAJOKsjcqdJ1EiMxCRe67v6T+Mdm9m9AadIjEskg7k5l9W7uX1nFg6/up6G5kuNHDeQbl5/ItacVMn5Y+otJXbCQWbqZa88ANrj7xnDf+wgK1PhCdyFwr7s7wYVvw81sPDDhGPt+HrjT3RvDGLd08e2JpNz77cBqWb6mjt0NTQwP24EtmFXA6RNGZsVkOzqJkZjOnNFtayAwKVmBiGSSbfWNhy4se3tzPf3zcpgztg9fuqqEMyeOTPgMQU91Qlgwu5BzJo9W14XM1JlcWwhUxT2uJjhr29E2hR3sOxU4z8x+ABwAvq6uEBIlre3ASitreKiyjk17DhxqB7ZgdgHnTh6Ttm/VUkUnMRKTcKFrZmsADx/mAmOA76ciKJEoam6JsWL9VhavrOaJNzbTHHNmFw/nh9eewlUzx7Pqpec5a9KohJ+vpy8iGDW4nxJgBuhmrm3vLyxPcJtj7dsHGAGcBZwOLDazSeFZ4cOf3Owm4CaA/Px8ysrKEoscqK+v79T2UaLY0+OvW+p54JeP8XJdM5v2O7kGM8fk8sGJ/Th1TC79+uyGTbt5YVP3R1q2xJyDLTH65uaQm4Qzwsk47kOBn13Y//24dq2nrGx9t2PrSCb9zHTmjO5Vcfebgc3u3pzkeEQiZ+PW+kMzlm3Z28ioQX258ZwJ3FBSzNQutnLRRQRyDN3JtdVAcdzjIqA2wW36HmPfauBPYWH7ipnFgNHA1rYBuPvdwN0AJSUlPnfu3ARDh7KyMjqzfZQo9p7T2g6stLKWNTWGWRNnTRzFV2YXcMXJ41IyTXoqTkxk2nGPl0mxd6bQ/R7wZXffBWBmI8zsJ+7+6ZREJpJG+xqbWb6mjiXl1bzy7g5yc4wLTxzDDSXFXDRtbLdnxKne2UBL7PCTYS0x10UEAt3LtSuBKWY2EagBPgx8tM02pcAt4RjcM4Hd7l5nZluPse+DwEVAmZlNJSiKt3XjPYp0yq79B1m+5vB2YDOLhvGRaX358jXnMW5Y6tqB6cREZutMoTuzNfECuPtOMzs1+SEJRH8Wq+31jTQ0tbC9vrFH4uuJ4+HuvPq3Xfz86fWsWL+NphZn0uhB3H7FNK49rTCpfRWbmltoajm80G1qcZqaW5L2GpKxupxr3b3ZzG4BHiUY9vArd19nZjeH6+8ClhO0FttA0F7sxmPtGz71r4Bfmdla4CDwyfaGLYgk0/6DzTz+etAObMX6rUFObtMOrKysLKVFLgQnJo62PIqfz3K4zhS6OWY2wt13ApjZyE7uLwmKegPo1vhund7EV3/0VMrjS/Xx2LL3AA+8GlxY9tet+w5bVzCsH5+fe0LSXqvV02+1f9H6029toWRi4uN8JSt1K9e6+3KCYjZ+2V1x9x34YqL7hssPAn+XaAwiXXWwOcaz67eyrOL9dmDjhvbnxnMmsiBN7cAG9c3lQNPh3Q0ONMUYFKHpgOXoOlOo/gR4wcz+SHCBwiLgBymJqheL+lck8fG1uHOgKZbS+FJ1PJpaYpS9FcxY9tSbW2iJOSfmDz5iu+f+uoPyd7Ynvfhcv3lvp5ZLr6JcK71KLOa88u4OllXU8sjaOnbtD9qBXXNaIQsj0A5s38EW+uUajXHfwvXLNfYd1DdwmaAzZwnuNbNygnFaBlzbpgl5t6VqRp9MEvUG0D0dX7Jfb8OWepaUV7H01Rq21TcyenA/PnveRG6YU0xpRQ1vbd5wxD4r1m9LeqE7ZED7F0scbbn0Hj2Ra0XSzd1ZV7uHZRWHtwO7dEY+CyPWDqxoxAAsxyCu0LUcU7/aDNGpoQdhsk1Jwk3VjD6piDWVot4AuqfjS8br1Tc28+fVtSwur2bVezvpk2NcNG0si0qKueDEMYcuLDt/ymj+86kjC93zp4zu3ptox0dOL2bpqzXtLhdJZa4VSaeNW+sprayltKKWjdv2kZdrXDB1DN++cjqXTB/LwL7RGxGpfrWZLUo/Uama0SejRP0XKj6+XDP65+WkNL6uHg93Z+W7O1lcXsWfV9fR0NTCCWMG8e3507jm1CLGDDly/5KJozhv8iie3bD90LLzJo9KyZjZnnwtEZF02rT7AA+vrmVZRS1ranZjBmdOHMnnzp/EvBS1A0s2TbqTuaJU6KZqRp+ME/VfqNb4XnnxOZ5fcG7K4+vM8di85wBLX61mSXk172zbx6C+uSycXcCi04s5tXh4hxcx/M9nz6L8ne2sWL+N86eMTmnh2ZOvJSLSk1rbgZVW1vDyO++3A7vjyulcNbMg5Z0SepOod2lKtygVuqma0efwJ8iwWXt2RiSO9rQ0NrCm/MUefc32jseuPfX85P4nWFHdzOqtLThw4ogcPntKX07P70O/PjvYs3EHz2xM/HVO6wv179VR9l7i+3T1/6Urr5WKOJJNcYj0Lq3twB6qrOWZt7ceatH45YunsGBWAZPGHHnBb6aIajekqMYVJVEqdFM1o89hsmHWHsUReHvzXhavrOL+8n3sPdjI2CH9+PzcYMayiaMH9Xg86T4eiiPacYhko9Z2YKWVtTy27v12YJ/6wAQWzi5MSzuwZItqN6SoxhU1USp0UzWjj2SRPQeaeLiyjsXlVVRU7aJPjjFrTC63zDuN86aMpk83ZywTEZFjO1Y7sAWzCjgjze3Aki2q3ZCiGlfURKbQTeGMPpLh3J2X39nB4vIqlq+p40BTjKn5g7njyulcc2oha8pfZO60sekOU0Qka7XXDmxAXi6XnZTPglkFnDclOu3Aki2q3ZCiGlfURKbQhdTM6COZq253A0tXVbNkVTXvbd/PkH59uPa0Ij5UUszMomEZ/3WYiEjUHWoHVlnLxq376JNjzD1xDN+aP41LZ+RHsh1YskW1G9Kowf1YVFLEvS/+7dCyRSVFaY8rarL/J1QySmNzC0++sYX7V1bx7PqtxBzOnjSKr1wyhStOGs8ATbkoIpJSre3ASitrWV39fjuwz54btAMbMSj67cCSLYrdkLbXN7K4vPqwZYvLq/nyxVMjEV9UqNCVSHijbg+Ly6t48LUadu5vYvyw/nzxwslcP6eI40f1/IVlIiK9ya79B3lk7SZKK2p56Z3tuMMphWoHFm/U4H6RKiA1RjcxKnQlbXY3NFFaWcuS8ipWV+8mL9e4bMY4Fp1ezLmTR5ObRRcziEhmyuYepfsPNvPgazX8obyBNx57guZYdNqBZfNxTxaN0U2MCl3pUbGY89LG7dxfXsVf1m6isTnGtHFD+M7VM1g4u5CRvfArMRGJpmzsUdrUErQDCzombOJgc4zBeY5jfOOyqXzhwslpv/4hG497KkR17HDUqNCVHlGzq4E/llezZFUV1TsbGNq/D4tKillUUszJhZnfZ1FEsks29SiNxZyV7+5gWWUty9cE7cCG9u9DS3g28KYTW/j3tX34r6c38OEzjlNv2AwSxbHDUaNCV1LmQFMLj7++mcXlVTy3YRvucO7k0Xzj8hO5/KRx9M/ThWUiEk2ZPv6xtR1YaWUtD1XWUrc7aAd26Yx8Fs4uYNiAPG789Ur2NjbTep4hCu8v0497OkRt7HDUqNCVpFtXu5vFK6t4sKKW3Q1NFA4fwK0XTeH6OUUUjxyY7vBERDqUqeMf39m2j9KKWpZV1hxqB3bB1DF8c97h7cC21zdG8v1l6nGX6FKhK0mxa/9BllXUsri8inW1e+jbJ4fLTxrHh0qK+cAJo7JqlhwRyX6ZNP5x854DPFR5eDuwMyYcux1Y/PvLNaN/Xk4k3l8mHXfJDCp0pcti7jy7fiv3r6zisXWbOdgS4+TCoXxv4UksmFXA8IG6sExEMleUxz/u3t/EI2vrWBbXDuzkwqH84/zpXDVrPOOHdXwGtPX9vfLiczy/4NzIvL8oH3fJPCp0pdOqduxnyapqfvd8A9sPvMKwAXl89MzjuKGkiJMKhqU7PBGRpInS+Mf9B5t54o0tlFbU8szbW2hqcSaOHsStF01hwewCTuhCO7BRg/sxIC83Mu+xVZSOu2Q2FbqSkANNLTy6bhOLy6t4fsN2zOCkUbn887UzuWR6vi4sExFJgdZ2YKUVtTz2+mb2H2whf2g/Pnn2BBbOLlTXGpEOqNCVo3J31tbs4f7yv7Gsopa9B5opHjmAf7h0KtfNKWJ9xcvMnVmQ7jBFRLJKfDuwR9bUsXN/E8MG5LFwdiELZhVwxsSRmlBHJEEqdOUIO/Yd5MHXalhcXsWbm/bSr08O804OZiw7a+L7F5atT3OcIiLZ4ljtwBbMKuD8qWPo2ycn3WGKZBwVugJASyy4sGxxeRWPv76ZphZnVtEw/uWDJ3P1rKDnooiIJFdrO7DSyhr+2qYd2CXT8xnUTx/TIt2h36Be7r3t+1hSXs0fV1Wzac8BRgzM4+NnTWDR6UVMGzc03eGJiGSdtu3AAM6cOJJPnzuR+SePb7cdmIh0jQrdXqjhYAuPrK1jcXkVL23cQY7BBVPH8J2rZ3Dx9Hx9PSYikmTJaAcmIp2nQreXcHcqq3dz/8oqHq6sZW9jM8ePGsg3Lj+R604rYtyw/ukOUUQkqzQcbOGJNzazLIntwESkc1ToZrlt9Y2HLix7e3M9A/JymX/KeBaVFHHGxJFqSyMikkRNLTGeW7+NZRU1R7QDWzC7gFMKhynvivQgFbpZqLklxor1W1m8spon3thMc8w59bjh/PDaU7hq5niG9NeFZSIiyRKLOW/taOHxB9aw/LB2YAUsmFWodmAiaaRCN4ts3FrPklXVLF1VzZa9jYwa1Jcbz5nAopJipuQPSXd4IiJZo7UdWOtFZXW7D9A/r5pLZ4xjodqBiUSGCt0Mt6+xmeVr6lhSXs0r7+4gN8e48MQx3FBSzEXTxpKXq0QrIpIs727bR2llLcsq3m8Hdv7UMSw43rn1urlqByYSMfqNzEDuzqr3drJ4ZRUPr65l38EWJo0exO1XTOPa0wrJH6oLy0REkmXLngM8tLqO0ooaKsN2YGe0aQdWVlamIlckgvRbmUG27D3AA6/W8JvnGqh79AUG9s3lqpnjWVRSzJzjR+gCBxHBzK4AfgrkAve4+51t1lu4fj6wH/iUu7+a4L5fB/4VGOPu21L9XtJp9/4m/rIuaAf24sagHdhJBUP59vxpXDWzgILhagcmkglU6EZcU0uMsreCGcueenMLLTFnyvAcfnzdKcyfOZ7BOoMgIiEzywV+BlwKVAMrzazU3V+P22weMCW8nQn8Ajizo33NrDhc97eeej89rbUdWGllLWVvBe3AJowayJcumsKCWQVMHqt2YCKZRlVSRG3YUs+S8iqWvlrDtvpGRg/ux2fPm8iikmKq1pUz9/TidIcoItFzBrDB3TcCmNl9wEIgvtBdCNzr7g68ZGbDzWw8MKGDff8DuA1Y1hNvpKe01w5s7JB+fOLsCSxUOzCRjBeJQtfMRgL3EyTad4FF7r6zne3a/VrNzL4LfA7YGm76bXdfnvLAk6y+sZk/r65lcXk1q97bSZ8c46JpY1lUUswFJ445dGFZVZrjFJHIKuTwFFFNcNa2o20Kj7WvmS0Aaty9sqOiz8xuAm4CyM/Pp6ysLOHg6+vrO7V9V8XcWb8zxkt1zazc1Ex9EwzsAyXj+nD2+P6cODKHHNvCjg1beGZDYs/ZU7GngmJPD8XeMyJR6ALfBJ509zvN7Jvh49vjN0jgK7n/cPd/68mgk8HdKQ8vLPvzmjr2H2zhhDGD+Pb8aVxzahFjhvRLd4gikjnaq0I9wW3aXW5mA4F/BC5LJAB3vxu4G6CkpMTnzp2byG4AlJWV0ZntO8Pdeb1uD6UVtTxUWUvt7gP0z8vh0hkFLJhVwPlTR9OvT26Xnz+VsaeaYk8Pxd4zolLoLgTmhvd/C5TRptAlsa/kMsbmPQdY+mo1S8qreWfbPgb368PC2QXcUFLMqcXD9VWZiHRFNRA/rqkIqE1wm75HWX4CMBFoPZtbBLxqZme4+6akRp8Cre3ASitr2bCl/lA7sNuumMalM/LVKUEky0XlNzzf3esA3L3OzMa2s01HX8ndYmafAMqBr7U39CHdDjbHeOrNLSwpr+Lpt7YQ86BFzRcvnMz8U8YxsG9U/jtEJEOtBKaY2USgBvgw8NE225QS5Mv7CHLo7jDvbm1vX3dfBxzKyWb2LlAS5a4LR2sH9i8fPJn5p4xn5KC+aY5QRHpKj1VWZvYEMK6dVf+Y6FO0s6z1K7lfAN8PH38f+Anw6aPE0ePjx2r2xlhR08QLtc3sPQjD+xnzJ+ZxbmEfxg1qhL0beOWFBAeCdSOOZFMcikNxRIu7N5vZLcCjBNcy/Mrd15nZzeH6u4DlBK3FNhC0F7vxWPum4W10ydHagX1r3jSunqV2YCK9VY8Vuu5+ydHWmdlmMxsfnlUYD2xpZ7OjfiXn7pvjnuuXwMPHiKNHxo/tOdDEw5V1LC6voqJqF3m5xiXTx7GopJjzpoymTzdmLIvK2BjFoTgUR/SEF+Iub7Psrrj7Dnwx0X3b2WZC96NMjoaDLTz55maWVdTyzFtbOdgSUzswETlMVL4rLwU+CdwZ/tte+5qjfiXXWiSH210DrE15xO1wd15+ZweLy6tYvqaOA00xpuYP5o4rp3PNqYWMGqwLy0REuqOpJcZzG7ZRWlHLY+s2sS9sB/bxs49nwawCZhapHZiIvC8qhe6dwGIz+wxBM/IbAMysgKCN2PwOvlb7sZnNJhi68C7w9z0ZfN3uBpauqmbJqmre276fIf36cO1pRXyopFhJV0Skm2KxoDtNaWUNf15dx879TQzt34erZwUdE86cNIrcHOVZETlSJApdd98OXNzO8lqCsWStj9v9Ws3dP57SANvR2NzCk29sYXF5FSve3krM4exJo/jKJVO44qTxDOjb9TY1IiK93aF2YJW1PFTxfjuwS6bns3B2YbfbgYlI7xCJQjeTvFG3h8XlVTz4Wg079zcxflh/vnjhZG6YU8xxowamOzwRkYz23vZ9lFbUsiyuHdh5U0Zz2xXTuGRGvqY9F5FOUcZI0Kr3dvDPLzTwzl+epW9uDpeelM+ikmLOnTxaX5mJiHTTqvd28L0XG9j4lzIAzpigdmAi0n0qdBM0pH8ezQ7fuXoGH5xdyAglXhGRpBncL4/mGHxr3jSumlVAodqBiUgSqNBN0NT8IXz/nAHMPWdiukMREck6J44bwvfOGcDcC05IdygikkW63sxVRERERCTCVOiKiIiISFZSoSsiIiIiWUmFroiIiIhkJRW6IiIiIpKVVOiKiIiISFYyd093DGljZluB9zqxy2hgW4rC6QzFcTjFcTjFcbioxHG8u49JdxA9KYNzbFco9vRQ7OkRxdjbzbG9utDtLDMrd/cSxaE4FIfikOTL5P8rxZ4eij09Mil2DV0QERERkaykQldEREREspIK3c65O90BhBTH4RTH4RTH4aISh3Qsk/+vFHt6KPb0yJjYNUZXRERERLKSzuiKiIiISFZSodsOM7vCzN4ysw1m9s121n/MzFaHtxfMbFaa4lgYxlBhZuVmdm464ojb7nQzazGz69MRh5nNNbPd4fGoMLN/SkcccbFUmNk6M3smHXGY2TfijsXa8P9mZBriGGZmD5lZZXg8bkx2DAnGMcLMHgh/Z14xs5NTEYd0LCo5tiuikpe7Iiq5vCuikv+7IiqfGV0Rlc+ZbnF33eJuQC7wV2AS0BeoBGa02eYDwIjw/jzg5TTFMZj3h5/MBN5MRxxx2z0FLAeuT9PxmAs8HIGfj+HA68Bx4eOx6fp/idv+auCpNB2PbwM/Cu+PAXYAfdMQx78C3wnvTwOeTOXPim7d+r9KeY5NYewpz8upij1uu5Tl8hQe95Tn/xTGnvLPjFT+zMRtn5LPme7edEb3SGcAG9x9o7sfBO4DFsZv4O4vuPvO8OFLQFGa4qj38KcLGASkYsB1h3GEvgQsBbakIIbOxJFqicTxUeBP7v43AHdPxTHp7PH4CPCHNMXhwBAzM4IiYAfQnIY4ZgBPArj7m8AEM8tPchzSsajk2K6ISl7uiqjk8q6ISv7viqh8ZnRFVD5nukWF7pEKgaq4x9XhsqP5DPBIuuIws2vM7E3gz8Cn0xGHmRUC1wB3peD1E44jdHb4FfkjZnZSmuKYCowwszIzW2Vmn0hTHACY2UDgCoIPr3TE8X+B6UAtsAb4srvH0hBHJXAtgJmdARxPdAqo3iQqObYropKXuyIqubwropL/uyIqnxldEZXPmW7pk+4AIsjaWdbuX+RmdiFBEk7FGKyE4nD3B4AHzOx84PvAJWmI4/8Fbnf3luCkXUokEserBFMA1pvZfOBBYEoa4ugDzAEuBgYAL5rZS+7+dg/H0epq4Hl335HE1+9MHJcDFcBFwAnA42b2rLvv6eE47gR+amYVBAX3ayT/zLJ0LCo5tiuikpe7Iiq5vCuikv+7IiqfGV0Rlc+ZblGhe6RqoDjucRHBmajDmNlM4B5gnrtvT1ccrdx9hZmdYGaj3T2Z808nEkcJcF+YGEcD882s2d0f7Mk44gsnd19uZj9P0/GoBra5+z5gn5mtAGYByUxanfn5+DCp+zopkThuBO4Mv87dYGbvEIyRfaUn4wh/Pm4ECIdRvBPepGdFJcd2RVTycldEJZd3RVTyf1dE5TOjK6LyOdM96R4kHLUbQfG/EZjI+4OvT2qzzXHABuADaY5jMu9f9HAaUNP6uCfjaLP9b0jNxWiJHI9xccfjDOBv6TgeBF/TPxluOxBYC5ycjv8XYBjBmNhBafw5/QXw3fB+fvhzOjoNcQwnvAgO+BxwbyqOiW5J+b9KeY5NYewpz8upir3N9inJ5Sk87inP/ymMPeWfGan8mUn150x3bzqj24a7N5vZLcCjBFcc/srd15nZzeH6u4B/AkYBPw//8m1295I0xHEd8AkzawIagA95+FPXw3GkXIJxXA983syaCY7Hh9NxPNz9DTP7C7AaiAH3uPvano4j3PQa4DEPzhQkXYJxfB/4jZmtIfgq7HZP8lmWBOOYDtxrZi0EVzh/JpkxSGKikmO7Iip5uSuiksu7Iir5vyui8pnRFVH5nOkuzYwmIiIiIllJXRdEREREJCup0BURERGRrKRCV0RERESykgpdEREREclKKnRFREREJCup0BURERGRrKRCV0RERESykgpd6bXMrN7MhpvZF3rgtSaHEybEL+tnZu+Y2YxUv76ISE9TjpUoUKErvd1wIOVJmGAaxWIzi/+duwl4xt1f74HXFxFJh+Eox0oaqdCVrGBmP4o/a2Bm3zWzr5nZP5jZ2vD2lXZ2vRM4wcwqzOxfw30fNLNVZrbOzG6Ke87/Y2ZvmtnjZvYHM/t63Lq/M7NXwuf5bzPLjX8Rd48RzL0+Idx+APA14LtJOwgiIimiHCuZSoWuZIv7gA/FPV4ElAM3AmcCZwGfM7NT2+z3TeCv7j7b3b8RLvu0u88BSoBbzWyUmZUQzGF/KnBtuA4AM5sevvY57j4baAE+1k6MbwDTwvtfBErd/d2uvV0RkR6lHCsZqU+6AxBJBnd/zczGmlkBMAbYCcwGHnD3fQBm9ifgPOC1Dp7uVjO7JrxfDEwhSOLL3L0hfK6H4ra/GJgDrDQzgAHAlnae9w3gRDNbQZCEz2pdYWYrgZeBocDT7v7rBN+6iEjKKcdKplKhK9nkj8D1wDiCsw+5x978SGY2F7gEONvd95tZGdAfsGPtBvzW3b/VwdO/AVwEfBn4nbtvDl+zGHjZ3W8JHz9lZve6e0tn4xcRSSHlWMk4Grog2eQ+4MMEifiPwArgg2Y20MwGAdcAz7bZZy8wJO7xMGBnmICn8f4ZgeeAq82sv5kNBq6M2+dJ4HozGwtgZiPN7Ph24nsDOAP4NPCvccvnAKviHu8HYgm+ZxGRnqIcKxlHZ3Qla7j7OjMbAtS4ex1QZ2a/AV4JN7nH3V9rs892M3vezNYCjwB3ADeb2WrgLeClcLuVZlYKVALvEYxN2x2ue93M7gAeC6/4bSL42uy9NiG+BZwC/KO7745bPgdYAmBms4C/ubt3/4iIiCSPcqxkItP/tUhizGywu9eb2UCCMxk3ufurSXje5cC7QCPBRRb/7O57u/u8IiKZRDlWUkGFrkiCzOz3wAyC8WS/dfcfpjkkEZGsoRwrqaBCV0RERESyki5GExEREZGspEJXRERERLKSCl0RERERyUoqdEVEREQkK6nQFREREZGspEJXRERERLKSCl0RERERyUoqdEVEREQkK/3/VHlY3TMWkHQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(1,2, squeeze=True, figsize=(10,3.5))\n", "fig.tight_layout(pad=3.0)\n", "x = np.linspace(0.2, 0.75, 1000)\n", "cutoffs = [1, .65]\n", "for ax, c in zip(axs, cutoffs):\n", " df = df1[df1['VD']" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(1,2, squeeze=False, figsize=(10,3.5))\n", "fig.tight_layout(pad=3.0)\n", "x = np.linspace(0.2, 0.75, 1000)\n", "y = [f3(x1) for x1 in x]\n", "axs[0][1].set_yscale('log')\n", "axs[0][0].set_title('V-I characteristic of IN4001 diode')\n", "axs[0][1].set_title('V-I characteristic (log scale)')\n", "for ax in axs[0]:\n", " \n", " ax.plot(x, y)\n", " dfax = df1.plot('VD', 'ID', kind='scatter', ax=ax)\n", " # For some reason labels have to be set on the pandas plot axes object\n", " dfax.set_ylabel('current $I_D$ (A)')\n", " dfax.set_xlabel('voltage $V_D$')\n", " dfax.grid()\n", " " ] }, { "cell_type": "markdown", "id": "gothic-premises", "metadata": {}, "source": [ "OK, Let's try piecewise exponentials to see how that performs" ] }, { "cell_type": "code", "execution_count": 30, "id": "suspended-script", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ " direc: array([[1., 0.],\n", " [0., 1.]])\n", " fun: 0.004264144498636393\n", " message: 'Optimization terminated successfully.'\n", " nfev: 71\n", " nit: 2\n", " status: 0\n", " success: True\n", " x: array([1.29154967e-15, 2.95172076e-02])" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "initial_guess = crude_result[1:]\n", "result = optimize.minimize(sumsq, initial_guess, args=(df1[df1['VD']>0.65],), method='Powell')\n", "f3 = lambdify(vd, expr1.subs([(Is, result.x[0]), (k, result.x[1])]).args[0],\"numpy\")\n", "result\n" ] }, { "cell_type": "code", "execution_count": 41, "id": "frequent-coaching", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArUAAADsCAYAAABqvl5XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABF9klEQVR4nO3deXxcZdn/8c+VNN3TvU33fadAoaUFilL2FqggIgIiKApuCO6A+jz66A+pKDyCKFoFgUehosgmLWUN+1KWFrqvaZvua5qkzTrX7485hWlI0kw6M2cm832/XvPq5J5z5nznpNy9uOc+9zF3R0REREQkk+WEHUBERERE5HCpqBURERGRjKeiVkREREQynopaEREREcl4KmpFREREJOOpqBURERGRjKeiVuJmZoPNzM2sVdhZEsHMFpvZ1Gbs93kze7qZxzzTzB6N+dnNbHhz3iuVzOxnZva3Jm77bzObluxMIiIioKK2RTGzeWb283razzOzLfUVoZlSTDUkEfnd/Qh3LzzEcT5WyLv73939zGYe9pfAzGbumylmAjeFHUJERLKDitqW5V7gC2Zmddq/APzd3WtSH6lxYY72hnVsMzsO6Ozub4Rx/FRx97eATmY2MewsIiLS8qmobVkeBboBnzjQYGZdgXOB++N9MzNrZ2a3mtk6Mysxs1fMrF3MJp83s/VmtsPMfhyz3yQze93M9pjZZjO708xax7zuZvZNM1sJrAzabjezDWa218zeMbPYz5BrZj8ys9VmVhq8PsDMXgo2WWhmZWb2uWD7c81sQXD818zsqJj3KjKz683sfaDczFoFbafHZH87yLHVzG4Ldj1wrD3BsU4wsy+a2Ssx732EmT1jZruCfX/UwKmdDrzYyHnvbGb3m9n24Nz/xMxyYs7FrcE5X2tm1zQ2FST4rBuD87bczE5r7Jwe6ndRz/sfH5zjPWa2sJ5pHIXAOQ3tLyIikigqalsQd98PPARcHtN8EbDM3Rc24y1/A0wATiRaLP8QiMS8fhIwCjgN+G8zGxO01wLfAXoAJwSvf6POe58PTAbGBj/PB8YHx3kA+KeZtQ1e+y5wCXA20Am4Etjn7p8MXj/a3Tu6+z/M7FjgHuCrQHfgT8DjZtYm5tiXEC20utQzen07cLu7dwKGET2fAAeO1SU41uuxO5lZPvAs8BTQFxgOPEf9jgSWN/AawO+AzsBQ4GSiv88vBa9dRbQoHg8cS/Q81svMRgHXAMe5ez5wFlAUvFzvOQ1ea+x3Efv+/YAngf8XbPt94GEz6xmz2VLg6EY+q4iISEKoqG157gM+GzOiennQFpdgZPBK4Dp33+jute7+mrtXxmz2P+6+PyiYFxIUL+7+jru/4e417l5EtLA8uc4hbnb3XUEhjrv/zd13BvvcCrQhWjADfAX4ibsv96iF7r6zgehXAX9y9zeDzPcBlcDxMdvc4e4bDhy7jmpguJn1cPeyOKYInAtscfdb3b3C3Uvd/c0Gtu0ClNb3gpnlAp8Dbgzeowi4legUEoj+T8rt7l7s7rtpfF5uLdHzONbM8ty9yN1XB681eE4P8buIdRkwx93nuHvE3Z8B3iZaKB9QGnxeERGRpFJR28K4+yvAduA8MxsKHEd0tO3AVf5lwaPBr5QDPYC2wOpGttkS83wf0DE4zkgz+49FL07bS/SiqB519t0Q+4OZfc/MlgbTHPYQHak8sM+AQ+SINQj4XvB1+J7gvQYQHT2t99h1fBkYCSwzs/lmdm4TjxtPxt1AfgOv9QBaA+ti2tYB/YLnfTk4f4Ofxd1XAd8GfgZsM7PZZnbgPDSY9xC/i1iDiP4PVOy5PgnoE7NNPrCnoYwiIiKJoqK2Zbqf6AjtF4Cn3X0rfHiVf8fg8fIh3mMHUEH0K/h43QUsA0YEX+P/CKh78ZofeBIU2NcTHYXs6u5dgJKYfTbEkWMDcJO7d4l5tHf3B+s7dl3uvtLdLwF6Ab8C/mVmHRrbpxkZ3ydaONdnB9HR4kExbQOBjcHzzUD/mNcGNHYgd3/A3U8K3s+JfqYG8zbhdxFrA/B/dc51B3ePHT0eQ3QUX0REJKlU1LZM9wOnE/0qPu6pBwDuHiE6N/U2M+sbXFh0Qp25qQ3JB/YCZWY2Gvh6E7avITrC3MrM/pvoPM8D/gL8wsxGWNRRZtY9eG0r0bmnB/wZ+JqZTQ627WBm5wRzXg/JzC4zs57B598TNNcG2SJ1jhXrP0BvM/u2mbUxs3wzm9zAtnP4+HQMANy9lug83puC9xhEdP7rgbVhHwKuM7N+ZtaFaAHa0GcZZWanBr+zCmB/8Fmg4XN6qN9FrL8BM8zsrODvR1szm2pmsUX3ycDchjKKiIgkioraFiiYh/ka0AF4/DDe6vvAB0QvHNpFdJSvKX9nvg9cSnQ+5Z+Bfxxi+3lEC58VRL9qr+Dgr9VvI1rMPU20WL4bODBn+GfAfcHX3xe5+9tEi/k7iX7Nvwr4YhMyHzANWGxmZUQvGrs4mCO7j+iaq68Gx4qdo4u7lwJnADOITstYCZxS3wHc/V2gpJGi91tAObAGeIXo9JF7gtf+HJyH94H3iBbINXxUrMZqQ3TO7Y4gUy+io+bQ8Dk91O8i9nNsAM4L3nN7sN0PCP6OWHTpsvJgaS8REZGkMvdDfasqIolmZmcC33D38w/zfaYDf3T3QYfcOMXM7GHgbnefE3YWERFp+VTUimSQYFWLU4iOsBYADwNvuPu3w8wlIiISNhW1IhnEzNoTvXHDaKJzZJ8kuuza3lCDiYiIhExFrYiIiIhkPF0oJiIiIiIZT0WtiIiIiGS8VmEHSIUePXr44MGD49qnvLycDh06JCdQMyhP45SncemUJ52yQOLzvPPOOzvcvWfC3jADqI9NPOVpnPI0LJ2yQIr7WHdv8Y8JEyZ4vF544YW490km5Wmc8jQunfKkUxb3xOcB3vY06PdS+VAfm3jK0zjlaVg6ZXFPbR+r6QciItIsZjbDzGaVlJSEHUVEREWtiIg0j7s/4e5Xd+7cOewoIiIqakVEREQk86moFREREZGMl7Ki1swGmNkLZrbUzBab2XVB+8/MbKOZLQgeZ8fsc6OZrTKz5WZ2Vkz7BDP7IHjtDjOzVH0OEWk5Nu3Zz5byCJGIbkLTHJpTKyKNqaypZfWe2pQdL5UjtTXA99x9DHA88E0zGxu89r/uPj54zAEIXrsYOAKYBvzBzHKD7e8CrgZGBI9pKfwcItJC3P/6On78yn5U0jaP5tSKSH3cnScWbuL0217k1/Mr2LOvKiXHTdk6te6+GdgcPC81s6VAv0Z2OQ+Y7e6VwFozWwVMMrMioJO7vw5gZvcD5wNzkxhfRFqgoh3l9Gxv5Oboyx4RkUR4a+0ubpqzlIUb9jC6dz6fO6YNXdq3TsmxQ5lTa2aDgWOAN4Oma8zsfTO7x8y6Bm39gA0xuxUHbf2C53XbRUTiUrSznIL2urRARORwrd5extX3v81Ff3qdrSUV/PrCo3jy2k8wrkfq7vOV8juKmVlH4GHg2+6+18zuAn4BePDnrcCVQH1DJ95Ie93jXE10igIFBQUUFhbGlbOsrCzufZJJeRqnPI1LpzzpksXdWbNtH1N6e1rkyURmNgOYMXz48LCjiEhIdpRVcvuzK3ngrfW0y8vlB2eN4sopQ2jXOvfQOydYSotaM8sjWtD+3d3/DeDuW2Ne/zPwn+DHYmBAzO79gU1Be/962g/i7rOAWQATJ070qVOnxpW1sLCQePdJJuVpnPI0Lp3ypEuWLSUVVM17jv5d2qRFnkzk7k8AT0ycOPGqsLOISGrtr6rl7lfW8McX17C/upZLJw3kutNH0KNjm9AypayoDVYouBtY6u63xbT3CebbAnwaWBQ8fxx4wMxuA/oSvSDsLXevNbNSMzue6PSFy4HfpepziEjLsHZHOYCmH4iIxKE24vz73WJufXoFW/ZWcObYAq6fPpphPTuGHS2lI7VTgC8AH5jZgqDtR8AlZjae6BSCIuCrAO6+2MweApYQXTnhm+5+YF2IrwP3Au2IXiCmi8REJC5FOw8UtbpITESkKV5asZ1fzlnKsi2lHD2gC3dccgyThnQLO9aHUrn6wSvUPx92TiP73ATcVE/728C4xKUTkWxTtLOc1rk5dG+nolZEpDFLN+/ll3OW8vLKHQzo1o7fXXIM5x7Vh3S7TUDKLxQTEUkHRTvKGdCtHVrN6+PMbAxwHdADeM7d7wo5koiEYHPJfm59egUPv1tMp7Z5/OScMXzhhEG0aZX6i8CaQkWtiGSloh37GNKjA1AedpSUMLN7gHOBbe4+LqZ9GnA7kAv8xd1nuvtS4GtmlgP8OZTAIhKa0opq/vjiau5+ZS2RCFz1iaF8c+pwOrfPCztao1TUikjWiUScdbvK+cSIHmRLUUv0OoQ7gfsPNAR3afw9cAbRlWXmm9nj7r7EzD4F3BDsIyJZoLo2wuy31vPbZ1eys7yK88b35ftnjmJAt/ZhR2sSFbUiknW27K2gojrC4B4doCLsNKnh7i8FN76JNQlY5e5rAMxsNtG7OS5x98eBx83sSeCBlIYVkZRyd55espVfzV3Gmh3lTB7Sjb+eM4aj+ncJO1pcVNSKSNZZvb0MgOG9OlKxPuQw4arvzo2TzWwqcAHQhgYu5tUNbpJLeRqnPA2LN8vqPbX8Y3kVK3ZH6NPBuO7YNozvWcGuVQsoXJX6PIdDRa2IZJ3V26JF7bCeHVmc3UVtvXdodPdCoLCxHd19lpltBmbk5+dP0A1uEkt5Gqc8DWtqlvU79/Grect48v3N9OjYhps+PYLPTRxAq9zErt2dynOjolZEss7q7eV0atuKHh1bhx0lbA3duVFEWqg9+6r43fOruP/1Ilrl5HDtaSO4+pND6dgm80vCzP8EIiJxWrWtjGG9OqbdGoshmA+MMLMhwEbgYuDSpu6s2+SKZI6K6lruf72IO59fRVllDRdNHMB3zhhJQae2YUdLGBW1IpJ1Vm8v45Mje4YdI6XM7EFgKtDDzIqBn7r73WZ2DTCP6JJe97j74jjecwYwY/jw4cmILCIJEIk4T7y/iVueWs7GPfuZOqonN04fw6je+WFHSzgVtSKSVfZWVLOttDIt7lOeSu5+SQPtc2jkzo6HeE+N1IqksTfW7OSXc5byfnEJY/t04pYLj2LK8B5hx0oaFbUiklXWbI+uSzusZ4eQk2Q+jdSKpKdV20qZOXcZzy7dRt/ObbntoqM5f3w/clr4LRRV1IpIVvlw5YNe2TVSmwwaqRVJL9tKK7h3cSUvP/0y7fNy+eG0UVw5ZQht89LztraJpqJWRLLK6u1ltMoxBmbIHXLSmUZqRdLDvqoa/vzSWv700moqq2v5wgmD+dapw+nesU3Y0VJKRa2IZJXV28sY1L09eQleizEbaaRWJFy1Eeefb2/gtmdWsK20kunjenNy1xIuPueIsKOFQkWtiGSV1dvLs+4iMRFpWdydwhXbmTlnGcu3lnLswC7cddmxTBjULW3ubBYGFbUikjWqayOs21nOGWMLwo7SImj6gUjqLdpYws1zl/Lqqp0M6t6eP3z+WKaP6611t1FRKyJZZMOufVTXukZqE0TTD0RSZ+Oe/dw6bzmPLNhIl3Z5/HTGWD4/eRCtW2kq1QEqakUka6wKVj4YquW8RCRD7K2o5q7C1dz9yloAvvrJYXx96jA6t8sLOVn6UVErIlljxdZSAEYWtLw76YRB0w9EkqeqJsIDb67jjudXsau8iguO6cf3zhpFvy7two6WtlTUikjWWL61jP5d29Gxjbq+RND0A5HEc3eeWrSFXz21jKKd+zhxWHd+dPYYxvXrHHa0tKeeXUSyxvItexmlUVoRSVPvrNvNL+cs5Z11uxlZ0JG/fvE4po7qqYvAmkhFrYhkhaqaCGu2l3P6GK18ICLppWhHObfMW8acD7bQM78NMy84kgsn9KeV1tOOS8qKWjMbANwP9AYiwCx3v93MugH/AAYDRcBF7r472OdG4MtALXCtu88L2icA9wLtgDnAde7uqfosIpJ51u4opybijOqtkVoRSQ+7yqu447mV/P3NdeTl5vDt00dw1SeG0kFTpJollWetBvieu79rZvnAO2b2DPBF4Dl3n2lmNwA3ANeb2VjgYuAIoC/wrJmNdPda4C7gauANokXtNGBuCj+LiGSYZVv2AqioTSBdKCbSPBXVtfz11SL+8MIqyqtq+NxxA/nOGSPold827GgZLWVFrbtvBjYHz0vNbCnQDzgPmBpsdh9QCFwftM9290pgrZmtAiaZWRHQyd1fBzCz+4HzUVErIo1YsbWUVjnG0B5aozZRdKGYSHwiEeexhRv59VPL2VRSwWmje3HD9NGM0Fz/hAhlfNvMBgPHAG8CBUHBi7tvNrNewWb9iI7EHlActFUHz+u2i4g0aPmWUob27KCFykUkFK+t2sEv5y5l0ca9HNmvM7+56GhOHNYj7FgtSsqLWjPrCDwMfNvd9zZyRV99L3gj7XWPczXRKQoUFBTEfS/ksrKytLp/svI0Tnkal055wsqysGgfQzrnfOzY6XRuRKTlWbG1lJvnLOWF5dvp16Udt188nhlH9SUnRysaJFpKi1ozyyNa0P7d3f8dNG81sz7BKG0fYFvQXgwMiNm9P7ApaO9fT/tB3H0WMAtg4sSJPnXq1LiyFhYWEu8+yaQ8jVOexqVTnjCylFXWsP2peVzxiWFMnToi9DzpzszOB84BegG/d/enw00kknm27a3gtmdW8NDbG+jQphU3Th/NFScOpm1ebtjRWqyUfQ9n0SHZu4Gl7n5bzEuPA1cEz68AHotpv9jM2pjZEGAE8FYwVaHUzI4P3vPymH1ERD5mpe4khpndY2bbzGxRnfZpZrbczFYFF+vi7o+6+1VEL+T9XAhxRTJWeWUNtz2zgpN/XcjD7xbzxROH8NIPTuGrJw9TQZtkqRypnQJ8AfjAzBYEbT8CZgIPmdmXgfXAZwHcfbGZPQQsIbpywjeDlQ8Avs5HS3rNRReJiUgjlm+JFrWje3cKOUmo7gXuJLq0IgBmlgv8HjiD6Ldg883scXdfEmzyk+B1ETmEmtoID71dzG3PrGBHWSXnHNWHH541ikHdO4QdLWukcvWDV6h/PizAaQ3scxNwUz3tbwPjEpdORFqyZVtKad86l/5ds/ee6e7+UnCRbqxJwCp3XwNgZrOB84LVaWYCc9393dQmFcks7s6CbTX8v9tfZtW2MiYO6sqsyydw7MCuYUfLOlrdV0RavCWb9jKmTyddmPFx/YANMT8XA5OBbwGnA53NbLi7/7HujroYN7mUp3HpkqeopJbZy6tYtitCQfsqvnVMG47tVcneNQspXBNOpnQ5NwekMo+KWhFp0SIRZ8nmvVxwrFb+q0e9q8m4+x3AHY3t6O6zzGwzMCM/P3+CLsZNLOVpXNh5Nuzax2+eXs5jCzbRrUNrLhsDP73sNPLS4La2YZ+bulKZR0WtiLRo63bto6yyhnF9O4cdJR01tMpMk+jmC5JtSvZX84cXVvHX14ow4JunDONrJw/jnTdeTYuCNtupqBWRFm3xphIAxvbN6ovEGjIfGBGsMLOR6K3JL23qzrpNrmSLqpoI//fGOn73/EpK9ldzwTH9+d6ZI+nbJXvn6acjFbUi0qIt2riXvFzL6uW8AMzsQaK3JO9hZsXAT939bjO7BpgH5AL3uPviEGOKpBV358kPNnPLU8tZv2sfnxjRgxunj9H/JKcpFbUi0qIt3lTCyIL8rL89rrtf0kD7HGBOM99T0w+kxZpftIubnlzKgg17GN07n/uunMTJI3uGHUsaoaJWRFosd2fxpr2cPqZX2FFaJE0/kJZozfYyfvXUMuYt3kpBpzbccuFRfObY/uRq9ZS0F3dRa2YdgIqYGyGIiKSlLXsr2FVexREZdpFYpvSzGqmVlmRnWSW3P7eSB95cT5tWOXz/zJF8+aShtGutu4BlikMWtWaWQ/Tigc8DxwGVQBsz2070K6tZ7r4yqSlFRJph0ca9AIzrl97z3zK1n9VIrbQE+6tquefVtdxVuJr91bVcMmkA1502kp75bcKOJnFqykjtC8CzwI3AInePAJhZN+AUYKaZPeLuf0teTBGR+C3eVIJZRtweNyP7WY3USiarjTj/fjd6W9vNJRWcMbaA66eNZnivjmFHk2ZqSlF7urtX1210913Aw8DDZpaX8GQiIodp0ca9DOnRgQ5t0v7yAfWzIin08srt/HLOMpZu3svR/Tvz28+NZ/LQ7mHHksN0yJ6+vo4WwMymAJe6+zcb2kZEJEwfbNzD5CHp/w9Vpvazmn4gmWbp5r3cPHcZL63YTv+u7bjjkmM498g+uoV2CxHX8IWZjSe6MPdFwFrg30nIJCJy2LaUVLB1byXjB3QJO0pcMqmf1fQDyRRbSiq49enl/OvdYjq1zeMn54zhCycMok0rXQTWkjTlQrGRRC9guATYCfwDMHc/JcnZRESabcGG3QCMH9gl3CBNoH5WJDnKKmv4Y+Fq/vLKGiIR+MpJQ7jmlBF0bq/ZPC1RU0ZqlwEvAzPcfRWAmX0nqalERA7Texv2kJdrjO2T9heJQYb2s5p+IOmqujbC7PkbuP3ZFewoq2LG0X354VmjGNCtfdjRJImaUtR+hugIwgtm9hQwG9DkExFJawvW72Fsn060zcuIrxczsp/V9ANJN+7OM0u2MvOpZazZXs6kId24+4oxHJ1h05CkeZpyodgjwCPBYuDnA98BCszsLuARd386uRFFROJTG3E+2FjCZyf0DztKk6ifFTl8Czbs4ZdPLuWtol0M69mBP18+kdPH9MIs7f//UBKkyReKuXs58Hfg78HaiZ8FbgDU2YpIWlmxtZR9VbUZMZ82lvpZkfht2LWPW+Yt54mFm+jRsTX/7/xxXHzcAFrl5oQdTVKsKReKmbt7bFuwduKfgke924iIhGXBhj0AHN2/S6g5mkr9rEj89uyr4s7nV3H/6+vIyYFvnTqcr548jI7pvy61JEmT7ihmZg8Dj7n7+gONZtYaOAm4gujdcO5NSkIRkTgtWL+Hzu3yGNKjQ9hRmioj+1ldKCZhqKypZe7aaq4tfIHSyho+O6E/3z1jFL07tw07moSsKUXtNOBK4EEzGwLsAdoCuUS/Evtfd1+QrIAiIvFaWLyHowd0yaS5dBnZz+pCMUmlSMR54v1N/Hrecop3V3HyyJ7cePboTLgNtqRIUy4UqwD+APwhuE1jD2C/u+9JcjYRkbiVVdawYmspZx7RO+woTaZ+VqRxb6zZyc1zlrKwuIQxfTrx/YnONRdOCjuWpJm4ZlG7e7W7b25OR2tm95jZNjNbFNP2MzPbaGYLgsfZMa/daGarzGy5mZ0V0z7BzD4IXrvDMmgoRkSS7731u4k4TBjUNewozXI4/axIS7NqWxlfue9tLp71BttKK/nNZ4/mP986iXE9MmKpPkmxVM6mvhe4E7i/Tvv/uvtvYhvMbCzRNRuPAPoCz5rZSHevBe4CrgbeAOYQ/dpubnKji0immL92FzkGx2bYygci8pHtpZX89tkVzJ6/gXZ5ufzgrFF8+aQhmbLutIQkZUWtu79kZoObuPl5wGx3rwTWmtkqYJKZFQGd3P11ADO7n+iajipqRQSAt4p2MbZvJ/Lb6jaYzWVmQ4EfA53d/cKw80j22FdVw19eXsufXlxNZU2EyyYP5NrTRtC9Y5uwo0kGaFZRm+ClZa4xs8uBt4HvuftuoB/RkdgDioO26uB53fb6Ml5NdESXgoICCgsL4wpVVlYW9z7JpDyNU57GpVOeZGapiTjvFO1j6oBWTT5GOp2bWIlewsvM7gHOBba5+7iY9mnA7UQvSvuLu8909zXAl83sX4k6vkhjaiPOv97ZwG3PrGDr3kqmHdGbH04bxdCeHcOOJhkk7qLWzL4IfMHMyoH1wPXBguHNcRfwC8CDP28legVwffNkvZH2jze6zwJmAUycONGnTp0aV7DCwkLi3SeZlKdxytO4dMqTzCzvrNtN9dOvccFJRzH1yD6h52muBPezB9xLnSlgZpYL/B44g+ggwXwze9zdlxzmsUSaxN15ccV2Zs5dxrItpRwzsAu/v/RYJg7uFnY0yUDNGamd6u6nAZjZUcBPgR825+DuvvXAczP7M/Cf4MdiYEDMpv2BTUF7/3raRUSYX7QLoCX8g5iwfvaABqaATQJWBSOzmNlsotO/DlnU6tuw5MqGPOv21vLQ8ioW74zQs53xjfFtOK6girKi9yksSn2ew5FOedIpC6Q2T3OK2r0Hnrj7+2bW7Hm5ZtbH3TcHP34aOLAywuPAA2Z2G9ELxUYAb7l7rZmVmtnxwJvA5cDvmnt8EWlZ5q/dxdAeHeiZn/Hz7xLWzx5CP2BDzM/FwGQz6w7cBBxjZje6+811d9S3YcnVkvNs2rOf3zy9nEfe20jndnn897mjuez4QbRu1fQFmVry+Tlc6ZQFUpunOR3l8WZ2B/BO8GjdlJ3M7EFgKtDDzIqJjjxMNbPxRKcQFAFfBXD3xWb2ENHRghrgm8HKBwBfJ/o1WjuiF4jpIjERIRJx3l63m2kZtD5tI5rVzzZDvVO63H0n8LVD7qw7ikkc9lZU88fC1dz9ylocuPqTQ/nG1OF0bqeLOiUx4i5q3X2SmfUHJgAXAYObuN8l9TTf3cj2NxEdKajb/jYw7uN7iEg2W7GtlJL91Rw3JOOnHjS7n22GhqZ6iSRMdW2EB95cz+3PrWRXeRXnj+/L988aRf+u7cOOJi3MIYtaM/sD8AHwPvCBu+9192KineFjSc4nItIkb66JzqednIFFbYj97HxgRHBr3o1E1we/tKk76za50hh3Z97iLfzqqeWs3VHOCUO786Ozx3Bk/85hR5MWqikjtQuAo4h2duPMrJSDO9/ZyYsnItI0r6zawYBu7RjQLSNHfxaQ5H62vilg7n63mV0DzCO6pNc97r44jvfU9AOp17vrd/PLJ5fy9rrdjOjVkXu+OJFTRvVCNwGVZDpkURtcDPCh4Cuxo4AjgXMAFbUiEqqa2ghvrN7JuUc3bRmvdJOKfraBKWC4+xyid2cUOWxFO8q5Zd4y5nywhR4d23DzBUfy2Qn9aZXb9IvARJqrOXNqD3wlpk5QRNLCBxtLKK2s4cRhPcKOkhCZ0s9q+oEcsLu8ijueX8nf3lhHq5wcrjttBFd/cigd2qTsxqUiqbtNrohIsry6agcAJw7rHnISkexSUV3Lva8V8fsXVlFeWcPnjhvAd04fSa9ObcOOJllIRa2IZLxXVu1gbJ9Ouj98imlObfaKRJzHFm7kN/NWsHHPfk4d3Ysbpo9mZEF+2NEkizV5kouZ/aopbSIiqbS/qpZ31+1hyvDMH6XNtH7W3Z9w96s7d9bV7NnktVU7+NTvX+E7/1hI1w55PPCVydzzxeNU0Ero4pm5fUY9bdMTFUREpDnmF+2iqjbClOEtYj5tRvWzZjbDzGaVlJSEHUVSYOXWUq68dz6X/uVNdpdX89vPjefxb57EiS3jvz1pAZqyTu3XgW8AQ83s/ZiX8oHXkhVMRKQpXl21g7xcY1IGrk97QKb2s7pQLDts21vBXxdV8vK8l+jQphU3TB/NF08cTNu83LCjiRykKXNqHyB6K9qbgRti2kvdfVdSUomINNELy7cxcVA32rfO6EsE1M9K2imvrGHWS2v488trqKyu5YoTB/OtU0fQrUOy7toscniask5tCVBiZl8CLiB6u8ZWAGaGu/88qQlFRBpQvHsfK7aW8ZNzBhx64zSmflbSSU1thH++U8xtz6xge2kl5xzZh5O77uGis48IO5pIo+IZ2ngUKAHeASqTkkZEJA4vLNsGwCmje4WcJGEeJYP6Wa1+0LK4Oy8s38bNc5axclsZEwZ15Y+XTWDCoK4UFhaGHU/kkOIpavu7+7SkJRERidNzy7YxqHt7hvboEHaURMmoflZzaluORRtLuOnJpby+ZieDu7fnj5cdy1lH9NZtbSWjxFPUvmZmR7r7B0lLIyLSRPuranl99U4unTywJf3Dq35WUqp49z5+M285jy7YRLcOrfmfTx3BpZMHkqfb2koGiqeoPQn4kpmtIfq1mAHu7kclJZmISCNeW72DypoIp7acqQegflZSpGR/NX94YRV/fa0IA74+dRhfnzqMTm3zwo4m0mzxFLVpu1aiiGSf55Zto33r3IxeyqseGdXPak5t5qmqifC3N9Zxx/MrKdlfzaeP6cf3zxxF3y7two4mctji+X5hPfAJ4Ap3Xwc4UJCUVCIijYhEnOeXbuOk4T1o06pFrZWZUf2s7iiWOdydJ9/fzBn/+yI//88SxvXtzBPXnMRtF41XQSstRjwjtX8AIsCpwM+BUuBh4Lgk5BIRadCC4j1s2VvBD8eNCjtKoqmflYR7u2gXN81Zynvr9zCqIJ97v3QcJ4/s2ZLmoosA8RW1k939WDN7D8Ddd5uZVmAWkZR7atEW8nKN08ak7SBmc6mflYRZs72MXz21jHmLt9Irvw2/+syRXDhhALk5KmalZYqnqK02s1yiX4dhZj2JjiiIiKSMuzPng81MGd6Dzu1a3EUt6mflsO0sq+SO51by9zfX06ZVDt89YyRf+cSQTL/rnsghxfM3/A7gEaCXmd0EXAj8JCmpREQasHjTXop37+faU0eEHSUZQu9nzawD0WkQVUChu/89lceX5quoruXuV9byx8LV7Kuu5eLjBvDt00fSM79N2NFEUqLJRa27/93M3gFOI7rMzPnuvrSp+5vZPcC5wDZ3Hxe0dQP+QfSWkEXARe6+O3jtRuDLQC1wrbvPC9onAPcC7YA5wHXu7k3NISKZbc4Hm8nNMc4Y2+KmHhx2P9uQ+vrfoH0acDuQC/zF3WcSvU3vv9z9CTP7B6CiNs1FIs6/39vIrU8vZ3NJBaeP6cUN00czvFd+2NFEUqpJRa1FZ5P3d/dlwLJmHute4E7g/pi2G4Dn3H2mmd0Q/Hy9mY0FLgaOAPoCz5rZSHevBe4CrgbeIFrUTgPmNjOTiGQQd2fuoi2cMLQ7XTu0rKmmCepnG3IvdfrfYJrD74EzgGJgvpk9DvQHDtz8oTbBOSTBXlm5g1/OWcqSzXs5qn9n/vdz4zl+aPewY4mEoklLegUjoY8ezoHc/SVgV53m84D7guf3AefHtM9290p3XwusAiaZWR+gk7u/HmS6P2YfEWnhlm4uZe2OcqaN6x12lIRLRD/byHvX1/9OAla5+xp3rwJmE+17i4kWthDfso+SQsu27OWKe97isrvfZG9FNbdfPJ5HvzFFBa1ktXjm1L5hZse5+/wEHr/A3TcDuPtmMztwa6B+REdiDygO2qqD53XbRSQLPPJeMXm5xjlH9gk7SrIko59tSD9gQ8zPxcBkovN67zSzc4AnGtrZzK4m+q0ZBQUFFBYWxnXwsrKyuPdJpkzJs7siwr9XVvPKxhratYLPjWrN6YOMvD0reemllSnPExblaVg6ZYHU5omnqD0F+KqZrQPKSe7tG+tbb8Qbaf/4G6jDTSrlaZzyNKy5WSLu/POt/YzrnsPC+a+FnidJQu9n3b0c+NKhdnb3WWa2GZiRn58/YerUqXEdvLCwkHj3SaZ0z1NWWcOfXlzNn19dQyQCXz5pCNecOpwu7VMzDSfdz0/Y0ilPOmWB1OaJZ07t14B1CT7+VjPrE4zS9gG2Be3FwICY7foDmzj4a7HY9o9x91nALICJEye6OtzEUp7GKU/Dmpvl5ZXb2VP5FlefcTRTEzhSmy7nJon9bEMa6mcljdTURpg9fwO/fXYFO8qqOPeoPvzwrNEM7N4+7GgiaadJRa27u5n9r7tPSPDxHweuAGYGfz4W0/6Amd1G9EKxEcBb7l5rZqVmdjzwJnA58LsEZxKRNPTIuxvp1LYVp4zudeiNM1AS+9mGzAdGmNkQYCPRi3MvjecN3P0J4ImJEydelYR8Wc3deWbJVmbOXcrq7eVMGtyNv1wxhvEDuoQdTSRtpWxOrZk9CEwFephZMfBTosXsQ2b2ZaL3PP8sgLsvNrOHgCVADfDNYOUDgK/z0ZJec9HKByIt3r6qGp5avIXzxvelbV5u2HGSKSlzauvrf939bjO7BphHdEmve9x9cZzvOwOYMXz48ETGzXoLN+xh5lsVLN/9NkN7dmDWFyZwxtgC3dZW5BDinVP7NTMrohlzvdz9kgZeOq2B7W8Cbqqn/W1g3Mf3EJGW6qlFW9hXVcunj+l/6I0z22H1sw1pqP919zlEl0Zs7vtqpDaBNuzaxy3zlvPEwk3kt4ZfnD+Oi48bQF6uFqEQaYp4itrpSUshItKIB99az5AeHThucNewoyRbRvWzGqlNjJJ91dz5wkrue20dOTlwzSnDOSJ3E9OPHxR2NJGMEk9Re0UD7T9PRBARkfqs2FrK/KLd/Ojs0dnw9WtG9bMaqT08lTW1/N/r6/jd86vYW1HNhcf257tnjqRP53YUFm4OO55IxomnqC2Ped6W6C0XD/v2jSIijXngzfW0zs3hwgkDDr1x5suoflYjtc3j7jzx/mZ+PW8ZG3bt55Mje3Lj9NGM6dMp7GgiGa3JRa273xr7s5n9hugqBSIiSbG/qpaH3y1m2rjedGtht8WtT6b1sxqpjd+ba3byyzlLWVhcwuje+dx/5SQ+ObJn2LFEWoR4Rmrrag8MTVQQEZG6/vP+Jkorarh08sCwo4QlrftZjdQ23ertZcycu4xnlmyld6e2/PrCo7jg2P7k5rT4KTUiKdPkotbMPuCju3flAj2BXyQjlIiIu3P/6+sY1rMDk4d0CztOSmRaP6uR2kPbXlrJ7c+t4MG3NtAuL5cfnDWKK6cMoV3rFr00nUgo4hmpPTfmeQ2w1d1rEpxHRASAt9bu4oONJdz06XHZcIHYAepnW4j9VbX85eU1/PHF1VTURPj85IFce9oIenRsE3Y0kRYrnqL258B17r4HwMy6mtmt7n5lUpKJSFb788tr6do+j88c2+LXpo2lfjbD1Uach98t5tanl7N1byVnji3g+umjGdazY9jRRFq8eIraow50tADuvtvMjkl8JBHJdmu2l/Hcsq1865ThLf0OYnVlVD+rObUHe3HFdm6es5RlW0oZP6ALv7vkWCZlydQZkXQQT1GbY2Zd3X03gJl1i3N/EZEmuefVteTl5PCFEwaHHSXVMqqf1ZzaqCWb9nLz3KW8vHIHA7u1585Lj+GcI/tk07QZkbQQT2d5K/Camf2L6IUMF1HPbWxFRA7HttIK/vVOMecf05ee+Vk3/1D9bAbZXLKf38xbwb/fK6ZT2zz+69yxXHb8QNq0yqpvF0TSRjzr1N5vZm8DpxK9H/kF7r4kaclEJCvNenEN1bXON6Zm31fa6mczQ2lFNXcVrubuV9biDld9YijfnDqczu3zwo4mktXi+lor6FzVwYpIUmwvreRvb67jvPF9GdyjQ9hxQqF+Nn1V10Z48K31/PbZlewqr+K88X35/pmjGNCtfdjRRDLOzrJKinfvp3/XdnRP0KogaTtXS0Syz6yXVlNVE+Fbp44IO4o0QbZcKObuzFu8lVueWsaaHeUcP7QbPzp7DEf17xJ2NJGM9NiCjVz/8Pvk5eRQHYlwy2eO4lPj+x32+6qoFZG0sL20kr+9sZ7zx/djSJaO0maabLhQ7N31u7l5zlLmF+1meK+O3H3FRE4d3UsXgYk0086ySq5/+H0qqiNUEAHghw+/z5ThPQ57xFZFrYikhd8+u4Lq2gjfOk2jtBK+dTvLueWp5Tz5wWZ6dGzDTZ8ex+cmDqBVbk7Y0UQyWvHu/eTl5HxY0ALk5eRQvHu/iloRyXyrtpUye/4GLps8UKO0Eqrd5VX87vlV/N8bRbTKyeHa00Zw9SeH0rGN/rkUSYT+XdtRHYkc1FYdidC/a7vDfm/9VyoioZs5dxnt83K5VqO0acHMhgI/Bjq7+4Vh50mFqlrnTy+u5s4XVlFeWcNFEwfwnTNGUtCpbdjRRFqU7h3bcMtnjuKHdebUJuJiMRW1IhKq11fv5Nml2/jBWaMSdgVsNjOze4BzgW3uPi6mfRpwO5AL/MXdZzb0Hu6+BvhysF5uixaJOI8v3MQvXt7PzoplnDKqJzdMH8Oo3vlhRxNpsT41vh9ThvfQ6gci0nJU10b478cW0a9LO7580pCw47QU9wJ3AvcfaDCzXOD3wBlAMTDfzB4nWuDeXGf/K919W2qihuu11Tu4ec4yPthYwsD8HO64bBJThvcIO5ZIVujesU3CBzJU1IpIaO5+ZS0rt5Xxl8sn0jZPd2FKBHd/ycwG12meBKwKRmAxs9nAee5+M9FR3ayycmspM+cu47ll2+jbuS23XXQ0XUpWqqAVyXAqakUkFMW793H7sys5fUwBp48tCDtOS9cP2BDzczEwuaGNzaw70dvzHmNmNwbFb91trgauBigoKKCwsDCuQGVlZXHvc7j2VEZ4dGU1LxbX0LYVfHZkHmcMyqH13lWUlZenPE9jwjg/jVGexqVTnnTKAqnNkxZFrZkVAaVALVDj7hPNrBvwD2AwUARc5O67g+1vBL4cbH+tu88LIbaINJO789+PLQbgZ58aG3KarFDfoqre0MbuvhP4WmNv6O6zzGwzMCM/P3/C1KlT4wpUWFhIvPs0176qGma9tIZZr66hqibCFScO5trTRtCtQ+tQ8jSF8jSupec5nLtttfRz05i0KGoDp7j7jpifbwCec/eZZnZD8PP1ZjYWuBg4AugLPGtmI929NvWRRaQ5/vlOMc8v28ZPzhlD/666xWgKFAMDYn7uD2w63DdN95sv1NRG+Oc7xdz2zAq2l1YyfVxvfjhttJaNk7SWrLttZYN0KmrrOg+YGjy/DygErg/aZ7t7JbDWzFYRnS/2eggZRSROO/ZH+PkLS5g8pBtXTtHFYSkyHxhhZkOAjUQHBi493DdN19vkujuFy7dz89ylrNhaxrEDu/DHy45lwqBuYUcTaVQy77aVDdKlqHXgaTNz4E/uPgsocPfNAO6+2cx6Bdv2A96I2bc4aDtIJs73aozyNE55GpcueSLuzFqwj5oa48IB+3nppRfDjpQ25yZRzOxBogMCPcysGPipu99tZtcA84iueHCPuy8OMWbSLNpYwi/nLOW11TsZ3L09d33+WKaN663b2kpGSObdtrJBuhS1U9x9U1C4PmNmyxrZtklzw4LCeBbAxIkTPZ3nezWF8jROeRqXLnluf3YlK0pW8KvPHMlnjxsYdhwgfc5Norj7JQ20zwHmJPhYaTP9YOOe/fxm3nIeeW8jXdvn8dMZY/n85EG0bqXb2krmSObdtrJBWhS17r4p+HObmT1CdDrBVjPrE4zS9gEOrJuYlLlhIpJcr6zcwW+fW8GJfVtx0cQBh95B0l46TD8o2V/NHwpX8ddXiwD42snD+MYpw+jUNi+0TCLNlcy7bWWD0ItaM+sA5Lh7afD8TODnwOPAFcDM4M/Hgl0eBx4ws9uIXig2Angr5cFFpMm27q3gutnvMbxnR64YG9FXwS1EmCO1VTUR/v7mOu54biW791VzwTH9+N5Zo+jXRSNaktmSdbetbBB6UQsUAI8E/8i1Ah5w96fMbD7wkJl9GVgPfBbA3Reb2UPAEqAG+KZWPhBJX/uqarjq/rfZX13LXZcdS/GSd8KOJAkSxkituzN30RZueWoZRTv3MWV4d26cPoZx/TqnLINIsiXjblvZIPSiNrjDzdH1tO8ETmtgn5uILgwuImksEnG+848FLNpYwqwvTGR4r3yKl4SdShIl1SO176zbxU1PLuXd9XsYWdCRv37pOKaO7KmRfxEB0qCoFZGWa+ZTy5i3eCv/fe5Y3TVMmm3tjnJueWoZcxdtoVd+G2ZecCQXTuhPq1xdBCYiH1FRKyJJ8fsXVjHrpTVcfsIgvjRlcNhxJAmSPf1gV3kVdzy3kr+9sY7WrXL4zukjueqTQ2jfWv90icjHqWcQkYS755W1/Hrecs4f35efzjhCXw+3UMmaflBRXcs9r67lrhdWU15Vw8WTBvLt00fQK79tIg8jIi2MiloRSaj7Xivi5/9ZwvRxvfnNZ48mN0cFrTRNJOI88t5Gbn16OZtKKjhtdC9umD6aEQX5YUcTkQygolZEEsLduf25lfz22ZWcMbaA2y8+RnMeW7hETj94ZeUOfjlnKUs27+XIfp259aLxnDCs++GHFJGsoaJWRA5bJOL8zxOLue/1dVw4oT8zLzhSBW0WSMT0g+VbSrl57lIKl2+nX5d23H7xeGYc1ZccjfCLSJxU1IrIYdlbUc13Zi/guWXbuPqTQ7lx+mjNoZVD2l0R4fp/vc8/39lAhzat+NHZo7n8hMG0zcsNO1rG2llWqQX7JaupqBWRZlu9vYyr7n+b9Tv38YvzjuCy4wepoJVDuu+1Im56eT9OMV88cQjfOnU4XTu0DjtWRntswUaur3Nr1U+N7xd2LJGUUlErIs3y6Hsb+a9HF9G6VQ5//8pkJg/V/Edpmi7t8xjfM5dff+ETDOreIew4GW9nWSXXP/w+FdURKogA8MOH32fK8B4asZWsoqJWROKyt6Ka/3p0EY8t2MTEQV25/ZJj6NelXdixJATNvVDsvPH96LxnpQraBCnevZ+8nJwPC1qAvJwcinfvV1ErWUVFrYg02bzFW/jZ44vZVlrJd88YyTemDtMFYVks1bfJlfr179qO6kjkoLbqSIT+XfU/m5Jd9K+RiBzSxj37+cp9b/PV/3uHzu3y+NfXTuDa00aooBVJA907tuGWzxxF27wc8tu0om1eDrd85iiN0krW0UitiDSoZF81f3hxFfe+WkSOGTdOH82VJw0hT8WsSFr51Ph+TBneQ6sfSFZTUSsiH1NWWcPf3ljHH15YRWllDZ8e34/vnjmS/l3bhx1NpFmyYbmr7h3btNjPJtIUKmpF5EPbSyv566tr+b831lFaUcPUUT25ftpoxvTpFHY0SSEzOx84B+gF/N7dnw430eHRclci2UFFrUiWc3feXLuLf8zfwJMfbKa6NsL0cb356ieHcfSALmHHkziZ2T3AucA2dx8X0z4NuB3IBf7i7jMbeg93fxR41My6Ar8BMrao1XJXItlDRa1Iltqwax//eX8zD729gbU7yslv24qLjxvAl6YMYUgPLbWUwe4F7gTuP9BgZrnA74EzgGJgvpk9TrTAvbnO/le6+7bg+U+C/TKWlrsSyR4qakWyyNod5cxdtJm5H2zhg40lAEwa3I1rThnO2Uf2oV1r3aI007n7S2Y2uE7zJGCVu68BMLPZwHnufjPRUd2DWPS2cDOBue7+bn3HMbOrgasBCgoKKCwsjCtnWVlZ3Ps0R23E+eqoStz9wzazWnasfI/C1R/d/S5VeZpKeRqnPA1LpyyQ2jwqakVasD37qnht9U4eWlTJf731PBt27Qdg/IAu/Ojs0Uwf14cB3XTxVxboB2yI+bkYmNzI9t8CTgc6m9lwd/9j3Q3cfZaZbQZm5OfnT5g6dWpcgQoLC4l3n+bYWVbJVTc9S+SjmpYcg/mfOvGgkdpU5Wkq5Wmc8jQsnbJAavOoqBVpISIRZ82OMt5dt4f3NuzmvfV7WL61FHdomwsnjezOV04ayuljC3QHsOxj9bR5PW3RF9zvAO441Jtmws0XFm8qOaigBYh4tP2TI3uFE0pEkkJFrUgG2rOviuVbSlm+tZRlW0pZsaWU5VtKKa2sAaBT21YcM7Ar08f1Ycrw7uxZs5DTT50YcmoJUTEwIObn/sCmw33T5t4mN5X27q+Oq11EMlfGFrXxXMkrkmnKK2vYureCLXsr2LBrH+t27mP9rn1s2BX9c/e+j/5B7tS2FaN7d+K8Y/pydP8uHDOwK0N7dCAn56PBucKi+gbqJIvMB0aY2RBgI3AxcGm4kUREEisji9qGruR19yXhJmu+m55YxH8WbeHccb358Yxxh94hA2XD4uf1iUSc0soaSvZVU7I/+tizv+rD5zvLqti6t4JtpZVsL61k294KyqtqD3qPVjlGv67tGNitPWcf2YdB3dszsiCf0b07UdCpDdHrelInG36XmfoZzexBYCrQw8yKgZ+6+91mdg0wj+hAwD3uvvhwj5UJ0w9KK2riaheRzJWRRS0NXMkLZGRRO/SGJz9cbObPr67j7lfXsWbmOaFmSrRUL37u7kQ8euVzxKOP6PNokVnrTk2tU1UToao2QnXMo6rGgz+Dn2sjVNf6h69XVkfYV1XLvuoa9lfVsq+qNvizJtpeVcuOPfuw15+jvKqW0orqj83pi9W+dS698tvQK78tY/t2YuqonvTKb0tBpzYUdGrLwG7t6dO5La3S5Na02bCQfSZ/Rne/pIH2OcCcRB4rE6YfVNZE4moXkcyVqUVtvFfyxuXBt9bzt/n7uXv1m8SsAoPXua7ioNca2M7rFDNe54f1u8qp27VGgMk3PfvhVekOlJTs53dLXztoWZrY92r8OE3dp/7cB3+2qLKy/XRc+PJBeRo4JDWRCGu2l+Pw4VqR181ewG+fXXnQV+R1P5vHFqVBQVr74fNokepBW01NLTwzN/q6+8c+WzK0zs2hXetc2n/4aEW71rl079iaNjU5DOrXgw5tcuncLu/DR5f2rYM/P2prm5c5y2hlw0L22fAZEyUTRmoHdK3/osiG2kUkc2VqUXvIK3kPZw3Fxeuq2VdVS+X2XYc8cEPf+jb2ZXDsPq0jtQzo4B/bx7yCfWUfzZvMpZaKspJ6jmOxPzSYwep5wQ6Vs4HMAHl5teTWlh9yO4BanBGd/cOi1QAzo0POfnLMDtqnbuYci26bY8HzD9sgJ+b12mqndevc+rf7sC14nyBnq5zgYfbR8xzIPehnI9cg78BrOUYrgza50ecHqwkeUFZWQ8eOu2NPApRFH/uIPg77Kp04JGqdwP3VtVw7ppramP9ryDXjrddfoV0Ti/N0X0MxEZ8xW2TCSG3s/POmtItI5srUovaQV/K6+yxgFsDEiRM9njXSppK6ddVuemIRf3513cfar5oy6KC5tZm87tzOskqm/Op5Kqo/GpNum5fDq986NWEjX5l8flIhUXl2llXynfp+l586qcm/y3Q/N4n4jNkiE0Zqxzdwq+eG2kUkc6XHJL34fXglr5m1Jnol7+MhZ2qWH88Y97FfQk7Q3lJ079iGWz5zFG3zcshv04q2eTnc8pmjVCBkoGz4XWbDZ8wmwwvyufyEgQe1XX7CQIYX5IeUSESSJSNHat29JhlX8oZlzcxzWvzqB58a348pw3tk5NXkcrBs+F1mw2dMhEyYfgDw8/OO5PLjB7Ngwx7GD+iiglakhcrIohaScyVvmH48Y1yLLGZjde/YRsVBC5ENv8ts+IyHKxOmHxwwvCBfxaxIC5ep0w9ERERERD6kolZEREREMp6KWhERaRYzm2Fms0pKPr7coIhIqllDi+e3JGa2Hfj4ulmN6wHsSEKc5lKexilP49IpTzplgcTnGeTuPRP4fmlPfWxSKE/jlKdh6ZQFUtjHZkVR2xxm9ra7Tww7xwHK0zjlaVw65UmnLJB+ebJFup135Wmc8jQunfKkUxZIbR5NPxARERGRjKeiVkREREQynorahs0KO0AdytM45WlcOuVJpyyQfnmyRbqdd+VpnPI0Lp3ypFMWSGEezakVERERkYynkVoRERERyXhZWdSa2TQzW25mq8zshga2mWpmC8xssZm9GM++Kc5TZGYfBK+9newsZvaD4FgLzGyRmdWaWbemfo4U50nouWlins5m9oSZLQx+V19q6r4h5Anj/HQ1s0fM7H0ze8vMxjV13xDyJPz8ZAv1sc3Poj5Wfexh5snuPtbds+oB5AKrgaFAa2AhMLbONl2AJcDA4OdeTd03lXmC50VAj1SdmzrbzwCeD/PcNJQn0ecmjt/Vj4BfBc97AruCbcP6u1NvnhDPz6+BnwbPRwPPhfn3p6E8yTg/2fI4nD4txL8H9eZJ9N+Dw+nTwjo3DeVJ9LmJ43elPlZ9bIOPbBypnQSscvc17l4FzAbOq7PNpcC/3X09gLtvi2PfVOZJtHg/3yXAg83cN9l5kqEpeRzINzMDOhLt4GqauG8q8yRDU/KMBZ4DcPdlwGAzK2jivqnMI82nPvbwssRSH6s+Nt48Wd3HZmNR2w/YEPNzcdAWayTQ1cwKzewdM7s8jn1TmQei/0E9HbRfnYIsAJhZe2Aa8HC8+6YoDyT23DQ1z53AGGAT8AFwnbtHmrhvKvNAOOdnIXABgJlNAgYB/Zu4byrzQOLPT7ZQH3t4WQD1sY3kUR/beJ6s7mNbJeJNMozV01Z3CYhWwATgNKAd8LqZvdHEfVOWx91XAFPcfZOZ9QKeMbNl7v5SErMcMAN41d13NWPfVOSBxJ6bpuY5C1gAnAoMC477chP3TVked99LOOdnJnC7mS0g+g/Ae0RHNcI6Pw3lgcSfn2yhPvbwshygPrb+POpjG8+T1X1sNo7UFgMDYn7uT/T/sOpu85S7l7v7DuAl4Ogm7pvKPLj7puDPbcAjRL8OSGaWAy7m4K+hwjo3DeVJ9Llpap4vEf0a0919FbCW6DyisM5PQ3lCOT/uvtfdv+Tu44HLic5BW9vEz5LKPMk4P9lCfezhZTlAfaz62LjzZH0f6wmcoJsJD6L/R74GGMJHE5uPqLPNGKJzQFoB7YFFwLim7JviPB2A/GCbDsBrwLRkZgm260x03lCHePdNYZ6Enps4fld3AT8LnhcAG4EeIf7daShPWOenCx9dRHEVcH+Yf38ayZPw85Mtjyaed/Wx6mOb+7tSH6s+tuFMh/sGmfgAzgZWEL1q78dB29eAr8Vs8wOiV8MuAr7d2L5h5SF6xeHC4LE4EXmamOWLwOym7BtWnmScm6bkAfoCTxP9mmURcFmY56ehPCGenxOAlcAy4N9A15DPT715knV+suXRxP9u1ceqj407D+pj1cc28tAdxUREREQk42XjnFoRERERaWFU1IqIiIhIxlNRKyIiIiIZT0WtiIiIiGQ8FbUiIiIikvFU1IqIiIhIxlNRKyIiIiIZT0WtZAUzKzOzLmb2jRQca7iZfVCnrY2ZrTWzsck+vohIqqmPlXSgolaySRcg6R0u0dsGDjCz2P++rgZedPclKTi+iEgYuqA+VkKkolYyjpn9KnY0wMx+ZmbfM7Pvmtmi4PHtenadCQwzswVm9utg30fN7B0zW2xmV8e853+Z2TIze8bMHjSz78e8dpmZvRW8z5/MLDf2IO4eAdYDg4Pt2wHfA36WsJMgIpIk6mMlU6molUw0G/hczM8XAW8DXwImA8cDV5nZMXX2uwFY7e7j3f0HQduV7j4BmAhca2bdzWwi8BngGOCC4DUAzGxMcOwp7j4eqAU+X0/GpcDo4Pk3gcfdvah5H1dEJKXUx0pGahV2AJF4uft7ZtbLzPoCPYHdwHjgEXcvBzCzfwOfAN47xNtda2afDp4PAEYQ7bAfc/f9wXs9EbP9acAEYL6ZAbQDttXzvkuBUWb2EtEO9/gDL5jZfOBNoBPwgrv/tYkfXUQk6dTHSqZSUSuZ6l/AhUBvoqMKuY1v/nFmNhU4HTjB3feZWSHQFrDGdgPuc/cbD/H2S4FTgeuAv7v71uCYA4A33f2a4Ofnzex+d6+NN7+ISBKpj5WMo+kHkqlmAxcT7XT/BbwEnG9m7c2sA/Bp4OU6+5QC+TE/dwZ2B53taD76P/1XgBlm1tbMOgLnxOzzHHChmfUCMLNuZjaonnxLgUnAlcCvY9onAO/E/LwPiDTxM4uIpIr6WMk4GqmVjOTui80sH9jo7puBzWZ2L/BWsMlf3P29OvvsNLNXzWwRMBf4CfA1M3sfWA68EWw338weBxYC64jOJSsJXltiZj8Bng6uvK0m+tXXujoRlwNHAj9295KY9gnAPwHM7Ghgvbv74Z8REZHEUR8rmcj0uxb5ODPr6O5lZtae6AjF1e7+bgLedw5QBFQSvQDif9y99HDfV0Qkk6iPlWRQUStSDzN7ABhLdP7Xfe5+c8iRRERaDPWxkgwqakVEREQk4+lCMRERERHJeCpqRURERCTjqagVERERkYynolZEREREMp6KWhERERHJeCpqRURERCTjqagVERERkYynolZEREREMt7/BzcWavoaPU6HAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(1,2, squeeze=True, figsize=(10,3.5))\n", "df = df1[df1['VD']>0.6]\n", "fig.tight_layout(pad=3.0)\n", "x = np.linspace(.6, 0.95, 1000)\n", "y = [f3(x1) for x1 in x]\n", "axs[1].set_yscale('log')\n", "axs[0].set_title('V-I characteristic of IN4001 diode')\n", "axs[0].set_title('V-I characteristic (log scale)')\n", "for ax in axs:\n", " \n", " ax.plot(x, y)\n", " dfax = df.plot('VD', 'ID', kind='scatter', ax=ax)\n", " # For some reason labels have to be set on the pandas plot axes object\n", " dfax.set_ylabel('current $I_D$ (A)')\n", " dfax.set_xlabel('voltage $V_D$')\n", " dfax.grid()\n", " " ] }, { "cell_type": "code", "execution_count": 32, "id": "engaging-brunswick", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/plain": [ " direc: array([[0.00000000e+00, 1.00000000e+00],\n", " [1.39272661e-13, 1.52004189e-08]])\n", " fun: 7.101803368426422e-05\n", " message: 'Optimization terminated successfully.'\n", " nfev: 79\n", " nit: 2\n", " status: 0\n", " success: True\n", " x: array([4.53602474e-11, 3.00098838e-02])" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "initial_guess = crude_result[1:]\n", "result = optimize.minimize(sumsq, initial_guess, args=(df1[df1['VD']<0.6],), method='Powell')\n", "f3 = lambdify(vd, expr1.subs([(Is, result.x[0]), (k, result.x[1])]).args[0],\"numpy\")\n", "result\n" ] }, { "cell_type": "code", "execution_count": 40, "id": "fancy-hundred", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArUAAADsCAYAAABqvl5XAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABEtElEQVR4nO3deXxU5dn/8c+VhH1fJLIvgiAgokTUqm3cccXW1qqtW31KN1vbp4u2davWn3bRKtVWrVrLU6u1tQIq1j0iiooLCmGXNewEAmRf5vr9MQcdQhIyITNzJvm+X695MXPPWb5zEm+vnLnPfczdERERERFJZxmpDiAiIiIicqBU1IqIiIhI2lNRKyIiIiJpT0WtiIiIiKQ9FbUiIiIikvZU1IqIiIhI2lNRK3EzsyFm5maWleoszcHM8s0stwnrfc3MXmziPk83s+kxr93MhjdlW8lkZjeb2d8buex/zGxSojOJiIiAitoWxcxeMLNb6mifbGab6ipC06WYqk9z5Hf3Me6et5/97FPIu/tj7n56E3f7/4A7mrhuurgDuC3VIUREpHVQUduyPApcamZWq/1S4DF3r05+pIal8mxvqvZtZkcD3dz97VTsP1nc/V2gq5nlpDqLiIi0fCpqW5bpQE/gxD0NZtYDOAeYFu/GzKyDmd1pZmvMbKeZzTGzDjGLfM3M1prZNjP7Zcx6E81srpkVmdlGM7vXzNrGvO9m9j0zWw4sD9ruMbN1ZrbLzN43s9jPkGlmvzCzT8xsd/D+QDObHSzykZkVm9lXg+XPMbP5wf7fMrNxMdtabWbXmtnHQImZZQVtp8Zkfy/IsdnM7gpW3bOvomBfx5nZFWY2J2bbY8zsJTPbHqz7i3oO7ZnA6w0c925mNs3MtgbH/nozy4g5FncGx3yVmV3d0FCQ4LOuD47bUjM7paFjur+fRR3bPzY4xkVm9lEdwzjygLPrW19ERKS5qKhtQdy9DHgSuCym+UJgibt/1IRN/h6YAHyOaLH8MyAS8/4JwEjgFOBGMzssaK8BfgT0Bo4L3v9urW2fDxwDjA5ezwPGB/v5B/AvM2sfvPe/wMXAWUBX4BtAqbt/Pnj/CHfv7O7/NLOjgEeAbwG9gAeAmWbWLmbfFxMttLrXcfb6HuAed+8KHEL0eALs2Vf3YF9zY1cysy7Ay8B/gX7AcOAV6nY4sLSe9wD+CHQDhgFfIPrzvDJ475tEi+LxwFFEj2OdzGwkcDVwtLt3Ac4AVgdv13lMg/ca+lnEbr8/8Bzw62DZnwBPmdlBMYstBo5o4LOKiIg0CxW1Lc/fgK/EnFG9LGiLS3Bm8BvANe6+3t1r3P0td6+IWexX7l4WFMwfERQv7v6+u7/t7tXuvppoYfmFWru43d23B4U47v53dy8M1rkTaEe0YAb4H+B6d1/qUR+5e2E90b8JPODu7wSZ/wZUAMfGLDPV3dft2XctVcBwM+vt7sVxDBE4B9jk7ne6e7m773b3d+pZtjuwu643zCwT+Crw82Abq4E7iQ4hgegfKfe4e4G776Dhcbk1RI/jaDNr4+6r3f2T4L16j+l+fhaxvg7McvdZ7h5x95eA94gWynvsDj6viIhIQqmobWHcfQ6wFZhsZsOAo4mebdtzlX9x8Kj3K+VAb6A98EkDy2yKeV4KdA72c6iZPWvRi9N2Eb0oqnetddfFvjCzH5vZ4mCYQxHRM5V71hm4nxyxBgM/Dr4OLwq2NZDo2dM6913LVcChwBIzm2dm5zRyv/Fk3AF0qee93kBbYE1M2xqgf/C8H3vnr/ezuPsK4IfAzcAWM3vCzPYch3rz7udnEWsw0T+gYo/1CUDfmGW6AEX1ZRQREWkuKmpbpmlEz9BeCrzo7pvh06v8OwePN/azjW1AOdGv4OP1Z2AJMCL4Gv8XQO2L13zPk6DAvpboWcge7t4d2Bmzzro4cqwDbnP37jGPju7+eF37rs3dl7v7xUAf4DfAv82sU0PrNCHjx0QL57psI3q2eHBM2yBgffB8IzAg5r2BDe3I3f/h7icE23Oin6nevI34WcRaB/xfrWPdyd1jzx4fRvQsvoiISEKpqG2ZpgGnEv0qPu6hBwDuHiE6NvUuM+sXXFh0XK2xqfXpAuwCis1sFPCdRixfTfQMc5aZ3Uh0nOceDwG3mtkIixpnZr2C9zYTHXu6x1+Ab5vZMcGynczs7GDM636Z2dfN7KDg8xcFzTVBtkitfcV6FjjYzH5oZu3MrIuZHVPPsrPYdzgGAO5eQ3Qc723BNgYTHf+6Z27YJ4FrzKy/mXUnWoDW91lGmtnJwc+sHCgLPgvUf0z397OI9XfgXDM7I/j9aG9muWYWW3R/AXi+vowiIiLNRUVtCxSMw3wL6ATMPIBN/QRYQPTCoe1Ez/I15nfmJ8AlRMdT/gX4536Wf4Fo4bOM6Fft5ez9tfpdRIu5F4kWyw8De8YM3wz8Lfj6+0J3f49oMX8v0a/5VwBXNCLzHpOAfDMrJnrR2EXBGNlSonOuvhnsK3aMLu6+GzgNOJfosIzlwEl17cDdPwB2NlD0fh8oAVYCc4gOH3kkeO8vwXH4GPiQaIFczWfFaqx2RMfcbgsy9SF61hzqP6b7+1nEfo51wORgm1uD5X5K8Dti0anLSoKpvURERBLK3Pf3raqINDczOx34rruff4DbORO4390H73fhJDOzp4CH3X1WqrOIiEjLp6JWJI0Es1qcRPQMazbwFPC2u/8wlblERERSTUWtSBoxs45Eb9wwiugY2eeITru2K6XBREREUkxFrYiIiIikPV0oJiIiIiJpT0WtiIiIiKS9rFQHSIbevXv7kCFD4lqnpKSETp06JSZQnMKSRTn2FZYsYckB4cmSqhzvv//+Nnc/KOk7TiH1scqRKGHJEpYcEJ4soexj3b3FPyZMmODxeu211+JeJ1HCkkU59hWWLGHJ4R6eLKnKAbznIej3kvlQH9s8lGNfYckSlhzu4ckSxj5Www9EREREJO2pqBURERGRtKeiVkRERETSnopaEREREUl7SStqzWygmb1mZovNLN/Mrgnabzaz9WY2P3icFbPOz81shZktNbMzYtonmNmC4L2pZmbJ+hwi0joUlVayZNMuKqprUh1FRKTFiUSceau3N+s2k3mmthr4sbsfBhwLfM/MRgfv/cHdxwePWQDBexcBY4BJwJ/MLDNY/s/AFGBE8JiUxM8hIq1A3tKtTLr7DdbvKEt1FBGRFmXRhl1c+MBcvnL/XBau39ls203aPLXuvhHYGDzfbWaLgf4NrDIZeMLdK4BVZrYCmGhmq4Gu7j4XwMymAecDzycwvoi0MkWllQB079g2xUlERFqGXeVV3PXiMqbNXU33jm357ZfHMbpv12bbfkpuvmBmQ4AjgXeA44Grzewy4D2iZ3N3EC14345ZrSBoqwqe124XEWk2RWVVAHRt3yruUSMikjDuzvT567ntuSUUllTwtWMG8ZPTRzb7SYOk99Zm1hl4Cvihu+8ysz8DtwIe/Hsn8A2grnGy3kB77f1MITpEgezsbPLy8uLKWVxcHPc6iRKWLMqxr7BkCUsOCE+WA82Rv7yCDlkw543ZzRdKRKSVWbJpFzdOz+fd1ds5YmB3/nrF0Rw+oFtC9pXUotbM2hAtaB9z9/8AuPvmmPf/AjwbvCwABsasPgDYELQPqKN9L+7+IPAgQE5Ojufm5saVNS8vj3jXSZSwZFGOfYUlS1hyQHiyHGiOmZvn03Pn9lB8FhGRdLO7vIq7X17Oo2+tpmv7LO740uFcmDOQjIzEXduftKI2mKHgYWCxu98V0943GG8L8EVgYfB8JvAPM7sL6Ef0grB33b3GzHab2bFEhy9cBvwxWZ9DRFqHnWVVdO/YJtUxRETSirsz86MN/Pq5xWwrruDiiYP46ekj6dEp8dcnJPNM7fHApcACM5sftP0CuNjMxhMdQrAa+BaAu+eb2ZPAIqIzJ3zP3ffMrfMd4FGgA9ELxHSRmIg0q6KyKrp1UFErItJYyzbv5sYZC3l75XbGDejGQ5flcMTA7knbfzJnP5hD3eNhZzWwzm3AbXW0vweMbb50IiJ721lWxaHZnVMdQ0Qk9Iorqpn6ynIembOKTu2yuO2LY7no6EFkJnCoQV10Wa+ISB2KSnWmVkSkIe7Osx9v5NfPLWLzrgouOnogP5s0ip5JGGpQFxW1IiK1uDtFpZX00By1IiJ12lAc4WsPvcNbnxQytn9X/vz1CRw1qEdKM6moFRGpZXdFNdURV1ErIlJLSUU1U19dzkNvltGpXRW3Th7DJccMTvpQg7qoqBURqaWoJHrjBc1+ICIS5e48v3ATtz67iI07yzmxfxZ/uDKX3p3bpTrap1TUiojUsj24RW6qxoWJiITJJ1uLuXlmPm8s38bovl2595Ij2b3q41AVtKCiVkRkHzuCora5b+EoIpJOSiuruffVFfzljZW0b5PJr84bw9eOGURWZgZ5q1Kdbl8qakVEaikKitoeGn4gIq2Qu/NC/iZueWYRG3aWc8FRA7juzFEc1CVcZ2ZrU1ErIlLLjmBMrS4UE5HWZtW2Em6amc/sZVsZdXAX7r7oSCYO7ZnqWI2iolZEpJYdpZVkGHTVPLUi0kqUVdbwp7wVPPD6StplZXDjOaO57LjBZGVmpDpao6moFRGpZUdpJd06tAnFFDWpYGbnA2cDfYD73P3F1CYSkURxd15atJlfPbOI9UVlfPHI/vz8zFH06do+1dHipqJWRKSWHaVVLW7ogZk9ApwDbHH3sTHtk4B7gEzgIXe/w92nA9PNrAfwe0BFrUgLtKawhJtn5vPa0q0cmt2Zf045lmOG9Up1rCZTUSsiUktRaWVLnKP2UeBeYNqeBjPLBO4DTgMKgHlmNtPdFwWLXB+8LyItSHlVDX/K+4T7X/+ENhnG9WcfxuWfG0KbNBpqUBcVtSIitWwvqaJ/9/T76q0h7j7bzIbUap4IrHD3lQBm9gQw2cwWA3cAz7v7B8lNKiKJ9Mrizdz8TD7rtpdx3hH9+OXZh5GdhkMN6qKiVkSklqLSSsb065rqGMnQH1gX87oAOAb4PnAq0M3Mhrv7/bVXNLMpwBSA7Oxs8vLy4tpxcXFx3OskSliyKMe+wpIlLDmg6Vm2lkZ4bHEl87fW0K+Tce3R7Tms104Wf/A2i5OYI5FU1IqI1LKjtLK1zFFb15Vw7u5TgakNrejuDwIPAuTk5Hhubm5cO87LyyPedRIlLFmUY19hyRKWHBB/lvKqGh54fSV/emsFmRnGL84axZXHDz3goQZhOiZ7qKgVEYlRVllDeVWEHq3jFrkFwMCY1wOADSnKIiLN7LWlW7h5Zj5rCks5Z1xffnn2YfTt1iHVsRJGRa2ISIwdn95NrFUUtfOAEWY2FFgPXARcktpIInKg1m0v5dZnF/Hios0cclAnHvufYzh+eO9Ux0o4FbUiIjF2tNBb5JrZ40Au0NvMCoCb3P1hM7saeIHolF6PuHt+CmOKyAGoqK7hL7NXcu9rKzCMayeN4qoThtI2K71nNWgsFbUiIjGKSqO3yO3ews7UuvvF9bTPAmYlOY6INLPXl23lphkLWV1YylmHH8z1Z4+mX/eWO9SgLipqRURibC+Jnqnt2TrG1IpImltfVMatzyziv/mbGNa7E9O+MZHPH3pQqmOlhIpaEZEYRcHwgxZ48wURaUEqqyM8NGclf3xlBY7z0zNG8j8nDqVdVmaqo6WMiloRkRiFJa3qQjERSUNvLN/KTTPzWbm1hDPGZHPDOaMZ0KNjqmOlXNJGDpvZQDN7zcwWm1m+mV0TtPc0s5fMbHnwb4+YdX5uZivMbKmZnRHTPsHMFgTvTTWzuuZaFBGJ27biCnp0bJP2t4sUkZZn484y7ptfzqUPv0tNxPnrlUfzwKU5KmgDyTxTWw382N0/MLMuwPtm9hJwBfCKu99hZtcB1wHXmtlootPLjAH6AS+b2aHuXgP8meidbN4meoHDJOD5JH4WEWmhCosr6dW5XapjiIh8qrI6wiNvrmLqK8upqq7hx6cdyjc/P4z2bVrvUIO6JK2odfeNwMbg+e7g3uL9gclEp5kB+BuQB1wbtD/h7hXAKjNbAUw0s9VAV3efC2Bm04DzUVErIs2gsLiSXrpITERC4q0V27hhxkI+2VrCaaOzOb33Lr5yyohUxwqllHy/ZmZDgCOBd4DsoODdU/j2CRar657k/YNHQR3tIiIHbFtxBb276EytiKTWpp3lfP/xD7nkoXeoqnEeuSKHv1yWw0EdNTSqPkm/UMzMOgNPAT90910NDIet857kDbTX3s8UokMUyM7OJi8vL66cxcXFca+TKGHJohz7CkuWsOSA8GRpao5NRSUM7VgRis8gIq1PVU2ER99czd0vL6Mq4vzw1BF8+wuHaKhBIyS1qDWzNkQL2sfc/T9B82Yz6+vuG82sL7AlaK/vnuQFwfPa7Xtx9weBBwFycnI8Nzc3rqx5eXnEu06ihCWLcuwrLFnCkgPCk6UpOSqrI5T+93nGjxxGbq6+3hOR5Jr7SSE3zljI8i3FnDyqDzefO4ZBvXQRWGMlc/YDAx4GFrv7XTFvzQQuD55fDsyIab/IzNoF9yUfAbwbDFHYbWbHBtu8LGYdEZEmKyypANCFYiKSVFt2lXPNEx9y8V/epqyqhocuy+GRK45WQRunZJ6pPR64FFhgZvODtl8AdwBPmtlVwFrgKwDunm9mTwKLiM6c8L1g5gOA7wCPAh2IXiCmi8RE5IAVFkfnqO3VWReKiUjiVddEePSt1dz98nIqayL84JQRfDdXQw2aKpmzH8yh7vGwAKfUs85twG11tL8HjG2+dCIi0YvEAHrrTK2IJNi7q7Zz44yFLNm0m9yRB3HzuWMY0rtTqmOlNd1RTEQksC04U9tbZ2pFJEG27C7njllL+M+H6+nfvQMPXDqB00dno/tIHTgVtSIigcJijakVkcSoronwf2+v4a4Xl1FRHeHqk4bzvZOG06Gthho0FxW1IiKBwpJK2rfJoJP+JyMizei91du5fnp0qMGJI3rzq/PGMOygzqmO1eKoqBURCWzbXUGvTu30NaCINIttxRXcPmsJT31QQL9u7fnz145i0tiD1cckiIpaEZHAtpJKjacVkQNWE3Eee2cNv3thKeVVNXwn9xC+f/JwOrZV2ZVIOroiIoHC4goO7to+1TFEJI29v2YHN85YSP6GXZwwvDc3nzeG4X001CAZVNSKiAS2FVcwpl/XVMcQkTRUWFzBb/67hCffK+Dgru2575KjOOtwDTVIpriLWjPrBJTH3AhBRCTtRSJOYXFlKGY+SGU/G+z7T0AlkOfujyU7g0g6qYk4/3h3Lb9/YSklFdV86/PD+MEpI+jUTucNk22/t8k1swwzu8TMnjOzLcASYKOZ5ZvZ78xMN0gXkbS3o7SS6oiT3SX5RW2i+1kze8TMtpjZwlrtk8xsqZmtMLPrguYvAf92928C5x3IfkVauvnrijj/vje5YfpCRvftyvPXnMjPzzpMBW2KNOaovwa8DPwcWOjuEQAz6wmcBNxhZk+7+98TF1NEJLE274rOUZudmjG1ie5nHwXuBabtaTCzTOA+4DSgAJhnZjOBAcCCYDF9IydSh+0llfzuhSU8MW8dB3Vux9SLj+TccX011CDFGlPUnuruVbUb3X078BTwlJm1afZkIiJJtHl3OQB9UlPUJrSfdffZZjakVvNEYIW7rwQwsyeAyUQL3AHAfBr4Ns/MpgBTALKzs8nLy4srU3FxcdzrJEpYsijHvsKSZU+OiDuzC6r517JKyqrhjMFZTB6eSYcdy3j99WVJzZJqYckRa79FbV0dLYCZHQ9c4u7fq28ZEZF0sWVXtKjN7pr84Qcp6mf7A+tiXhcAxwBTgXvN7GzgmfpWdvcHgQcBcnJyPDc3N66d5+XlEe86iRKWLMqxr7BkycvLo+fw8dwwfSEfFZRyzNCe3DJ5LCMP7pKSLGE5JmHIESuuQR9mNh64BLgQWAX8JwGZRESSbs/wg4NSMKY2VhL72bq+J3V3LwGuTNA+RdJOUWklf8uvIO+FN+nduR13f3U8k8f301CDENpvUWtmhwIXARcDhcA/AXP3kxKcTUQkaTbvKqdnp7a0y0r+LXJT1M8WAANjXg8ANiRwfyJpJRJx/vX+Ou54fgk7y6q58nND+eFpI+jaXiMuw6oxZ2qXAG8A57r7CgAz+1FCU4mIJNnmXRX0Sd1Z2lT0s/OAEWY2FFhPtKi+JMH7FEkLC9fv5PrpC5m/roijh/TgvP7lXHru6FTHkv3Y75RewAXAJuA1M/uLmZ1C3V9biYikrS27y1M18wEkuJ81s8eBucBIMysws6vcvRq4GngBWAw86e75zbVPkXS0s7SKG6Yv5Nx751Cwo5S7LjyCJ791HAO7NKZcklRrzIViTwNPBxNynw/8CMg2sz8DT7v7i4mNKCKSeJt3lTMqBRd9QOL7WXe/uJ72WcCsA9m2SEsQiThPfVDAHc8vYUdpJZcfN4QfnXYo3TpoqEE6afSFYsHFA48BjwVzJ34FuA5QUSsiaa26JsLW3RWpPFMLqJ8VSYX8DTu5cUY+76/ZwYTBPZg2eSJj+nVLdSxpgsZcKGbu7rFtwdyJDwSPOpcREUkXhSWVRDxlc9SqnxVJgZ1lVfzhpWVMm7uaHh3b8rsvj+OCowaQkaERlumqUXcUM7OngBnuvnZPo5m1BU4ALid6N5xHE5JQRCTBNu+ZozZ1F4qpnxVJEnfnPx+s5/bnF7O9pJKvHzuYH582km4dNdQg3TWmqJ0EfAN4PLhKtghoD2QS/UrsD+4+P1EBRUQSLcW3yAX1syJJsXjjLm6csZB5q3cwfmB3Hr1yImP7a6hBS9GYC8XKgT8Bfwpu09gbKHP3ogRnExFJik/P1KaoqFU/K5JYu8qruPul5fxt7mq6ts/iNxcczlcmDNRQgxYmrjkq3L3K3Tc2paM1s0fMbIuZLYxpu9nM1pvZ/OBxVsx7PzezFWa21MzOiGmfYGYLgvemmm7pISIHaMuucsygd+e2qY5yQP2siOzN3Zn+4XpOufN1/vrWKi46eiCv/SSXrx49SAVtCxTXbXIP0KPAvcC0Wu1/cPffxzaY2WiiE4GPAfoBL5vZoe5eA/wZmAK8TXQqmknA84mNLiIt2Yad5WR3aU9WpuaiFGkplm7azQ0zFvLuqu0cMaAbD1+ew7gB3VMdSxIoaUWtu882syGNXHwy8IS7VwCrzGwFMNHMVgNd3X0ugJlNIzqno4paEWmyDUVl9Oue2um8RKR5FFdUc8/Ly3jkzdV0aZ/F7V86nK/maKhBa9CkoraZp5a52swuA94DfuzuO4D+RM/E7lEQtFUFz2u315VxCtEzumRnZ5OXlxdXqOLi4rjXSZSwZFGOfYUlS1hyQHiyxJNjxcZShnbNCEXuPTSFl0h83J1nPt7Ibc8tYsvuCi46eiA/PWMUPTulfliRJEfcRa2ZXQFcamYlwFrg2mDC8Kb4M3Ar4MG/dxK9AriuP6e8gfZ9G90fBB4EyMnJ8dzc3LiC5eXlEe86iRKWLMqxr7BkCUsOCE+WxuaIRJyil/7L+JGDyc09LPHBGqGZ+1mRFm/55t3cOCOfuSsLObx/N+7/+gSOHNQj1bEkyZpypjbX3U8BMLNxwE3Az5qyc3ffvOe5mf0FeDZ4WQAMjFl0ALAhaB9QR7uISJNsK6mgsiZC/+4dUh0lVrP1syItWUlFNVNfWc7Dc1bRqV0Wvz5/LBdPHESmhhq0Sk0panfteeLuH5tZk8flmllfd98YvPwisGdmhJnAP8zsLqIXio0A3nX3GjPbbWbHAu8AlwF/bOr+RUQ2FEWn8+rXLVRFbbP1syItkbvz3IKN/PrZxWzaVc5Xcwbys0kj6dU5ZTdQkRBoSkd5rJlNBd4PHo0arGJmjwO5QG8zKyB65iHXzMYTHUKwGvgWgLvnm9mTwCKgGvheMPMBwHeIzqTQgegFYrpITESabP2OMgD69whVUdukflakNVixpZibZ+YzZ8U2xvTryn1fO4oJgzXUQJpQ1Lr7RDMbAEwALgSGNHK9i+tofriB5W8Dbquj/T1gbKPCiojsx4aiaFHbL0TDD5raz4q0ZKWV1fzx1RU89MZK2rfJ5JbJY/jaMYM11EA+td+i1sz+BCwAPgYWuPsudy8gOr51RoLziYgk1PqiMjq3y6Jr+9R9w69+VqR+7s5/F27i1mcXsWFnOV+eMIDrzhxFbw01kFoa04vPB8YRvRnCWDPbzd6d7xOJiyciklh75qhN8c0J56N+VmQfm0oiXPbIu7yxfBujDu7C1IuPJGdIz1THkpDab1EbTI31qeArsXHA4cDZgDpbEUlb64vKUj7zgfpZkb2VVdZw72vLeWBOGR3aVnHTuaO59NjBuuufNKgpY2r3fCU2q/njiIgk14aiMsYP7J7qGHtRPyutlbvz4qLN3PLMItYXlfG5flncfeUX6NNFd/yT/dM0MSLSapVWVrOjtCpUF4mFgZmdT/QMcR/gPnd/MbWJpDVYva2Em5/JJ2/pVkZmd+GfU46lbO2CuAvawuIKCnaUMaBHB03x1cqoqBWRVmvd9ujMBwPCNZ3XATGzR4BzgC3uPjamfRJwD5AJPOTud9S3DXefDkw3sx7A7wEVtZIw5VU1/Om1Fdz/+kraZmVwwzmjuey4wbTJzCBvbXzbmjF/Pdc+9TFtMjKoikT47QXjOG98/8QEl9Bp9OAUM/tNY9pERNLFmsLonWeH9OqU4iRRzdTPPgpMqrWNTOA+4ExgNHCxmY02s8PN7Nlajz4xq14frCeSEC8v2sypd73O1FdXcObhB/Pqj7/AVScMpU0Txs4WFldw7VMfU14VYXdFNeVVEX721McUFlckILmEUTy/NafV0XZmcwUREUm2tdtLARjcq2OKk3zqgPtZd58NbK/VPBFY4e4r3b2S6IVnk919gbufU+uxxaJ+Azzv7h806ZOINGBtYSlXPTqP/5n2Hh3aZPL4N4/lnouOpE/Xpo+dLdhRRk3E92qriTgFwQ1WpOVrzDy13wG+Cwwzs49j3uoCvJWoYCIiibamsJSu7bPo3jG1N+xKQj/bH1gX87oAOKaB5b8PnAp0M7Ph7n5/7QXMbAowBSA7O5u8vLy4AhUXF8e9TqKEJUtLzVFRHaG0soaObTMxM2atquLZlVVkGXx1ZFtOGxyhYt0C8tbtu248WUora/jB6Kp92tcvfp8dn2Qe0GcIy88GwpMlLDliNWZM7T+I3or2duC6mPbd7l77bICISNpYs72UweEYepDofrauSXi9jrboG+5TgakNbTCYhuxBgJycHM/NzY0rUF5eHvGu01T7u3AomVnqU1hcwbtz53B4znFJubipoWPSnMfjxukLmPb2ZwNjO7fLoriimnOP6McvzzqMg7s1fGY2niz3vbqcOxcs26f9p6cP4nu5I+LKfSA5Ei0sWcKSI1Zj5qndCew0syuBLxG9XWMWgJnh7rckNKGISIKsLSxhTP9uqY6RjH62ABgY83oAsOEAt5kW0uHCoT0Zf3BYFT/6zasJz5isY7Ji8+69ClqA4opqfnfB4Xzl6EHNvr/6xs5qTG3rEc+Y2unAZKAaKIl5iIikneqaCAU7yhjcMzTjaSFx/ew8YISZDTWztkTvXDazGbYbaulw4VBsxhr3hGdM5jF5benmOttLKqubfV8iEN+UXgPcfdL+FxMRCb8NReVURzxMF4lBM/SzZvY4kAv0NrMC4CZ3f9jMrgZeIDql1yPunn/AaUOuYEcZbTIyKCfyaVubjAwKdpSFZv7SZGdM1v7ylm7hwdmr63yvd+fE3Eihvvxh+VlL4sVT1L5lZoe7+4KEpRERSZI126MnQAf1DMWY2j0OuJ9194vraZ9FK7tD2YAeHaiKRPZqq4pEQjUvcbIzJnp/BTtKufXZRbyQv7nOb0EMOO6QXs2yr9rOGHMwv3tx3zG1Z4w5OCH7k/CJZ/jBCcAHZrbUzD42swW1rtIVEUkbawpDN50XqJ9tVr06t+O3F4yjfZsMurTLon2bDH57wbhQnbmLzZhplvCMiTomFdU13PfaCk6963VeX7aVn54xkhf/9/NMvWg8bTOhXWYGbTPhnovGJ+yzDc/uwmXH7T1W97LjBjE8u0tC9ifhE8+ZWs1JKyItxtrtpbTNyuDgA5gXMwHUzzaz88b35/jhvUN929Q9Gd+dO4c3zzsh4Rmb+5jMXraVm2fms3JbCZPGHMwN546mf3Dr6WQf/1smH85lxw5h/roixg/sroK2lYmnqF0LfA0Y5u63mNkg4GBgTUKSiYgk0KptJQzq2ZGMjLpmu0oZ9bMJ0Ktzu1AWs7F6dW5HhzaZScvZHMdkQ1EZv35uEbMWbGJIr448euXR5I7ss89yyT7+w7O7qJhtpeIpav8ERICTgVuA3cBTwNEJyCUiklCfbCnm0PD9j0/9rIReZXWEh+esYuory3Gcn5x+KN/8/DDaZR3YDQ5EDlQ8Re0x7n6UmX0I4O47gqlhRETSSmV1hDXbSznr8L6pjlKb+lkJtTdXbOPGGQv5ZGsJp4/O5oZzRjMwXNPiSSsWT1FbZWaZBHehMbODgEjDq4iIhM+awhJqIs7wPp1THaU29bMSSpt2lvPr5xbx7McbGdSzI49ckcPJo7JTHUtkL/EUtVOBp4E+ZnYb8GXg+oSkEhFJoBVbigHCWNSqn5VQqaqJ8Nc3V3H3y8upiTg/OvVQvvWFYbRvo6EGEj6NLmrd/TEzex84hehUc+e7++LGrm9mjwDnAFvcfWzQ1hP4J9FbQq4GLnT3HcF7PweuAmqAH7j7C0H7BOBRoAPRORevcfd672EuIlLbnqJ22EGhmqP2gPtZkeb01ifbuGlGPsu3FHPKqD7cdO4YBoVrCjyRvTSqqDUzI3qnmyXAkibu61HgXmBaTNt1wCvufoeZXRe8vtbMRhO9jeMYoB/wspkd6u41wJ+BKcDbRIvaScDzTcwkIq3Qiq3F9O/egY5t4/myKrGaqZ8VOWA7yiP84PEPmfnRBgb27MBDl+Vw6mgNNZDwa1SP7u5uZtOBCU3dkbvPNrMhtZonE72dI8DfgDzg2qD9CXevAFaZ2QpgopmtBrq6+1wAM5sGnI+KWhGJwydbizkkZEMPmqOfFTkQVTUR/vbWan7/RhkRq+AHp4zgu7mHaKiBpI14TlO8bWZHu/u8Ztx/trtvBHD3jWa2Z4K7/kTPxO5RELRVBc9rt4uINEok4nyypYSJExNzq84DlIh+VmS/3llZyI0z8lm6eTfjemcy9YoTGdI7XMNzRPYnnqL2JOBbZrYGKCE63svdfVwCctU1G7o30L7vBsymEB2mQHZ2Nnl5eXEFKC4ujnudRAlLFuXYV1iyhCUHhCdLfTm2lUUoq6ohUrSevLwtyQ/WsGT2syJs2V3O7bOW8PSH6+nfvQMPXjqBNlsWq6CVtBTPmNpv0/x3tdlsZn2Ds7R9gT3/hykABsYsNwDYELQPqKN9H+7+IPAgQE5Ojufm5sYVLC8vj3jXSZSwZFGOfYUlS1hyQHiy1JfjlcWb4fX3OOfECeQM6Zn8YPVIYD8rso/qmgjT5q7hDy8to6I6wtUnDed7Jw2nQ9tM8rZqSLekp3jG1P7B3Zt7rNdM4HLgjuDfGTHt/zCzu4heKDYCeNfda8xst5kdC7wDXAb8sZkziUgLtmjDLgBG9e2a4iR7S2A/K7KXeau3c8P0hSzZtJsTR/TmV+eNYdhB4RpjLtIUSRtTa2aPE70orLeZFQA3ES1mnzSzq4je8/wrAO6eb2ZPAouAauB7wcwHAN/hsym9nkcXiYlIHBZv2sXgXh3p3C48Mx/E0JhaSZituyu44/klPPVBAf26tef+rx/FGWMOJvolgUj6i3dM7beDGQjiHuvl7hfX89Yp9Sx/G3BbHe3vAWMbs08RkdoWb9zN6JCdpY1xQP2sSF2qayI89s5afv/iUsqravhu7iFcffLwUE1pJ9Ic4vmNPjNhKUREkqCkoprVhSV88cjQTpqiflaa1ftrdnDD9IUs2riLE4b35leTx3CIhhpICxVPUXt5Pe23NEcQEZFEW7JpN+6E+Uyt+llpFoXFFfzmv0t48r0CDu7anvsuOYqzDtdQA2nZ4ilqS2Ketyd6y1vdvlFE0saijdGLxA7rF9qiVv2sHJCaiPOPd9fyu/8uobSyhm99YRg/OHkEncI5hlykWTX6t9zd74x9bWa/JzpLgYhIWli8cRdd22fRr1v7VEepU5j6WTPrBMwGbnL3Z1ORQeLz4dod3DBjIQvX7+K4Yb249fwxDO/TJdWxRJLmQP506wgMa64gIiKJlr9+J6P7dU2nr2Dj7mfN7BGiZ3i3uPvYmPZJwD1AJvCQu9+xn01dCzwZX1xJhe0llfz2v0t4Yt46+nRpx9SLj+TccX3T6fdcpFk0uqg1swV8dveuTOAg4NZEhBIRaW7lVTUs2riLq04I79/izdTPPgrcC0yL2W4mcB9wGtGb2Mwzs5nBPm6vtf43gHFEp1QM5yltAaJDDf45bx2/fWEJxeXVfPPEoVxz6qFhna5OJOHi+c0/J+Z5NbDZ3aubOY+ISEIs2riLqhpn/MDuqY7SkAPuZ919tpkNqdU8EVjh7isBzOwJYLK7315rnwTvnwR0AkYDZWY2y90j8eSQxPpoXRE3zljIRwU7OWZoT249fyyHZmuogbRu8RS1twDXuHsRgJn1MLM73f0bCUkmItKM5q8tAuDIQd1TmmM/EtXP9gfWxbwuAI6pb2F3/2Ww/yuAbXUVtGY2BZgCkJ2dTV5eXlyBiouL414nUcKSpTE5iiudfy+v5PV11XRtZ3xrXDuO7VvOhsXvs6GZLikMy/GA8GQJSw4IT5aw5IgVT1E7bk9HC+DuO8zsyOaPJCLS/D5cV0Tfbu3J7hrqb9QT1c/WNbjS62jbewH3Rxt470HgQYCcnBzPzc2NK1BeXh7xrpMoYcnSUI5IxPnX++u4Y/YSdpXX8I0ThvLDU0fQpX2bpOZItrBkCUsOCE+WsOSIFU9Rm2FmPdx9B4CZ9YxzfRGRlJm/bkfYhx5A4vrZAmBgzOsBwIZm2K4kwcL1O7l++kLmryvi6CE9uGXyWA4L71zLIikTT2d5J/CWmf2b6F/4F1LHbWxFRMKmsLiCddvL+Poxg1MdZX8S1c/OA0aY2VBgPXARcEkzbFcSaGdpFb9/cSl/f2cNvTq15a4Lj+CLR/bXrAYi9YhnntppZvYecDLRr7K+5O6LEpZMRKSZfBCMpw37mdrm6GfN7HEgF+htZgVE55l92MyuBl4gOuPBI+6e37zppblEIs6/PyjgjueXUFRayeXHDeFHpx1Ktw7NP9RApCWJ62utoHNVISsiaeWdlYW0zcrgiJAXtXDg/ay7X1xP+yxgVlO3K8mRv2EnN0xfyAdri5gwuAe3Tj6G0eG9A55IqGhMrIi0eG+vKuSoQd1p3yYz1VFE6rSzrIq/L6rg1Rfm0KNjW37/lSP40pH9ycjQUAORxlJRKyIt2s6yKvI37OKaU0akOorIPtyd/3ywntufX0xhcTWXHjeYH582km4dNdRAJF4qakWkRZu3ajvucOywXqmOIrKXxRt3ceOMhcxbvYMjB3Xn6sMzuGLy2P2vKCJ1UlErIi3a28F42rBfJCatx67yKv7w0jKmzV1Dtw5t+O0F4/jyhAHMnv16qqOJpDUVtSLSos1dWciRAzWeVlLP3Zk+fz23PbeEwpIKLpk4iJ+eMZLuHdumOppIi6CiVkRarC27ysnfsIufnjEy1VGklVu6aTc3zFjIu6u2c8SAbjxyRQ7jBnRPdSyRFkVFrYi0WHnLtgJw0sg+KU4irdXu8irueXk5f31rNV3aZ3H7lw7nqzkDNauBSAKoqBWRFitv6RYO7tqew/p2SXUUaWXcnZkfbeC25xaztbiCi44exM/OGEmPThpqIJIoKmpFpEWqjjhvLNvGOUf01W1FJamWb97NjTPymbuykMP7d+PBy3J0oaJIEoSiqDWz1cBuoAaodvccM+sJ/BMYAqwGLnT3HcHyPweuCpb/gbu/kILYIhJiy3dE2F1RTa6GHkiSFFdUM/WV5TwyZxWd2mXx6/PHcvHEQWRqqIFIUoSiqA2c5O7bYl5fB7zi7neY2XXB62vNbDRwETAG6Ae8bGaHuntN8iOLSFi9v7madlkZnDC8d6qjSAvn7jy3YCO/fnYxm3aV89Wcgfxs0kh6dW6X6mgirUqYitraJgO5wfO/AXnAtUH7E+5eAawysxXARGBuCjKKSAjVRJx5m2s4aWQ2ndqFuZuTdLdiSzE3zVzImysKGdOvK/d97SgmDO6R6lgirVJYensHXjQzBx5w9weBbHffCODuG81sz3eI/YG3Y9YtCNr2YmZTgCkA2dnZ5OXlxRWouLg47nUSJSxZlGNfYckSlhwQjixLttews8IZlrUj5VmkZSqtrGbqKyt4eM5KOrTJ5NbJY7jkmMEaaiCSQmEpao939w1B4fqSmS1pYNm6egzfpyFaGD8IkJOT47m5uXEFysvLI951EiUsWZRjX2HJEpYcEI4sL09fQNuMtVx9QS4d24alm5OWwN3578JN3PrsIjbsLOfLEwZw3Zmj6K2hBiIpF4re3t03BP9uMbOniQ4n2GxmfYOztH2BLcHiBcDAmNUHABuSGlhEQquyOsLzCzZxRJ9MFbTSrFZuLeammfm8sXwbh/XtytSLjyRnSM9UxxKRQEaqA5hZJzPrsuc5cDqwEJgJXB4sdjkwI3g+E7jIzNqZ2VBgBPBuclOLSFi9umQzhSWVHN9PBa00j9LKan73whIm3f0G89cWcfO5o3nm6uNV0IqETBh6/Wzg6WAeySzgH+7+XzObBzxpZlcBa4GvALh7vpk9CSwCqoHvaeYDEdnj8XfXcXDX9hzeO+V/s0uac3deyN/Mrc8uYn1RGV86sj/XnTWKPl3apzqaiNQh5UWtu68EjqijvRA4pZ51bgNuS3A0EUkz64vKmL18K98/aTiZGRtTHUfS2OptJdz8TD55S7cy6uAu/HPKsRwzrFeqY4lIA1Je1IqINJfH31kLwFdyBvLJxypqJX5llTX8OW8F97++krZZGdxwzmguP24wWZk68y8SdipqRaRFKK2s5u/vrOHUw7IZ2LMjn6Q6UBozswzgVqAr8J67/y3FkZLipUWb+dUz+RTsKOP88f34xVmH0aerhhqIpAsVtSLSIvz7/QKKSqv41ueHpTpKSpnZI8A5wBZ3HxvTPgm4B8gEHnL3OxrYzGSi839vJzrjTIu2pTTCVY/O45UlWzg0uzNPTDmWYzXUQCTtqKgVkbRXXRPhoTdWceSg7rqbEzwK3AtM29NgZpnAfcBpRIvUeWY2k2iBe3ut9b8BjATmuvsDZvZv4JUk5E668qoa7n/9E+6dU0a7rEp+edZhXHH8ENpoqIFIWlJRKyJp79/vF7B2eyk3nDOaYCaVVsvdZ5vZkFrNE4EVwYW5mNkTwGR3v53oWd29mFkBUBm8rHN2mXS/a+P8LdU8triSrWXOhN7O18e2pUdkLW++sTZlmVJ9TMKWA8KTJSw5IDxZwpIjlopaEUlr5VU13P3yco4c1J1TD+uz/xVap/7AupjXBcAxDSz/H+CPZnYiMLuuBdL1ro3rtpfyq2cW8fLizRxyUCfu+dpYKgsWpvwueBCOu/GFKQeEJ0tYckB4soQlRywVtSKS1h59azWbdpVz90XjW/1Z2gY06vbin77hXgpclbg4yVdeVcODs1dy32sryMwwfn7mKK48fihtszLIa/GjhkVaBxW1IpK2NhSVMfWV5Zwyqo8u7GlYq769eN7SLdw8M5/VhaWcPa4v1599GH27dUh1LBFpZipqRSRt3fLMIiLu3HzemFRHCbt5wIjg1uLrgYuAS1IbKfEKdpRy67OLeCF/M8N6d+L/rprIiSMOSnUsEUkQFbUikpae/XgD/83fxE/PGMnAnh1THSc0zOxxIBfoHVzwdZO7P2xmVwMvEJ3x4BF3z09hzISqqK7hoTdW8cdXl2MYP5s0kqtOGEq7rMxURxORBFJRKyJpZ31RGb/4zwKOHNS91c9LW5u7X1xP+yxgVpLjJN3sZVu5aWY+q7aVcObYg7n+nNH0766hBiKtgYpaEUkr5VU1XP2PD6iJOHd/dbxuXypAdHz1rc8u4vmFmxjSqyOPXnk0uSM1G4ZIa6KiVkTShrtz7VMf8+HaIu7/+lEM7tUp1ZEkxSqrIzw8ZxVTX1mO4/zk9EP55ueHaaiBSCukolZE0oK789sXljJj/gZ+esZIJo3tm+pIkmJvrtjGDTMWsnJrCaePzuaGc0ZrfLVIK6aiVkRCz9353QtL+XPeJ1xyzCC+m3tIqiNJCm3aWc6tzy3iuY83MrhXR/56xdGcNEpDDURaOxW1IhJqVTURbpyRz+PvruWSYwbx68ljdZOFVqqqJsJf31zF3S8vpybi/O9phzLl88No30ZDDURERa2IhNiWXeVc88R85q4s5Lu5h/CT00eSkaGCtjV665Nt3DQjn+Vbijn1sD7ceM4YBvXSUAMR+YyKWhEJpecXbOQXTy+grKqGuy48gi8dNSDVkSQFNu8q57bnFjPzow0M7NmBhy7L4dTR2amOJSIhpKJWREJl+ebd/Pq5xby+bCvjBnTjrgvHM7xP51THkiSrqonwt7dW84eXllEVcX5wygi+m3uIhhqISL1U1IpIKCxcv5MHZ6/kuQUb6dg2k+vPPozLPzeENpqHttV5Z2UhN87IZ+nm3Zw08iBuPm+Mpm8Tkf1SUSsiKVNUWsmzH2/k6Q/X8/6aHXRul8VVJwzl2184hJ6d2qY6niTZlt3l3D5rCU9/uJ7+3Tvw4KUTOG10ti4MFJFGSdui1swmAfcQvY/5Q+5+R4ojich+VNVEWLRhF3NWbOP1ZVv5YM0OqiPOiD6d+fmZo7ho4iC6dWiT6piSZNU1EabNXcMfXlpGRXWE7588nO/mDqdDWw01EJHGS8ui1swygfuA04ACYJ6ZzXT3RalN1jSFxRUU7ChjQI8O9OrcLtVx6lRYXEFZVQ2FxRVJyZjMY/LeqkJmL9/G50f0Jmdor4TuC+C2Zxby7MJNnDP2YH557tiE7y8VaiLOhqIyVheWsKawlGWbd/NxwU4WbdxFZXUEgDH9uvLNzw/j7MP7MqZfV52Na6Xmrd7ODdMXsmTTbj5/6EH86rwxDO2toQYiEr+0LGqBicAKd18JYGZPAJOBtCtqZ8xfz7VPfUybjAyqIhF+e8E4zhvfP9Wx9rIn4w8Oq+JHv3k14RmTeUy+/tDbzFlRCMDUV1dw4vBe/N//HJuQfQEMu+45IsHzv7y5hoffXMPKO85O2P6awt2pjjjVNU5VJEJVdYSSihpKKqspqaimpLIm+m9FNcUV1WwvqWRbcQVbd0f/LdhWys6Xnqeqxj/dZud2WYzt35XLjxvM4QO6c9ywXhzUJZx/wEly7Kxw/vfJ+fzng/X069ae+79+FGeMOVh/3IhIk6VrUdsfWBfzugA4prk2/vi7a/n7vDIe/uSdfd5zr2MFwKnnjQbWqayO8MHaHUQcyoNS54f/nM+0uWvIyvysYy8qKuP+ZXMb3FY0QwOamLuqJsLH63fiDn9fkUF5VYRr/jmfh+esIquOC3i8noANZYtdpToSIX/DLjzmmFzzz/k8MHvlp/vbvauMPyycU//2GrEfgJKKalZuK9mr7Y0VhZz8+zw6tsusc53a2ysuLqPzR280KsPmXWWfFrR7RICjbnmRPl3bN7ifet8L9lRSUkqnD19v5DrRr3urapyqmgjVkeDfGqc6EtmrGG2MDIOendrRu3Nbendux4juGRxx6BCG9u7I4F6dGNKrE326tNP8svKpf723jhvfKKXay/hu7iFcffJwOrZN1/8diUhYpGsvUtf/Hff6P7GZTQGmAGRnZ5OXl9fojeevqaK0soaKrdsPONRnefZtq4k4/Tr6XgWIGRTtLCLD7NPt1dTUsGNHUeMyNBCiKSVFxGFQJ8fdaZsZfW5mVJTupjrODVpDCYK3IhFnSCffq9g2M7yimEjw4dpn1BApL27489TxptVqblsTYViX2mUmtKspJbMyY6/16tOtTQ1ZNSUNLPGZXpnV9Ojq+2zPrJKOkUjwvFGb2nt9oGO7CFmU7d3YgKy2kGlGZgZkGWRmBK8tK3gOWUFbVga0z4J2mUaH4N/2WUb7TGifZXRqAxlmREv0MoqLq+ncYROUQHkJLFkLS+L/WAesuLg4rv/uJXki7gzrlsHUK07kkIM0XZuINI90LWoLgIExrwcAG2IXcPcHgQcBcnJyPDc3t9EbzwXy8vKIZ52mKCyu4PjfvEp51WeFVfs2Gbz5o5P3GkeajCz1ic3448OruXNBVjTjD09OyFjXeo/JNZ/tr7mOx3urCvnyA2/v0/7vbx3T6LG18WS57ZmF/OXNNfu0f/P4wQc8tjaVvyO1hSVLWHLIvi7MGUif4k9U0IpIs0rXCSDnASPMbKiZtQUuAmamOFPcenVux28vGEf7Nhl0aRctFn97wbhQXSwWmzHTLOEZk3lMcob24sThexevJw7vlbCLxX557th9/oPLCNpFWhMz09hZEWl2aXmm1t2rzexq4AWiU3o94u75KY7VJOeN78/xw3uHevaDPRnfnTuHN887IeEZk3lM/u9/jk3q7Acr7zi7Vcx+ICIikmxpWdQCuPssYFaqczSHXp3bhbKYjdWrczs6tMlMWs5kHpOcoYk7O1uXX547VsWsiIhIM0vX4QciIiIiIp9SUSsiIiIiaU9FrYiIiIikPatvsvyWxMy2AvvOpdSw3sC2BMRpirBkUY59hSVLWHJAeLKkKsdgdz8oBftNGfWxzUY59hWWLGHJAeHJEro+tlUUtU1hZu+5e06qc0B4sijHvsKSJSw5IDxZwpJD6hamn09YsijHvsKSJSw5IDxZwpIjloYfiIiIiEjaU1ErIiIiImlPRW39Hkx1gBhhyaIc+wpLlrDkgPBkCUsOqVuYfj5hyaIc+wpLlrDkgPBkCUuOT2lMrYiIiIikPZ2pFREREZG01+qLWjObZGZLzWyFmV1Xx/tfM7OPg8dbZnZEinJMDjLMN7P3zOyERORoTJaY5Y42sxoz+3IqcphZrpntDI7JfDO7MRE5GpMlJs98M8s3s9dTkcPMfhpzPBYGP5+eKcjRzcyeMbOPguNxZXNniCNLDzN7Ovjv510z0z2Kk0h9bPxZYpZTH7tvHvWxqI+tl7u32geQCXwCDAPaAh8Bo2st8zmgR/D8TOCdFOXozGfDRcYBS1J1TGKWexWYBXw5RcckF3g2JL8n3YFFwKDgdZ9U/Wxilj8XeDVFx+MXwG+C5wcB24G2KcryO+Cm4Pko4JVE/87oEdfPR32s+lj1sfEfD/WxdTxa+5naicAKd1/p7pXAE8Dk2AXc/S133xG8fBsYkKIcxR78xgCdgEQNht5vlsD3gaeALSnOkQyNyXIJ8B93Xwvg7ok4LvEek4uBx1OUw4EuZmZEi4XtQHWKsowGXgFw9yXAEDPLTkAW2Zf62CZkCaiP3Zv62L2pj61Day9q+wPrYl4XBG31uQp4PlU5zOyLZrYEeA74RgJyNCqLmfUHvgjcn6AMjcoROC74+uV5MxuTwiyHAj3MLM/M3jezy1KUAwAz6whMIvo/xVTkuBc4DNgALACucfdIirJ8BHwJwMwmAoNJTOEk+1If24Qs6mPVxzYih/rYOrT2otbqaKvzr3MzO4loh3ttqnK4+9PuPgo4H7g1ATkam+Vu4Fp3r0lQhsbm+IDo7fKOAP4ITE9hlixgAnA2cAZwg5kdmoIce5wLvOnu25s5Q2NznAHMB/oB44F7zaxrirLcQfR/hvOJnv36kMSc0ZB9qY9tWpa7UR+rPrbhHOpj65CVip2GSAEwMOb1AKJ/9ezFzMYBDwFnunthqnLs4e6zzewQM+vt7s193+XGZMkBnoh+60Fv4Cwzq3b36cnM4e67Yp7PMrM/pfCYFADb3L0EKDGz2cARwLIk59jjIhLztVhjc1wJ3BF8nbvCzFYRHWv1brKzBL8nVwIEX9WtCh6SeOpjm5ZFfaz6WPWxTZGqwbxheBAt6lcCQ/lsAPSYWssMAlYAn0txjuF8dhHDUcD6Pa+TnaXW8o+SmIsYGnNMDo45JhOBtak6JkS/BnolWLYjsBAYm4qfDdCN6PiqTin8ff0zcHPwPDv4fe2doizdCS6gAL4JTEvEcdGjyT8f9bHqY9XHxn881MfW8WjVZ2rdvdrMrgZeIHqF3yPunm9m3w7evx+4EegF/Cn4q7na3XNSkOMC4DIzqwLKgK968BuUgiwJ18gcXwa+Y2bVRI/JRak6Ju6+2Mz+C3wMRICH3H1hsnMEi34ReNGjZzSaXSNz3Ao8amYLiH59da03/9mdxmY5DJhmZjVEr56+qrlzSN3UxzY5S8Kpj21ajmBR9bEh7WN1RzERERERSXut/UIxEREREWkBVNSKiIiISNpTUSsiIiIiaU9FrYiIiIikPRW1IiIiIpL2VNSKiIiISNpTUSsiIiIiaU9FrbQKZlZsZt3N7LtJ2NfwYELs2LZ2ZrbKzEYnev8iIsmmPlbCQEWttCbdgYR3uERvKTjQzGL/+5oCvO7ui5KwfxGRVOiO+lhJIRW1knbM7DexZwPM7GYz+7GZ/a+ZLQweP6xj1TuAQ8xsvpn9Llh3upm9b2b5ZjYlZps3mNkSM3vJzB43s5/EvPd1M3s32M4DZpYZuxN3jxC9R/qQYPkOwI+Bm5vtIIiIJIj6WElXKmolHT0BfDXm9YXAe8CVwDHAscA3zezIWutdB3zi7uPd/adB2zfcfQKQA/zAzHqZWQ7R+8AfCXwpeA8AMzss2Pfx7j4eqAG+VkfGxcCo4Pn3gJnuvrppH1dEJKnUx0paykp1AJF4ufuHZtbHzPoBBwE7gPHA0+5eAmBm/wFOBD7cz+Z+YGZfDJ4PBEYQ7bBnuHtZsK1nYpY/BZgAzDMzgA7Aljq2uxgYaWaziXa4x+55w8zmAe8AXYHX3P2vjfzoIiIJpz5W0pWKWklX/wa+DBxM9KxCZsOL78vMcoFTgePcvdTM8oD2gDW0GvA3d//5fja/GDgZuAZ4zN03B/scCLzj7lcHr181s2nuXhNvfhGRBFIfK2lHww8kXT0BXES00/03MBs438w6mlkn4IvAG7XW2Q10iXndDdgRdLaj+Owv/TnAuWbW3sw6A2fHrPMK8GUz6wNgZj3NbHAd+RYDE4FvAL+LaZ8AvB/zuhSINPIzi4gki/pYSTs6Uytpyd3zzawLsN7dNwIbzexR4N1gkYfc/cNa6xSa2ZtmthB4Hrge+LaZfQwsBd4OlptnZjOBj4A1RMeS7QzeW2Rm1wMvBlfeVhH96mtNrYhLgcOBX7r7zpj2CcC/AMzsCGCtu/uBHxERkeajPlbSkelnLbIvM+vs7sVm1pHoGYop7v5BM2x3FrAaqCB6AcSv3H33gW5XRCSdqI+VRFBRK1IHM/sHMJro+K+/ufvtKY4kItJiqI+VRFBRKyIiIiJpTxeKiYiIiEjaU1ErIiIiImlPRa2IiIiIpD0VtSIiIiKS9lTUioiIiEjaU1ErIiIiImlPRa2IiIiIpD0VtSIiIiKS9v4/V1yxlPsOyPcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, axs = plt.subplots(1,2, squeeze=True, figsize=(10,3.5))\n", "fig.tight_layout(pad=3.0)\n", "x = np.linspace(0.2, 0.95, 1000)\n", "y = [f3(x1) for x1 in x]\n", "axs[1].set_yscale('log')\n", "axs[0].set_title('V-I characteristic of BC547 as diode')\n", "axs[0].set_title('V-I characteristic (log scale)')\n", "for ax in axs:\n", " \n", " ax.plot(x, y)\n", " dfax = df1[df1['VD']<0.65].plot('VD', 'ID', kind='scatter', ax=ax)\n", " # For some reason labels have to be set on the pandas plot axes object\n", " dfax.set_ylabel('current $I_D$ (A)')\n", " dfax.set_xlabel('voltage $V_D$')\n", " dfax.grid()\n", " " ] }, { "cell_type": "markdown", "id": "configured-roots", "metadata": {}, "source": [ "At this point I wonder if this is really the best approximation or whether there is some corruption to my measurement data that is failing to fit the model or whether my experimental setup is insufficient for determing the diode's reverse saturation current." ] }, { "cell_type": "markdown", "id": "interior-allowance", "metadata": {}, "source": [ "Now I try a polynomial fit. The smallest degree polynomial that doesn't suffer from visible polynomial wiggle is degree 7." ] }, { "cell_type": "markdown", "id": "russian-comment", "metadata": {}, "source": [ "Now plot the polyfit to see how it looks against the data" ] }, { "cell_type": "code", "execution_count": 34, "id": "sized-pierre", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ -7.0862616 , 96.6629177 , -548.33950311, 1680.87460637,\n", " -3010.85639794, 3154.74267379, -1792.26540097, 426.58575282])" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "from numpy.polynomial import polynomial\n", "# Find the coefficients of the polynomial\n", "z = polynomial.polyfit(df1['VD'], df1['ID'], 7)\n", "# Create the polynomial from the coefficients\n", "p = np.poly1d(np.flip(z))\n", "z" ] }, { "cell_type": "code", "execution_count": 39, "id": "smooth-belgium", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'voltage $V_D$')" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZQAAAEaCAYAAAA2f6EIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAyZ0lEQVR4nO3deXwddb3/8dcne5ruSfedthQKtBVKy6pgAQsuBUHZRMAFUdGLVy9wr15F/am4472uiJXlKlwFgepF2RTZS1MopS2UlqZp03RJ0jZbm/V8fn/MpD1Nk+YkOVuS9/PxOI+cmfnOzOfMOZnPzPc78x1zd0RERHorI9UBiIhI/6CEIiIicaGEIiIicaGEIiIicaGEIiIicaGEIiIicaGEInFnZlPNzM0sK9WxxIOZrTWzs3ow35Vm9ngC4vl/ZlZpZjvivez+oP3vz8z+amZX93BZm83snPhG2H8poQwgZvaYmX2jg/FLzGxHRwkg/MeckZwI4y8e8bv7ce7+dBfrOSyJuvvv3P283qy7g/VMAr4IzHb3sR1MP8vMImZWF762mdnX25UZama3m9mWsMzGcLgonP60mTVELWN9J7F8LfzM50SN+2vUfHVm1mRmr8dzG3SXu5/v7nenMoaBQgllYLkLuMrMrN34q4DfuXtL8kM6slSe5aTpGdYUoMrddx2hTLm7D3b3wcAZwMfN7EIAM8sBngKOAxYDQ4HTgCpgQdQybmhbhrvPar8CM5sOXAJsjx4f7rwHR63/BeCPPfys0scooQwsDwMjgTPbRpjZCOB9wD3dXZiZ5ZvZD82s1Myqzew5M8uPKnJleBRcaWZfjppvgZm9aGZ7zWy7mf003NG1TXcz+6yZbQA2hON+YmZbzazGzFaaWfRnyDSz/zCzt82sNpw+ycyeCYu8Fh4tXxqWf5+ZrQrX/4KZzYla1mYzu9nMVgP1ZpYVXe0Rxl4cxrHTzH4Uztq2rr3huk41s2vM7LmoZR9nZk+Y2e5w3v/oZLsOM7N7zKwi3LZfMbOMMIYngPHhOu7q6jty9xKCnfrscNRHgcnARe6+zt0j7r7L3b/p7o92tbwoPwVuBpo6K2BmUwl+a/ceocwfw7PjajN7xsyOi5p2gZmtC7/TbWb2pU6WkWlmPwh/Z5uA97ab/rSZfSJ8nxFuz1Iz2xVu52FRZa8Kp1VF/2aj5r0l/J1VmdkfzGzkkTbSgOPueg2gF/Br4M6o4U8Bq45Q3oEZnUz7GfA0MAHIJDjSzQWmhvP9GsgH5gKNwLHhfCcBpwBZYdk3gBvbrfMJguSXH477CFAYzvNFYAeQF077N+B1YBZg4foKO4ofOBHYBSwMY74a2AzkhtM3A6uASVHr3gycE75/EbgqfD8YOCV83/aZs6LWdQ3wXPh+CMHR/BeBvHB4YSfb9R7gkbDMVOAt4OPhtLOAsiN8X4dMB2YC24B3h8P3A3d38Rt5GqgAKoHngbPaTf8Q8Ej7bdPBcr4KPN3Fuj4Wfs5c4Haifovh9jozfD8COLGTZVwPvBl+ZyOBf0R/F+Hn+UTU+jYCR4Xf35+Ae8Nps4E64J1hPD8CWqK++xuBl4CJ4fRfAfel+n86nV4pD0CvJH/hQRVIddTO8nngC0co32FCITi73Q/M7WBa2851YtS4l4HLOlnHjcBD7db57i4+x562dQPrgSWxxA/8AvhmuzLrgXeF7zcDH2s3/cBOk+BM5OtAUSefubOEcjnwagzfTyZB8p0dNe5TbTtmYksoEWAvUBPG9CcgJ5z+BHBbFzEs5OBO/mqgFpgeThtMcNY4rf226WA5G4FruvHbHB7GOywc3hJ+9qFdzPd34Pqo4fPoPKE8BXwmquwsoJngQOWrwP1R0woIzsDavvs3gEVR08e1zRvrZ+zvL1V5DTDu/hzB0ecSMzsKOBn4PRy4mqmtMfXMIy0HKCI40n77CGWir0LaR7AzwsyONrO/hFUdNcC3w+VF2xo9YGZfNLM3wqqRvcCwqHkmdRFHtCnAF8Pqrr3hsiYB4ztbdzsfB44G3jSzFWb2vhjXG2uMRUAOUBo1rpTgLDBW5e4+3N2HEuyk9wNtjdJVBDvCTrn7cnevdfdGDxqznwcuCCd/neCIvuRIyzCzM4CxwANHKJNpZreFVUg1BMkJDn6vF4frLTWzf5rZqZ0sajyHfmelnZRrK9t+22YBY9ovx93rCbZXmynAQ1G/mzeA1nBeQW0oA9U9BHXpVwGPu/tOOHA1U1uD6rNdLKMSaACm92D9vyCoopgZ7vT+g6CqKtqBbrDD5HYz8GFghLsPJzjLaptnazfi2Ap8K9zhtr0Guft9Ha27PXff4O6XA6OB7wIPmFnBkebpZoyVBEe9U6LGTSaotuo2d68mOGB4fzjqSeA9YcwxL4aD23oR8PnwYGAHQaL8g5nd3G6eq4E/uXvdEZZ7BbAEOIfgAGFqON7C2Fe4+xKCbf0w8IdOlrM9jKPN5COss5zDt20LsLP9csxsEEE1a5utwPntfjt57t6j76Y/UkIZmO4h+Cf+JAePXLvF3SPAUuBHZjY+PNo81cxyY5h9CEF1TJ2ZHQN8OobyLQRnVllm9lWCq5Pa3Al808xmWmCOmbXtCHYS1Je3+TVwvZktDMsWmNl7zWxIDHFjZh8xs1Hh598bjm4NY4u0W1e0vwBjzexGM8s1syFmtrB9IXdvJdhxfissMwX4V+B/Yomvg3gHA5cBa8NR9xLsGB80s2PChuZCCy5quMDMhpvZe8wsz4ILEq4kaFN4LJx/EXA8MC98lRNUS/0sap35BO0sd3UR3hCC6r0qYBDBmWrbMnIsuI9nmLs3E/xeWjtZzh8IktxECy4yueUI67wP+IKZTQu3zbeB//XgCscHgPeZ2RkWXCTyDQ7dR/6S4HuZEsY4ysyWdPEZBxQllAHI3TcTXPlTACzrxaK+RNAYvgLYTXDEHstv6ksER6e1BDv4/+2i/GPAXwkap0sJzoyiqzh+RLBTeZxgx/MbgosBAG4F7g6rKT7s7sUEifSnBO0wGwnaOmK1GFhrZnXATwjahRrcfR/wLeD5cF2nRM/k7rXAuQRnCjsI2iHO7mQdnwPqgU3AcwRnGEu7EWPbVWB1BNtrJHBlGEcjwcHEmwTtKTUE7VtFwHIgG/h/HGyU/xxwobuvD+evcvcdbS+CnfyedmciFxKcQf6jizjvCePbBqwjaPCOdhWwOawOu57gwoyO/JrgN/Ia8ApBm1FnlhIk1WeAEoLf0ufCz7YW+CzB9t5O8Psoi5r3JwT/L4+bWW0Y72EHBQOZhY1LIiIivaIzFBERiQslFBERiQslFBERiQslFBERiYt07PwuaYqKinzq1KmpDkNEpM9YuXJlpbuP6mjagE4oU6dOpbi4ONVhiIj0GWbWaU8EqvISEZG4UEIREZG4UEIREZG4UEIREZG4UEIREZG4UEIRERlAquoaeW3rXqrqGuO+7AF92bCIyEDyyKpt3PzgarIzMmiORPjexXP4wLzuPLvtyHSGIiIyAFTVNXLzg6tpaI5Q29hCQ3OEmx5cHdczFSUUEZEBoGzPfrIzDt3lZ2dkULZnf9zWoYQiIjIATByRT3Mkcsi45kiEiSPyO5mj+5RQREQGgMLBuXzv4jnkZWcwJDeLvOwMvnfxHAoHx/LU7tioUV5EZID4wLwJnD6jiLI9+5k4Ij+uyQSUUEREBpTCwblxTyRtVOUlIiJxoYQiIiJxoYQiIiJxkVYJxcwWm9l6M9toZrd0MP0YM3vRzBrN7Evtpm02s9fNbJWZ6alZIiJJljaN8maWCfwMOBcoA1aY2TJ3XxdVbDfweeDCThZztrtXJjRQERHpUDqdoSwANrr7JndvAu4HlkQXcPdd7r4CaE5FgCIi0rl0SigTgK1Rw2XhuFg58LiZrTSz6zorZGbXmVmxmRVXVFT0MFQREWkvnRKKdTDOuzH/6e5+InA+8Fkze2dHhdz9Dnef7+7zR40a1ZM4RUT6jK2791FRG/+u6juSTgmlDJgUNTwRKI91ZncvD//uAh4iqEITERnQfvTEWyy+/RlaI905Pu+ZdEooK4CZZjbNzHKAy4BlscxoZgVmNqTtPXAesCZhkYqI9AENza08vnYH584eQ2ZGR5VA8ZU2V3m5e4uZ3QA8BmQCS919rZldH07/pZmNBYqBoUDEzG4EZgNFwENmBsFn+r27/y0FH0NEJG08vX4X9U2tvH/u+KSsL20SCoC7Pwo82m7cL6Pe7yCoCmuvBpib2OhERPqWh17dRtHgXBZOG5mU9aVTlZeIiMTJnvom/v7mLi6cN56szOTs6pVQRET6oT+vLqe51bn4pI4qdRJDCUVEpB96cGUZx44byrHjhiZtnUooIiL9zMZdtbxWVs3FJ3bn3vDeU0IREelnHli5jcwMY8k8JRQREemhxpZW/li8lbNnjWbUkMQ8mbEzSigiIv3I39bsoKq+iY+eOiXp61ZCERHpR+59sZSphYM4Y0ZR0tethCIi0k+sK6+huHQPHzllChlJ6GqlPSUUEZF+4t6XNpOXncGHTprUdeEEUEIREekHKmobefCVbVw4bwLDBmWnJAYlFBGRfuDuFzbT3Brhk+88KmUxKKGIiPRx9Y0t3PPiZs6bPYbpowanLA4lFBGRPu6+l7dQ09DC9e+antI4lFBERPqwhuZW7ny2hAXTRvKOySNSGosSiohIH/Y/L5Wyo6aBG8+ZmepQlFBERPqq+sYWfvH025w+o5DTpif/Rsb2lFBERPqou17YTFV9E188b1aqQwGUUERE+qSqukZ++c+3WXTMaE5McdtJGyUUEZE+6EdPvMW+plZuOf+YVIdygBKKiEgfs668hvte3sJHT53CzDFDUh3OAUooIiJ9iLvz9T+vZVh+NjcuOjrV4RwirRKKmS02s/VmttHMbulg+jFm9qKZNZrZl7ozr4hIf/DAyjKWl+zmS++ZlbI+uzqTNgnFzDKBnwHnA7OBy81sdrtiu4HPAz/owbwiIn3artoGvvmXdSyYOpLLT56c6nAOkzYJBVgAbHT3Te7eBNwPLIku4O673H0F0NzdeUVE+rpbl62loSXCdy4+ISXPO+lKOiWUCcDWqOGycFxc5zWz68ys2MyKKyoqehSoiEiyPbJqG4++voN/WTQzpR1AHkk6JZSO0q3He153v8Pd57v7/FGjRsUcnIhIqpRW1fPlh9Ywf8oIPpXC7um7kk4JpQyIfszYRKA8CfOKiKStppYIn7/vVTIMbr9sHlmZ6bTbPlQ6RbYCmGlm08wsB7gMWJaEeUVE0tZ3//Ymr5VVc9vFc5g4YlCqwzmirFQH0MbdW8zsBuAxIBNY6u5rzez6cPovzWwsUAwMBSJmdiMw291rOpo3JR9ERCROHlhZxm+eK+Ga06ZywQnjUh1Ol8w91maK/mf+/PleXFyc6jBERA7zypY9XParl5g/dQR3f2wB2WlS1WVmK919fkfT0iNCERE5oLSqnuvuWcnYYXn87IoT0yaZdKVvRCkiMkDsqmngqt+8TEskwtJr5jOiICfVIcVMCUVEJE1U72/mo0tfprKukd9eczIzRqdPx4+xSJtGeRGRgWxPfRNXLV3O2xV1LL3m5JQ/H74nlFBERFKsoraRq36znE2V9dzx0fmcObNv3nSthCIikkJbd+/jmt++TPneBn57zcmcPiP1z4bvKSUUEZEUeXXLHj55TzFNLRHu/tgCFkwbmeqQekUJRUQkiarqGinbs583d9Tw1UfWMmZoHvdfdzIzRqdnh4/doYQiIpIkj6zaxk0PvIY7NLU604oKeOD6UykcnJvq0OJCCUVEJAmq6hq56YHXaGw52DtJ+d59KYwo/nQfiohIEjz86jaaWg7t6ionM5OyPftTFFH86QxFRCSBahua+eZf1vGH4rLDHtzUHIkwcUR+SuJKBCUUEZEEeX5jJTc9sJrt1fv5zFnTmT6qgC8/vIbsjAyaIxG+d/GcftN+AkooIiJxV1HbyLcffYOHXt3GUUUFPPDp0zgxvPP9rFmjKduzn4kj8vtVMgElFBGRuGmNOL9fXsr3HltPQ3Mrn3v3DD579gzysjMPlCkcnNvvEkkbJRQRkTh4Zcsebl22ltVl1Zw+o5BvLDme6aP6/r0l3aGEIiLSC1t37+O7f3uTv6zezqghufzX5e/g/XPGYda+Cb7/U0IREemB6n3N/PQfG7j7hVIyMuDzi2byqXceRUHuwN2tDtxPLiLSA00tEe59qZT/emoDNQ3NfOikifzrubMYOywv1aGlnBKKiEgMWloj/OnVbfzkyQ1s27ufM2cW8e/nH8vs8UNTHVra6HZCMbMCoMHdWxMQj4hIWolEnD+vLuf2JzdQUlnPnInD+PYHT+CdM4sGZDvJkXSZUMwsA7gMuBI4GWgEcs2sAngUuMPdN8QjGDNbDPwEyATudPfb2k23cPoFwD7gGnd/JZy2GagFWoEWd58fj5hEZGBydx5bu5MfP/EW63fWcszYIdxx1UmcO3uMEkknYjlD+QfwJPDvwBp3jwCY2UjgbOA2M3vI3f+nN4GYWSbwM+BcoAxYYWbL3H1dVLHzgZnhayHwi/Bvm7PdvbI3cYjIwObuPP1WBT98fD1rttVw1KgC/vvyd/DeE8aRkaFEciSxJJRz3L25/Uh33w08CDxoZtlxiGUBsNHdNwGY2f3AEiA6oSwB7nF3B14ys+FmNs7dt8dh/SIywL3wdiU/fPwtVpbuYeKIfH7woblcOG88WZnqRzcWXSaUjpIJgJmdDlzh7p/trEw3TQC2Rg2XcejZR2dlJgDbAQceNzMHfuXud3QS93XAdQCTJ0+OQ9gi0tct31TF7U9u4MVNVYwdmse3LjqeD500iZwsJZLu6FajvJnNA64APgyUAH+KYywdnUt6N8qc7u7lZjYaeMLM3nT3Zw4rHCSaOwDmz5/ffvkiMoC8tKmKn4SJpGhwLv/5vtlcuXDyIV2lSOxiaZQ/mqBR/nKgCvhfwNz97DjHUgZMihqeCJTHWsbd2/7uMrOHCKrQDksoIiIvvl3F7U++xfKS3YwakstX3nssVy6cQn6OEklvxHKG8ibwLPB+d98IYGZfSEAsK4CZZjYN2EaQxK5oV2YZcEPYvrIQqHb37eGlzBnuXhu+Pw/4RgJiFJE+yt15MazaerlkN6OH5PLV983mCp2RxE0sCeVigp37P8zsb8D9dFz11Cvu3mJmNwCPEVw2vNTd15rZ9eH0XxJcpnwBsJHgsuFrw9nHAA+Fl/JlAb9397/FO0YR6XvcnRfeDqq2Xt4cJJKvvX82ly9QIok3Cy6YiqFgcOR/IUHV17uBu4GH3P3xhEWXYPPnz/fi4uJUhyEiCeDuPL8xqNoqLt3D2KF5fPqs6Vx68iQlkl4ws5Wd3ecXc6O8u9cDvwN+F96D8iHgFqDPJhQR6X/cnec2VnL7kxtYGSaSbyw5jg/PVyJJtFga5c3bncaE96D8Knx1WEZEJJkiEeepN3fxs39sZNXWvYwblsc3LzyeD8+fSG6WEkkyxHSnvJk9CDzi7lvaRppZDnAGcDXB3fR3JSRCEZEjaGmN8JfV2/nF02+zfmctk0bm862LjueSk5RIki2WhLIY+BhwX3gF1l4gj6Dh/HHgx+6+KlEBioh0pKG5lQdfKeNX/9zElt37OHrMYG6/dB7vmzNOd7anSCx3yjcAPwd+HnaxUgTsd/e9CY5NROQw9Y0t/H75Fn797CZ21TYyd9JwvvLeYznn2DHqayvFunWnfNjFivrNEpGk21XTwD0vlvI/y0vZu6+Z06YX8uNL53Ha9EL1/psm9IAtEUlrb2yv4c5nS1j22jZaIs65x47h+rOmc+LkEakOTdpRQhGRtNPWhfxvni3huY2V5GdncsWCyVx7+jSmFhWkOjzpRI8Sii4TFpFEqGlo5uFXt3Hvi6Vs2FXHmKG53LR4FlcsmMzwQTmpDk+60JNHAF8DXGVm9cAW4ObwpkcRkS5V1TVStmc/E0fkUzg4F4A126r53fJSHllVzr6mVk6YMIwfXzqX954wXl3I9yE9OUM5y90XAZjZHOBrwE1xjUpE+qVHVm3j5gdXk52RQVNrK5ecNIm15TWs2rqXvOwMlsydwJWnTGbOxOGpDlV6oCcJpabtjbuvNjO1w4hIl6rqGrnpgddobHEaiADwu+VbmFZUwNfeP5sPnjiRYfnxePirpEpPksEpZvZfwMrwpYpNETmiDTtrueOZTTS1HNr0mp+dyY8/PJd5umKrX+h2QnH3BWY2ETiJ4MmNU+MdlIj0be7OG9tr+eua7fx1zQ427qojw8AMoi/ncZxJIwelLlCJq1g6h/w58DqwGnjd3WvcvYzg6YmPJDg+EekjmloivLJlD/9Yv4vH1uxgc9U+MgwWTivko6dOYfFxY3lpUxU3hW0ozZEI37t4zoGGeen7YjlDWQXMIXjI1vFmVsuhCeb+xIUnIvHW0VVWPVW2Zx//fKuCf66v4IW3q6hrbCErwzh1eiHXvXM65x03hqKodXxg3gROn1EUt/VLeomlL687oofD6q45wAnAewme4ChpqDXi7KxpoHp/MzX7m2loiZBpRmaGkZudwchBOYwoyGFoXpa6rhggHlm1jZseWE1mhtEacb5/yRw+MG9CTPO6Oxt31fHy5t2sKNnNis172LZ3PwAThufzgXnjedfRozhteiFD8jpvXC8cnKtE0k/1pA2lrbrr0fiHI71RWlXPcxsreblkN2vLa9hStY+m1kiX82VmGGOH5jFhRD6TRgxi4oh8Jo7IZ0phAVMLBzFqSK4STj9QVdfIl/74Gs2tBxsxvvjH1zh9RtFhO/hIxNlcVc/a8hrWlFezrryG17dVs3dfMwBFg3NZMG0EnzhzGmfOLGL6qMH6jYi6XumLoqss8rIz+WPxVv706jZWl1UDMHpILnMnDWfRsaOZMrKAkQXZDM3LJjc7g9ZIcObS0NzKnn1N7K4PXjuqG9i6Zx8vvF3JjpqGQxpO87MzmVI4iMkjBzGlcBBTCguYUjiIqYUFjBuW1+2uwuNZ5dITqV5/cUkVz2yo5J0zi5g/rTBp611bXn1IMgFobnX+b3U5wwtyKamoZ1NlHSWV9by9q476plYAsjONWWOHsPi4sZw4ZQQLpo5kSuEgJRA5TMzPlO+P+uIz5dtuDMsyo6ElQk5WxoE7iz8wdzznzB7D1F7+sze1RNi2dz9bdu+jtKqe0qqov7v30dRy8KwnK8OYNDJINlMLBzE5PKuZUjiIiSMGHfbI1egb29oaZWOtcomHVK//I3e+xHMbqw4MnzmjkHs/cUpclt0acRpbWqlraGHv/maq9zezd1/b3yb+/uYuXni7qtP5zWD8sHyOGlXAUUUFHDd+GMdNGMrM0UN0t7occKRnysecUMzsu+5+c1fj+pK+llCq6ho5/bt/p6H54A49w2Dp1Sdz1jGjkxJDJOLsrG1gc+U+tuyuZ3PVPrZU7WNzVT1bqvZR29hyoKwZjBuax8QRgygcnMOgnEweXrWN6Fq4nEzjrmsXMH54PoNyMsnPySQvO5NMsy6fbeHutEScllanJRIJ/wbvm1ucptZWmlqc5tYIza0RKusa+dx9rx5ylJ6dadz0nlnkZGXS3BqhqTWYt22epvBvsLy26eG4Vj8wPRLxgx8asINvafsU9Y0trN9Zd9jnOGbsEAbnZuHhZwLC98Ff3KOGnUgEGltaaWiO0NjSSmNzhIaW1sPOPtqzcLntzZ0wlO99aB5TCg8/ABBp70gJpTtVXucC7ZPH+R2M6zEzWwz8hOBpkHe6+23tpls4/QJgH3CNu78Sy7z9wdsVdbS222kU5GQxoiB595ZmZBjjhuUzblg+p04/tLrG3dld30TpIWc2+9i2dz8bdtVRUdtI+yadplbnijuXd7q+zAwLkwtkmGFAc8RpDV+91dzqfOvRNztcb3amkZ2ZQU5mBtmZGWRnHRzOyQrHZRqDc7PIzLAD1YTRiaGNO1TUNnYYQ11DCyMLcjADC9PPgWQUfuZgWjCcYZCblUludgZ52ZnkZh36tyA3i+H52QzLz2b4oPBvfg433r+Sf7x1+BlK4eAcZo0d0tNNKHJALPehfBr4DHCUma2OmjQEeCFegZhZJvAzgsRVBqwws2Xuvi6q2PnAzPC1EPgFsDDGefu0itpGbl22juZ2O9HmSISJI/JTFNWhzOzAFTwdPauiqq6R0257isaWQ88Qvn3RCWRmGPuaWtnf1Mr+5lYi7kQiTqs7rZFgB90aCY7UszKN7IyMAzv9zIwMsjKMrEwjK8PCHX0G2VkZ5LQlhawM9je1csPvX6EpKinnZBmPfOZ0Rg/Ni0oSwbLjrbikikt+9dJh42+/dG5S2lI+csrUDhPKlQunJHzdMjDEcobye+CvwHeAW6LG17r77jjGsgDY6O6bAMzsfmAJEJ0UlgD3hF3nv2Rmw81sHMHd+l3N22eVVtVz1W9epqK2kU+eOY17XyrtkzeGFQ7O5fuXzD3sxrZktmH84EOHr//Y8cOSsu750wo5c0Yhz7ZrQ0lWw/yi2WOZNaaA9TsPdg4+a0wBi2aPTcr6pf+L5T6UaqDazK4FPkiw886C4IjU3b8Rp1gmAFujhssIzkK6KjMhxnkBMLPrgOsAJk+e3LuIk6B8736u+PVy9jW1cN91pzBv0nCuf9f0PntjWKpvbEv1+u/9xCkpu8oL4LEvnMVT63bw+LqdnDd7jJKJxFV32lAeBqoJOoTsuDK4dzqqY2hfSd5ZmVjmDUYGN2reAUGjfHcCTLbd9U185M7l1Oxv5r7rTuH4CcGRdF+/MSzV8ad6/fOnJe+spCOLZo9VIpGE6E5CmejuixMWSXBWMSl6fUB5jGVyYpi3T2lujfDZ371C2d79/P4TCw8kExGRdNWdi8tfMLMTEhYJrABmmtk0M8sh6DtsWbsyy4CPWuAUoNrdt8c4b5/y7Uff4MVNVXznohOYP3VkqsMREelSd85QzgCuNbNNBFVeBri7z4lHIO7eYmY3AI8RXPq71N3Xmtn14fRfEnT3cgGwkeCy4WuPNG884kqFJ9ft5LfPb+ba06dy8UkTUx2OiEhMunNjY4fXFrp7aVwjSqJ0vLGxqq6R99z+DKOG5PHIZ0/XHcoiklaOdGNjd/ZWW4AzgavDJOLAmDjEJ1G++shaava38KMPz1UyEZE+pTt7rJ8DpwKXh8O1BDcTSpz8860K/u/17Xx+0QyOHTc01eGIiHRLd9pQFrr7iWb2KoC77wkbwCUOmloifH3ZWqYWDuKT7zwq1eGIiHRbdxJKc9jFiQOY2Sig64dtSEx++3wJmyrr+e21J5ObpQ76RKTv6U6V138BDwGjzexbwHPAtxMS1QBT09DMz59+m7NmjeLsWcnpNVhEJN5iPkNx99+Z2UpgEcElwxe6+xsJi2wA+c2zJVTvb+ZL581KdSgiIj0WU0IJu42f6O5vAof39S09tqe+id88V8Li48bqbngR6dNiqvIKe/d9OLGhDEy/fb6E+qYWvnDu0akORUSkV7rThvKSmZ2csEgGoP1Nrdz7UinnHDtGDzgSkT6vO1d5nQ18ysxKgXri3PXKQPTAK2Xs2dfMJ8/UZcIi0vd1pw3leqDPdrOSbiIRZ+lzJcydOIyTpx7+dEMRkb4mpoTi7m5mP3b3kxId0EDx9Fu7KKms578vfwdm8X/crIhIsqkNJUXue3krRYNzWXy8HnQkIv1Dd9tQrjezzagNpVd21jTw9zd38ckzjyI7Ux1Aikj/0J2Ecn7Cohhg/li8ldaIc9nJk7ouLCLSR3QnoVzdyfhvxCOQgSIScf63eCunHlXI1KKCVIcjIhI33alvqY96tRKcsUxNQEz9WnHpHrbu3s+lOjsRkX6mO315/TB62Mx+QB9/bnsqLHttG3nZGZw7W88mE5H+pTctwoMA3ZHXDc2tER59fQfnHDuGgtzu1DaKiKS/mPdqZvY64bNQgExgFPDNRATVXz2/sZLd9U18YO74VIciIhJ33TlMfl/U+xZgp7u3xDmefm3ZqnKG5mXxrlmjUh2KiEjcdafK6xtAtbuXuvs2YIiZLU1QXP1OU0uEJ9bt5D3HjdUTGUWkX+pOQpnj7nvbBtx9D/COeARhZiPN7Akz2xD+7bBzKzNbbGbrzWyjmd0SNf5WM9tmZqvC1wXxiCuelpdUUdvYwnnH6c54EemfupNQMqJ39GY2ku5VmR3JLcBT7j4TeCocPkT4PPufEVyuPBu43MxmRxX5sbvPC1+PximuuHli3U7ysjM4Y0ZRqkMREUmI7iSEHwIvmNkDBI3zHwa+Fac4lgBnhe/vBp4Gbm5XZgGw0d03AZjZ/eF86+IUQ8K4O0+s28mZM0eRn6PqLhHpn2I+Q3H3e4CLgZ1ABfBBd783TnGMcfft4Xq2A6M7KDMB2Bo1XBaOa3ODma02s6WdVZkBmNl1ZlZsZsUVFRXxiL1La7bVsL26QfeeiEi/1q0qK3dfRw/PCMzsSaCjBoQvx7qIjkIK//6C4BJmD//+EPhYRwtx9zuAOwDmz5/vHZWJtyfW7SDDYNExHeVJEZH+IWl317n7OZ1NM7OdZjbO3beb2ThgVwfFyoDo/komAuXhsndGLevXwF/iE3V8PP1WBe+YPILCwbmpDkVEJGHSpe/0ZRzsfPJq4JEOyqwAZprZNDPLAS4L5yNMQm0uAtYkMNZu2V3fxOvbqnnX0br3RET6t3Tp/+M24A9m9nFgC/AhADMbD9zp7he4e4uZ3QA8RnCn/lJ3XxvO/z0zm0dQ5bUZ+FSS4+/UcxsrcYczZ+rqLhHp39Iiobh7FbCog/HlwAVRw48Ch10S7O5XJTTAXnj2rQqG5WczZ+LwVIciIpJQ6VLl1S+5O89uqOSMGUVkZui58SLSvymhJNCGXXXsqGngnUeruktE+j8llAR6dkMlAGfMVIO8iPR/SigJtHxTFVMKBzFheH6qQxERSTgllASJRJwVm3ezcNrIVIciIpIUSigJsrGijj37mlkwrTDVoYiIJIUSSoIs31QFoDMUERkwlFASZHnJbsYNy2PiCLWfiMjAoISSAO7OyyW7WTBtJGa6/0REBgYllAQordrHrtpGFqr9REQGECWUBFheErSfLFD7iYgMIEooCbBi8x5GFuQwfVRBqkMREUkaJZQEeG3rXuZNGq72ExEZUJRQ4qy2oZmNFXXMmzQ81aGIiCSVEkqcrS6rxh0lFBEZcJRQ4mzV1r0AzFVCEZEBRgklzl7dspejRhUwLD871aGIiCSVEkocuTurtu5lnp7OKCIDkBJKHJVXN1BZ18i8ycNTHYqISNIpocTRqi17ATXIi8jApIQSR6u27iEnK4Njxg5NdSgiIkmXFgnFzEaa2RNmtiH8O6KTckvNbJeZrenJ/In2+rZqZo8bSk5WWmxWEZGkSpc93y3AU+4+E3gqHO7IXcDiXsyfMO7OuvIajhuvsxMRGZjSJaEsAe4O398NXNhRIXd/Btjd0/kTqWzPfmoaWpithCIiA1S6JJQx7r4dIPw7OlHzm9l1ZlZsZsUVFRU9Dri9teU1ABw3fljcliki0pdkJWtFZvYkMLaDSV9OVgwA7n4HcAfA/PnzPV7LXbe9hgyDWWOGxGuRIiJ9StISiruf09k0M9tpZuPcfbuZjQN2dXPxvZ2/19aVVzN91GDyczKTvWoRkbSQLlVey4Crw/dXA48kef5eW1deo/YTERnQ0iWh3Aaca2YbgHPDYcxsvJk92lbIzO4DXgRmmVmZmX38SPMny576JsqrG5g9TglFRAaupFV5HYm7VwGLOhhfDlwQNXx5d+ZPlnXb1SAvIpIuZyh92rrwCi9VeYnIQKaEEgdry6sZNyyPkQU5qQ5FRCRllFDi4I3ttRyr9hMRGeCUUHqpuTXCpso6Zo4ZnOpQRERSSgmll0qr6mludY4erRsaRWRgU0LppQ076wA4WnfIi8gAp4TSS2/trMMMZoxWlZeIDGxKKL301q5aJo0YpC5XRGTAU0LppQ07azlaDfIiIkoovdHcGqGksp6Zaj8REVFC6Y3NleEVXjpDERFRQumNt8IrvGbqkmERESWU3nhrZy0ZusJLRARQQumVDbtqmTxyEHnZusJLREQJpRc27KxTg7yISEgJpYdaWiNsrqpn+ihVd4mIgBJKj23bu5/mVueoUQWpDkVEJC0oofTQpsp6AI4qUkIREQEllB7bVBEklGlKKCIigBJKj5VU1jE0L0tPaRQRCSmh9FBJZT1HjRqMmaU6FBGRtJAWCcXMRprZE2a2Ifw7opNyS81sl5mtaTf+VjPbZmarwtcFiY65pKJe7SciIlHSIqEAtwBPuftM4KlwuCN3AYs7mfZjd58Xvh5NQIwH7Gtqoby6Qe0nIiJR0iWhLAHuDt/fDVzYUSF3fwbYnaSYOrW5ch8AR+keFBGRA9IloYxx9+0A4d/RPVjGDWa2OqwW67DKDMDMrjOzYjMrrqio6FGwJZW6wktEpL2kJRQze9LM1nTwWhKHxf8CmA7MA7YDP+ysoLvf4e7z3X3+qFGjerSyTRVBL8NTiwb1aH4Rkf4oK1krcvdzOptmZjvNbJy7bzezccCubi57Z9Syfg38peeRdq2ksp5xw/IYlJO0zScikvbSpcprGXB1+P5q4JHuzBwmoTYXAWs6KxsPmyrr1eWKiEg76ZJQbgPONbMNwLnhMGY23swOXLFlZvcBLwKzzKzMzD4eTvqemb1uZquBs4EvJCpQd2dTRZ3aT0RE2kmLOht3rwIWdTC+HLggavjyTua/KnHRHaqpNcI5x45h4bTCZK1SRKRPSIuE0pfkZmXyo0vnpToMEZG0ky5VXiIi0scpoYiISFwooYiISFwooYiISFwooYiISFwooYiISFwooYiISFwooYiISFyYu6c6hpQxswqgtIezFwGVcQwn3hRf7yi+3lF8vZPO8U1x9w67ah/QCaU3zKzY3eenOo7OKL7eUXy9o/h6J93j64yqvEREJC6UUEREJC6UUHrujlQH0AXF1zuKr3cUX++ke3wdUhuKiIjEhc5QREQkLpRQREQkLpRQjsDMFpvZejPbaGa3dDD9SjNbHb5eMLO5aRbfkjC2VWZWbGZnpFN8UeVONrNWM7skmfGF6+5qG55lZtXhNlxlZl9Np/iiYlxlZmvN7J/pFJ+Z/VvUtlsTfs8j0yi+YWb2ZzN7Ldx+1yYrthjjG2FmD4X/xy+b2fHJjK/b3F2vDl5AJvA2cBSQA7wGzG5X5jRgRPj+fGB5msU3mIPtZHOAN9MpvqhyfwceBS5Jw+/4LOAvafwbHA6sAyaHw6PTKb525d8P/D2d4gP+A/hu+H4UsBvISaP4vg98LXx/DPBUKn6Lsb50htK5BcBGd9/k7k3A/cCS6ALu/oK77wkHXwImpll8dR7+EoECIJlXYHQZX+hzwIPAriTG1ibWGFMllviuAP7k7lsA3D2Z27G72+9y4L6kRBaIJT4HhpiZERyA7QZa0ii+2cBTAO7+JjDVzMYkKb5uU0Lp3ARga9RwWTiuMx8H/prQiA4VU3xmdpGZvQn8H/CxJMUGMcRnZhOAi4BfJjGuaLF+x6eGVSJ/NbPjkhMaEFt8RwMjzOxpM1tpZh9NWnTd+B8xs0HAYoKDh2SJJb6fAscC5cDrwL+4eyQ54cUU32vABwHMbAEwheQeuHaLEkrnrINxHR7hm9nZBAnl5oRG1G61HYw7LD53f8jdjwEuBL6Z6KCixBLf7cDN7t6a+HA6FEuMrxD0XTQX+G/g4UQHFSWW+LKAk4D3Au8B/tPMjk50YKGY/0cIqrued/fdCYynvVjiew+wChgPzAN+amZDExvWAbHEdxvBAcMqgrP5V0neGVS3ZaU6gDRWBkyKGp5IcBRzCDObA9wJnO/uVUmKDWKMr427P2Nm082syN2T0elcLPHNB+4PahsoAi4wsxZ3fzgJ8UEMMbp7TdT7R83s52m2DcuASnevB+rN7BlgLvBWmsTX5jKSW90FscV3LXBbWDW80cxKCNoqXk6H+MLf37UAYbVcSfhKT6luxEnXF0Gy3QRM42CD2XHtykwGNgKnpWl8MzjYKH8isK1tOB3ia1f+LpLfKB/LNhwbtQ0XAFvSaRsSVNc8FZYdBKwBjk+X+MJywwjaJgrS8Pv9BXBr+H5M+D9SlEbxDSe8SAD4JHBPMrdhd186Q+mEu7eY2Q3AYwRXYyx197Vmdn04/ZfAV4FC4OfhUXaLJ6mH0Bjjuxj4qJk1A/uBSz38ZaZJfCkVY4yXAJ82sxaCbXhZOm1Dd3/DzP4GrAYiwJ3uviZd4guLXgQ87sFZVNLEGN83gbvM7HWCKqibPTlnn7HGdyxwj5m1ElzN9/FkxNZT6npFRETiQo3yIiISF0ooIiISF0ooIiISF0ooIiISF0ooIiISF0ooIiISF0ooIiISF0ooIglmZnVmNtzMPpOEdc0Ib9KLHpdrZiVmNjvR65eBTQlFJDmGAwlPKARdeUwys+j/7euAf7r7uiSsXwYwJRSRbjCz70afaZjZrWb2RTP71/CJhGvM7MYOZr0NmB4+ufD74bwPh13OrzWz66KW+Z9m9qaZPWFm95nZl6KmfSR8ct8qM/uVmWVGr8SDrte3AFPD8vnAF4Fb47YRRDqhhCLSPfcDl0YNfxgoJugRdiFwCvBJM3tHu/luAd5293nu/m/huI+5+0kEvS5/3swKzWw+QR9s7yB4DsaBvuHM7Nhw3ae7+zygFbiygxjfIOgxF+CzwDJ339yzjysSO3UOKdIN7v6qmY02s/EEj4zdQ/AcjYfaOj80sz8BZxI8u+JIPm9mF4XvJwEzCRLSI+6+P1zWn6PKLyJ49smKsDPSfDp+0uUbwKywK/vPhsskXN4KYDkwFPiHu/82xo8u0iUlFJHue4CgF+KxBGcsmUcufjgzOws4BzjV3feZ2dNAHh0/dOnAbMDd7v7vXSz+DeDdwL8Av3P3neE6JwHL3f2GcPjvZnaPp+4BZ9LPqMpLpPvuJ3hg1CUEyeUZ4EIzG2RmBQTdtT/bbp5aYEjU8DBgT5hMjuHgWcRzwPvNLM/MBhM8ibHNU8AlZjYawMxGmtmUDuJ7g+DZLR8Dvh81/iRgZdTwPoIu70XiQmcoIt0UPrNiCLDN3bcD283sLg4+5e9Od3+13TxVZva8ma0B/gp8BbjezFYD64GXwnIrzGwZwcOWSgnaZ6rDaevM7CvA4+FVXM0EVVql7UJcD5wAfNndq6PGnwT8EcDM5gJbkvVsFxkY9DwUkTRjZoPdvc7MBhGc/Vzn7q/EYbmPApuBRoIG/a+7e21vlyvSRglFJM2Y2e+B2QRtKne7+3dSHJJITJRQREQkLtQoLyIicaGEIiIicaGEIiIicaGEIiIicaGEIiIicaGEIiIicaGEIiIicfH/AYXyO24WNaBeAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "x = np.linspace(.2,.95, 1000)\n", "y = [f3(x1) for x1 in x]\n", "ax.set_title('V-I characteristic of BC547 as diode')\n", "ax.plot(x, p(x))\n", "dfax = df1.plot('VD', 'ID', kind='scatter', ax=ax)\n", "dfax.set_ylabel('current $I_D$ (A)')\n", "dfax.set_xlabel('voltage $V_D$')\n" ] }, { "cell_type": "markdown", "id": "modular-alignment", "metadata": {}, "source": [ ".... and if we take a lower domain size and assume a cutoff point" ] }, { "cell_type": "code", "execution_count": 29, "id": "committed-commissioner", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ -7.68332739, 36.27082903, -57.09422914, 29.99082255])" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "from numpy.polynomial import polynomial\n", "\n", "\n", "# Find the coefficients of the polynomial.\n", "z = polynomial.polyfit(df['VD'], df['ID'], 3)\n", "# Create the polynomial from the coefficients\n", "p = np.poly1d(np.flip(z))\n", "# Here are the coefficients in ASCENDING order of degree. (ie c0 +c1 *x + c2*x^2 + ...)\n", "# numpy.polyfit returns them in opposite order\n", "z" ] }, { "cell_type": "code", "execution_count": 38, "id": "distinguished-causing", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 0, 'voltage $V_D$')" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEaCAYAAAAR0SDgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAArSklEQVR4nO3deZwcdZ3/8dd7ZnLfJ7kTEiCEI1xBQMFFQOVcRFjAA1HcRTxXV11Z8ed6LOu1HrsPjzW4LOIq6MrlASuiIrcQIEAgCSTkJplMJufkmGRmPr8/qibpTGYmPcl0d/X0+/l4zCNd97urO/Xpqm8digjMzMyqSh3AzMyywQXBzMwAFwQzM0u5IJiZGeCCYGZmKRcEMzMDXBCsHZKmSApJNaXO0h0kvSjpzAOY7l2S7i9Ann+RtE7Smu6ed0/Q9vsn6T5JVx/gvJZKOqd7E/ZcLghlRNLvJH2pnf4XS1rT3gY8/Y91WHESdr/uyB8RR0fEg/tZzj5FMCJ+GhFvOZhlt7OcicAngaMiYkw7w8+U1CKpIf1bJemLbcYZLOk7kpan4yxKu0emwx+UtCNnHgs7yPLP6Xs+J6fffTnTNUjaKemF7lwHXRUR50XEj0uZoVK4IJSXW4CrJKlN/6uAn0ZEU/Ejda6UexkZ3cOZDNRHxNpOxnktIgZGxEDgdOD9kt4GIKk38AfgaOBcYDDweqAeeF3OPD7SOo+ImN52AZKmAZcBq3P7pxvfgTnLfwz43wN8r1ZmXBDKy93AcOCM1h6ShgEXArd2dWaS+kn6pqRlkjZJekRSv5xR3pX+Cl0n6Yac6V4n6XFJGyWtlvTddEPVOjwkfVjSK8Arab9/l7RC0mZJT0vKfQ/Vkj4rabGkLenwiZIeSkd5Lv21ekU6/oWS5qbLf0zSzJx5LZX0GUnPA1sl1eQeNkizz0lz1Er6Vjpp67I2pss6TdJ7JT2SM++jJf1e0vp02s92sF6HSLpVUl26bj8nqSrN8HtgXLqMW/b3GUXEEpKN8lFpr/cAk4BLIuKliGiJiLUR8eWIuHd/88vxXeAzwM6ORpA0heS79pNOxvnfdO90k6SHJB2dM+x8SS+ln+kqSZ/qYB7Vkv4t/Z69ClzQZviDkv42fV2Vrs9lktam63lIzrhXpcPqc7+zOdNen37P6iX9QtLwzlZSxYkI/5XRH3AT8KOc7g8AczsZP4DDOhj2PeBBYDxQTfJLsw8wJZ3uJqAfcBzQCMxIpzsJOBWoScedD3y8zTJ/T1K8+qX93g2MSKf5JLAG6JsO+zTwAjAdULq8Ee3lB04E1gKnpJmvBpYCfdLhS4G5wMScZS8FzklfPw5clb4eCJyavm59zzU5y3ov8Ej6ehDJr+lPAn3T7lM6WK+3Avek40wBXgbenw47E1jZyee113DgcGAVcFbafTvw4/18Rx4E6oB1wKPAmW2G/w1wT9t10858Pg88uJ9lXZO+zz7Ad8j5Lqbr64z09TDgxA7mcR2wIP3MhgN/yv0s0vfztznLWwRMTT+/O4GfpMOOAhqAN6Z5vgU05Xz2HweeACakw38I3Fbq/9NZ+it5AP918QNLDiFsytnYPQp8opPx2y0IJHuH24Hj2hnWunGckNPvSeDKDpbxceCuNss8az/vY0PrsoGFwMX55Ad+AHy5zTgLgb9KXy8FrmkzfPdGj2RP4IvAyA7ec0cF4R3As3l8PtUkxfOonH4faN2wkl9BaAE2ApvTTHcCvdPhvwe+up8Mp7BnI301sAWYlg4bSLLXdmjbddPOfBYB7+3Cd3NomndI2r08fe+D9zPdH4HrcrrfQscF4Q/Ah3LGnQ7sIvmh8Xng9pxhA0j2gFo/+/nA2TnDx7ZOm+977Ol/PmRUZiLiEZJffxdLmgqcDPwMdp9N09oYeEZn8wFGkvzSXdzJOLlnwWwj2Zgg6QhJv0kPFWwG/jWdX64VuR2SPilpfnpoYSMwJGeaifvJkWsy8Mn0cNHGdF4TgXEdLbuN9wNHAAskPSXpwjyXm2/GkUBvYFlOv2Uke2H5ei0ihkbEYJKN7HagtVG1nmRD1qGI+EtEbImIxkgaYx8Fzk8Hf5HkF/WSzuYh6XRgDPDLTsaplvTV9BDMZpLiAns+10vT5S6T9GdJp3Uwq3Hs/Zkt62C81nHbrtsa4JC284mIrSTrq9Vk4K6c7818oDmd1nAbQrm6leRY8lXA/RFRC7vPpmltEHx4P/NYB+wAph3A8n9Asot/eLrR+izJoZ5cu2+jmxanzwCXA8MiYijJXk7rNCu6kGMFcGO6wWz96x8Rt7W37LYi4pWIeAcwGvga8EtJAzqbposZ15H86pyc028SyWGfLouITSQF/6K01wPAW9PMec+GPev6bOBjaTFfQ1LofiHpM22muRq4MyIaOpnvO4GLgXNICvyUtL/S7E9FxMUk6/pu4BcdzGd1mqPVpE6W+Rr7rtsmoLbtfCT1JzlM2WoFcF6b707fiDigz6YnckEoT7eS/Cf8O/b8cuySiGgBbga+JWlc+mvvNEl98ph8EMnhjAZJRwIfzGP8JpI9mxpJnyc5O6bVj4AvSzpciZmSWv8j15IcL251E3CdpFPScQdIukDSoDxyI+ndkkal739j2rs5zdbSZlm5fgOMkfRxSX0kDZJ0StuRIqKZZMN3YzrOZOAfgP/JJ187eQcCVwIvpr1+QrJhu0PSkWlD6QgljfLnSxoq6a2S+ippUH8XyTH136XTnw0cAxyf/r1GcljneznL7EfSznDLfuINIjk8Vg/0J9lTbJ1HbyXXcQyJiF0k35fmDubzC5IiNUHJSRLXd7LM24BPSDo0XTf/Cvw8kjPsfglcKOl0JSc5fIm9t3H/SfK5TE4zjpJ08X7eY0VxQShDEbGU5MyTAcCvDmJWnyJpzH0KWE/yizmf78SnSH4dbiHZQP98P+P/DriPpHF1GcmeSe4hgm+RbBTuJ9lw/BdJYzbAF4Afp7v5l0fEHJJC+F2SdohFJMf683Uu8KKkBuDfSdpFdkTENuBG4NF0WafmThQRW4A3k/xSX0NyHP5NHSzjo8BW4FXgEZJf+Dd3IWPrWUgNJOtrOPCuNEcjyY+BBSTtCZtJ2ndGAn8BegH/wp5G5Y8Cb4uIhen09RGxpvWPZCO9oc2ewNtI9uD+tJ+ct6b5VgEvkTTY5roKWJoeTrqO5MSC9txE8h15DniGpM2kIzeTFMWHgCUk36WPpu/tReDDJOt7Ncn3Y2XOtP9O8v/lfklb0rz7FPVKprRxxczMKpz3EMzMDHBBMDOzlAuCmZkBLghmZpbK4s2/8jZy5MiYMmVKqWOYmZWNp59+el1EjGpvWFkXhClTpjBnzpxSxzAzKxuSOrwS3IeMzMwMcEEwM7OUC4KZmQEuCGZmlnJBMDMzwAXBzMxSmSoIks6VtFDSIkmd3QLXKlx9QyPPrdhIfUNjqaMcsCy8h1JnmLOknm/dv5A5S+r3P3IB3PjreZz2lQe48dfzSrL8rMnM3U4lVZPcHvnNJLesfQp4R0S81NE0s2bNCl+HUHnumbuKz9zxPL2qqtjV0sLXL53JXx+/9wPJIoKWgKaWFtp+xZXzKB+1ea7P3sNAaQ+lw6S2zwEq3HsotFJnePePnuCRRXsKwRmHjeAnf3tqJ1McuNbtXOt3IYDDPnvvXk9FErDwX84j2HvcPfNonXbP8ABaImhuDppagpZI/k26W2huCZojaGoOmlvSYS3JsJYWdo/T2r+5JXe8lt39dzUHTc1J967mFgb0ruHv3tjRozs6J+npiJjV7rAMFYTTgC9ExFvT7n8CiIivdDSNC0LP0NTcwrqGndRvbWTD1l1s2LYz+Utfb21sYtuuZrbvbGbT9l08s3zDPv9ZB/et2V0AWv8DFZK0p2DsLhYkPXO7W8cjZ9wAGhqb9pnnsP69qK4S5Ey3e75tlrm7u53ltL7zdjdgab/mlmDN5h37ZBg9qA9V0j4bxSB3A7nvsKQ79ll+236tL5pagu279n1eTp+aqt1Fue38aef9tF1+2/feU40f2o9Hrz/rgKbtrCBk6Url8ez90JSVtPPwCknXAtcCTJrU2ZP2LEs2bN3J4roGFq1tYMm6razauJ3Vm3aweuN2arc00tzS/v/gQX1qGNCnhv69q+nXu5oIqEI05/y261Ulzjh8FIcM7kuvalFdJWqqRE11FdVV2utXf2cbitwfR62//nI3qq39SDc8SXfsNW6QdEQ6v7Yb1CCo29LI715cs1fR6lUlTjl0BMMH9k6nib024PtdTtq/9b3mFqHcbtICsmHbTtY1NNLUsneGmROGMGJAn3Ra9vq3tVDtPf/dQ9p07738tuM+s3w9c1ds2uczOGrsYE4+dPieeex3/vsO3xNXHY5708OLaWjctyAN6lPNdWce1m7mjpZfpeT7Vl0lqquqdr+uqdZew2qq9wyvUmt37rStr6v26lddJXpVVVFTnUzTq6qKqqru2VNtK0sFob13uM9/34iYDcyGZA+h0KGsayKClRu28/zKTTy/ciPPr9zEy7VbqN+6c/c4vaurGDu0L+OG9OPUaSMYN6QfY4f2ZcSAPgzr34thA3ozrH9vhvbvRa/qvZu56hsaecPX/kjzrj0ffXW1+NLFRzNiYD5P/yy9+oZGHphfu1dBqK4WN15yTNHeQ+t6zC0I1dXia5fOLEqGOUvqueyHbR+wBjecfySzDh3RzhTdq2F7Izc9uu8dHK6cNYEPv+mwdqaoDFkqCCvZ+0HbE0ie92oZt7x+G48uXscji9bxl1frWdeQbPx7V1cxY+wgzplxCIeNHshhowcybdRAxg/rlx4a6boRA/vw9Utn8o9tjn2XSzGAbLyHUmeYdegIzjhsBA+3aUMoRjEAuOGiY/ivR5fRktOvKu1fybLUhlBD0qh8NskzWp8C3pk+J7VdbkMojZaW4JnlG/i/eWu4/6Valq/fBsAhg/vw+mkjOXHyMI6bMITpYwbRp6a6IBnqGxpZuWE7E4b1K6tikCsL76HUGeYsqeehV9bxxsNHFq0Y5Lrx1/P4zbw1XHjMmIopBmXRqAwg6XzgO0A1cHNE3NjZ+C4IxfXSa5v5xZwV/PaF1dRtaaR3dRWnHz6SM6eP4vXTRjJt1IBuOwvHzAqjXBqViYh7gXtLncP22LaziTueWcXPn1rOvFWb6V1dxdkzRnPuMWM468jRDOrbq9QRzaybZKogWHbUbWnk1seX8pMnlrFx2y5mjB3MFy46iredMJ6h/XuXOp6ZFYALgu1lXUMj3/3jIn725HJ2Nbfw5hmHcO0bp3LS5GE+HGTWw7kgGJBcKDX7oVf50cOv0tjUwmUnTuADfzWVqaMGljqamRWJC0KFiwjufWENX/rNi9RubuSCY8fyD285gmkuBGYVxwWhgi2v38bn7pnHQy/XcdTYwfzg3Sdx4qRhpY5lZiXiglCBIoL/nbOSL/76RSTxzxcdxVWnTqamOlM3vzWzInNBqDDrt+7k+jue5/6Xajl16nC+efnxjB/ar9SxzCwDXBAqyAsrN/GBn8xhXcNObjh/Bu8//dCC3STLzMqPC0KFuOPplfzTXS8wamAf7vjg6zl2wpBSRzKzjHFB6OFaWoKv3Defmx5ewqlTh/O9d55Ytvf+MbPCckHowXY2tfDpXz7HPXNf46pTJ/P5i47a53bSZmatXBB6qK2NTXzwp8/w0Mt1fPqt0/nQmdN8pbGZdcoFoQfatrOJ993yFHOWrufrl87k8pMn7n8iM6t4Lgg9zPadzVyTFoN/v/IELjpuXKkjmVmZ8AHlHmTHrmbe/+OneHLJer59xfEuBmbWJd5D6CFaWoJP/Hwujy2u51uXH8fFx48vdSQzKzPeQ+gh/uW387lv3ho+d8EM3n7ihFLHMbMy5ILQA/zo4Ve5+dElXPOGQ/nbM6aWOo6ZlSkXhDL34MK13HjvfM47Zgyfu2BGqeOYWRnLREGQ9DeSXpTUIqndhz/bvpbXb+Pvb5/L9EMG8c3Lj/N9iczsoGSiIADzgLcDD5U6SLnYtrOJa38yB4DZV82if2+fH2BmBycTW5GImA/4Stou+Nzd81hYu4X/fu/JTBrRv9RxzKwHyMoeQt4kXStpjqQ5dXV1pY5TEvfMXcWdz6zio2cdzpnTR5c6jpn1EEXbQ5D0ADCmnUE3RMQ9+c4nImYDswFmzZoV3RSvbKxYv43P3TWPkyYP42NnHVbqOGbWgxStIETEOcVaVk/V1NzCJ34+F4DvXHG8H3lpZt0qE20Ilp/ZD7/KnGUb+M4VxzNxuNsNzKx7ZeInpqRLJK0ETgN+K+l3pc6UNa/WNfCdB17h3KPH8LYTfFsKM+t+mdhDiIi7gLtKnSOrWlqC6+98gb41VXzp4qNLHcfMeqhM7CFY5257ajlPLlnPDRfMYPTgvqWOY2Y9lAtCxq3dvIOv3ruA108bweWz/KAbMyscF4SM++r/LaCxqYUbLznWF+6ZWUG5IGTYs8s3cOczq7jm9EM5dOSAUscxsx7OBSGjWlqCL/zqRUYP6sNHfAGamRWBC0JG3fHMSp5buYnrzzuSgX0ycTKYmfVwLggZtH1nM9/43UJOmDSUt/lRmGZWJC4IGXTLY0tZu6WRz54/w884MLOicUHImE3bdvGDBxfxpumjOHnK8FLHMbMK4oKQMT98aDGbdzTxqbdOL3UUM6swLggZsnbLDv770aX89XHjOHrckFLHMbMK44KQId//02J2NbfwD28+otRRzKwCuSBkRN2WRm57cjmXnDCeKb4IzcxKwAUhI/7rkSXsam7hg2dOK3UUM6tQLggZsGnbLv7niWWcf+xYpo4aWOo4ZlahXBAy4MePL6WhsYkPv8m3qDCz0nFBKLGtjU3c/OgSzj5yNDPGDi51HDOrYC4IJfaLOSvYuG0XH/LegZmVWCYKgqRvSFog6XlJd0kaWupMxdDcEtzy2FJOmjyMkyYPK3UcM6twmSgIwO+BYyJiJvAy8E8lzlMUf1ywlmX123jfG6aUOoqZWTYKQkTcHxFNaecTwIRS5imW/350CeOG9OXco8eUOoqZWTYKQhvXAPeVOkShzV+9mccW1/Oe10+hpjqLH4OZVZqiPXlF0gNAez+Fb4iIe9JxbgCagJ92Mp9rgWsBJk2aVICkxXHLo0vp26uKK0+eWOooZmZAEQtCRJzT2XBJVwMXAmdHRHQyn9nAbIBZs2Z1OF6Wbdi6k7vnruKykyYwtH/vUscxMwOKWBA6I+lc4DPAX0XEtlLnKbQ7n11FY1MLV502udRRzMx2y8rB6+8Cg4DfS5or6T9LHahQIoLbnlzOCZOGcuQYX4hmZtmRiT2EiKiYq7LmLNvAorUNfP2ymaWOYma2l6zsIVSM255czqA+NVw4c2ypo5iZ7cUFoYg2bdvFb59fzcUnjKN/70zsnJmZ7eaCUER3z00ak688uXxPlzWznssFoYhuf2oFx44fwjHj/bxkM8seF4Qimb96M/NXb+ZvZlXEXTnMrAy5IBTJ3c+uoqZKXDhzXKmjmJm1q8sFQdIASdWFCNNTNbcEd89dxZnTRzF8gK9MNrNs2m9BkFQl6Z2SfitpLbAAWC3pxfQ5BocXPmZ5e3xxPbWbG7nkBB8uMrPsymcP4U/ANJJnFIyJiIkRMRo4g+RW1V+V9O4CZix7dz67kkF9ajh7xuhSRzEz61A+J8OfExG72vaMiPXAHcAdknp1e7IeYtvOJn43bw0XzhxH314+0mZm2bXfPYT2igGApDdI+l5n4xj8/qVatu5s5pITx5c6iplZp7p0uayk44F3ApcDS4A7C5CpR/nV3NcYN6Qvr5syvNRRzMw6td+CIOkI4ErgHUA98HNAEfGmAmcre5t37OLhV9Zx1WmTqapSqeOYmXUqnz2EBcDDwEURsQhA0icKmqqH+MP8WnY2t3D+sb6RnZllXz5nGV0KrAH+JOkmSWcD/rmbh98+v4axQ/pywsShpY5iZrZf+TQq3xURVwBHAg8CnwAOkfQDSW8pcL6ytWXHLh56pY7zjhnrw0VmVhbyvlI5IrZGxE8j4kJgAjAXuL5QwcrdH+avZWdTC+cfO6bUUczM8pLPlcr7/LyNiPUR8cOIOKujcSrdvS+sZszgvpw4aVipo5iZ5SWvK5UlfVTSXjfxl9Rb0lmSfgxcXZh45amhsYkHX67j3GPG+HCRmZWNfM4yOhe4BrhN0qHARqAvUA3cD3w7IuYeTAhJXwYuBlqAtcB7I+K1g5lnKf1pQevhIp9dZGblY78FISJ2AN8Hvp/eomIksD0iNnZjjm9ExP8DkPQx4PPAdd04/6J6YH4twwf05qTJPlxkZuWjS1cqp7eoWN3dISJic07nACC6exnFsqu5hT8tWMtbjh5DtQ8XmVkZycyT3iXdCLwH2AR0eBW0pGuBawEmTcres4nnLN3A5h1NnOM7m5pZmSnaE9MkPSBpXjt/FwNExA0RMRH4KfCRjuYTEbMjYlZEzBo1alSx4uftD/Nr6V1dxRmHZy+bmVlnDmgPQZIiokuHdSLinDxH/RnwW+CfuxysxCKCB+bXctq0EQzok5mdLzOzvBzIIzTfCzwg6VeSvitpwMGGaPPUtb8muX9S2Vlct5Wl9ds456hDSh3FzKzLDuRn7JkRcTaApJkkv+T/8SBzfFXSdJLTTpdRpmcYPTC/FoCzj3T7gZmVnwMpCLvPCIqI5yUd9LGRiLj0YOeRBX+YX8tRYwczbmi/UkcxM+uyA2lUPlXSf0i6WtIxQO/uDlWONmzdydPLNvjsIjMrW13+dR8Rr5M0ATiJ5MlpU7o7VDl6ZNE6WgLO9OEiMytT+Twx7fvAC8DzwAsRsTkiVgIrgXsKnK9sPPRyHUP69eK4CUNLHcXM7IDks4cwF5hJ8hjNYyRtYe8CcXvh4pWHiOChV+o4/bCRvjrZzMpWPvcymp3bnR4umgkcC1wAVHxBeLm2gdrNjbzxiJGljmJmdsAOpA2h9XDRvd0fpzz9+eW1ALzxCF+dbGblq2i3rujJHnp5HYePHsjYIT7d1MzKlwvCQdq+s5knl6733oGZlb28C4Kkr+XTr9I8saSenU0tLghmVva6sofw5nb6ndddQcrVQy/X0aemilMOHV7qKGZmByWf6xA+CHwImCrp+ZxBg4DHChWsXDzyyjped+hw+vaqLnUUM7ODks9ZRj8D7gO+Alyf039LRKwvSKoysXbLDl5Z28ClJ00odRQzs4OWz3UIm4BNkt4HvJ3kVhU1AJKIiC8VNGGGPfFqUg9PmzqixEnMzA5eV65DuJvk8ZZPA40FSVNmHl9cz6A+NRw9bnCpo5iZHbSuFIQJEXFuwZKUoccXr+OUqcOpqfbZu2ZW/rqyJXtM0rEFS1JmVm/aztL6bZzqw0Vm1kN0ZQ/hdOB9kl4lOWQkICJiZkGSZdzji+sBOG2aC4KZ9QxdKQgVf81BrscX1zO0fy9mjHH7gZn1DF05ZLQcOAO4OiKWAQFU7NPkH1tcz6mHjqDKt7s2sx6iKwXh+8BpwDvS7i3A97ozjKRPSQpJmb6P9Ir121i1cbsPF5lZj9KVQ0anRMSJkp4FiIgNkrrtecqSJpLcHmN5d82zUNx+YGY9UVf2EHZJqiY5VISkUUBLN2b5NvCPrfPPsieW1DNiQG8OHz2w1FHMzLpNVwrCfwB3AaMl3Qg8Avxrd4SQ9NfAqoh4Lo9xr5U0R9Kcurq67lh8l81ZuoFZU4Yhuf3AzHqOvA8ZRcRPJT0NnE1yyunbImJ+vtNLegAY086gG4DPAm/JM8dsYDbArFmzir43Ubt5B8vXb+M9p00u9qLNzAoqr4Kg5KfwhIhYACw4kAVFxDkdzPtY4FDgufQX9wTgGUmvi4g1B7KsQpqzdAMAs6b4dtdm1rPkVRAiIiTdDZzU3QEi4gVgdGu3pKXArIhY193L6g5PLV1P315Vvn+RmfU4XWlDeELSyQVLUibmLFvPCROH0cv3LzKzHqYrW7U3AY9LWizpeUkvtHlgTreIiClZ3TtoaGzipdc2c/KUYaWOYmbW7brShnAdsKywcbLt2eUbaAm3H5hZz9SVNoRvR0S3tyGUk6eWbqBKcMKkoaWOYmbW7dyG0AVzlq5nxtjBDOrbq9RRzMy6XVfbEJ4odBtCVu1qbuHZ5Rs52YeLzKyH8u2v8/TSa5vZvquZWW5QNrMeqisF4eoO+n+pO4Jk3TPLkwvSTpzkgmBmPVNXCsLWnNd9gQuBvG9dUe7mrtjIIYP7MG5ov1JHMTMriK7cy+ibud2S/g34Vbcnyqi5KzZy/MShpY5hZlYwB3O5bX9gancFybL6hkaW1W/jBB8uMrMeLO89BEkvsOdZBdXAKODLhQiVNc+t3AjgPQQz69G60oZwYc7rJqA2Ipq6OU8mzV2+kSrBseOHlDqKmVnBdOWQ0ZeATRGxLCJWAYMk3VygXJny7IqNTB8zmAF9ulI/zczKS1cKwsyI2NjaEREbgBO6PVHGtLSEG5TNrCJ0pSBUSdrdqippOF075FSWXl23lS07mjjBBcHMeriubNC/CTwm6ZckjcuXAzcWJFWGzF2xEYDjfUM7M+vhunIdwq2S5gBnkTxT+e0R8VLBkmXE3BUbGNSnhsNGDSx1FDOzgurSIZ+0APT4IpDr2eUbmTlxCFVVKnUUM7OC8nMgO7FjVzML1mxxg7KZVQQXhE68tHozzS3BseOHljqKmVnBZaIgSPqCpFWS5qZ/55c6E8C8VZsAOHaCL0gzs54vS6eNfjsi/q3UIXLNW7WJ4QN6M25I31JHMTMruEzsIWTVC6s2c8z4IUhuUDazni9LBeEj6aM5b869AK4tSddKmiNpTl1dXcHC7NjVzCu1Wzh2/OCCLcPMLEuKVhAkPSBpXjt/FwM/AKYBxwOrSS6Ca1dEzI6IWRExa9SoUQXLu2DNFppawje0M7OKUbQ2hIg4J5/xJN0E/KbAcfbrhbRB+RgXBDOrEJk4ZCRpbE7nJcC8UmVpNW/lJob178V4PzLTzCpEVs4y+rqk40nukbQU+EBJ05DsIbhB2cwqSSYKQkRcVeoMuXbsaubl2i383fSKeEKomRmQkUNGWbPQDcpmVoFcENox77X0CmUXBDOrIC4I7Zi3ahND+vViwjA3KJtZ5XBBaMe8VZs5ZvxgNyibWUVxQWijqbmFhbVbOGqsr1A2s8rigtDGknVb2dnUwgwXBDOrMC4Ibby0ejOAC4KZVRwXhDbmr95Cr2oxzc9QNrMK44LQxvzVmzls9CB613jVmFll8VavjZdWb2bG2EGljmFmVnQuCDnWNTRSt6XRZxiZWUVyQcgx3w3KZlbBXBByuCCYWSVzQcgxf/UWDhnch+EDepc6iplZ0bkg5Ji/erP3DsysYrkgpBqbmlm0tsEFwcwqlgtCatHaBppawgXBzCqWC0Jq/uotABzlaxDMrEK5IKQWrtlM75oqpowYUOooZmYlkZmCIOmjkhZKelHS14u9/IW1DRw2aiA11ZlZJWZmRVVT6gAAkt4EXAzMjIhGSaOLneGV2i2cOnVEsRdrZpYZWfk5/EHgqxHRCBARa4u58E3bd7F60w4OP8R3ODWzypWVgnAEcIakv0j6s6STOxpR0rWS5kiaU1dX1y0LX7Q2aVCefogblM2schXtkJGkB4Ax7Qy6Ic0xDDgVOBn4haSpERFtR46I2cBsgFmzZu0z/EAsXNMAwBEuCGZWwYpWECLinI6GSfogcGdaAJ6U1AKMBLpnF2A/Xq7dQr9e1Ywf2q8YizMzy6SsHDK6GzgLQNIRQG9gXbEW/sraLRxxyECqqlSsRZqZZU5WCsLNwFRJ84DbgavbO1xUKAvXNHC4DxeZWYXLxGmnEbETeHcplr1+607WNTS6QdnMKl5W9hBK5uXa5Awjn3JqZpWu4gvCK2lBmD7GewhmVtkqviAsrN3CoD41jBnct9RRzMxKquILwsu1DRwxZhCSzzAys8pW0QUhInilNjnl1Mys0lV0QahraGTDtl2+QtnMjAovCK/U+pYVZmatKrogLK5LCsJho33IyMyssgvC2gYG9qlh9KA+pY5iZlZylV0Q6rYybdQAn2FkZkbFF4QGpo3y4SIzM6jggtDQ2MTqTTuY5vYDMzOgggvCq2mDsvcQzMwSFVsQ9pxhNKDESczMsqFyC8LarVRXiUnDXRDMzKCSC0JdA5OH96d3TcWuAjOzvVTs1nBxXQNT3X5gZrZbRRaEpuYWlqzbyjS3H5iZ7ZaJR2hK+jkwPe0cCmyMiOMLtbwVG7azqzl8hpGZWY5MFISIuKL1taRvApsKubzFa30PIzOztjJREFopuYfE5cBZhVxO6ymn00a6IJiZtcpaG8IZQG1EvFLIhSyua2DkwD4M6d+rkIsxMysrRdtDkPQAMKadQTdExD3p63cAt+1nPtcC1wJMmjTpgLIsWtvAtFFuUDYzy1W0ghAR53Q2XFIN8HbgpP3MZzYwG2DWrFlxADlYXLeVC2aO7eqkZmY9WpYOGZ0DLIiIlYVcyM7mFs4+cjSnTR1RyMWYmZWdLDUqX8l+Dhd1hz411XzriuMLvRgzs7KTmYIQEe8tdQYzs0qWpUNGZmZWQi4IZmYGuCCYmVnKBcHMzAAXBDMzS7kgmJkZ4IJgZmYpRXT57g+ZIakOWHaAk48E1nVjnO6W9XzgjN0h6/kg+xmzng+ylXFyRIxqb0BZF4SDIWlORMwqdY6OZD0fOGN3yHo+yH7GrOeD8sgIPmRkZmYpFwQzMwMquyDMLnWA/ch6PnDG7pD1fJD9jFnPB+WRsXLbEMzMbG+VvIdgZmY5XBDMzAzo4QVB0rmSFkpaJOn6doZL0n+kw5+XdGIGMx4p6XFJjZI+Vex8eWZ8V7r+npf0mKTjMpbv4jTbXElzJJ1ezHz5ZMwZ72RJzZIuy1I+SWdK2pSuw7mSPl/MfPlkzMk5V9KLkv6cpXySPp2z/ualn/PwYmbcr4jokX9ANbAYmAr0Bp4DjmozzvnAfYCAU4G/ZDDjaOBk4EbgUxldj68HhqWvzyvmeswz30D2tJfNJHlUa6bWYc54fwTuBS7LUj7gTOA3xf7+dTHjUOAlYFLaPTpL+dqMfxHwx1Ktz47+evIewuuARRHxakTsBG4HLm4zzsXArZF4AhgqaWyWMkbE2oh4CthVxFy58sn4WERsSDufACZkLF9DpP8LgQFAsc+kyOe7CPBR4A5gbTHDkX++Uson4zuBOyNiOST/dzKWL9c7KMIjg7uqJxeE8cCKnO6Vab+ujlNIpV5+Prqa8f0ke13Fklc+SZdIWgD8FrimSNla7TejpPHAJcB/FjFXq3w/49MkPSfpPklHFyfabvlkPAIYJulBSU9Lek/R0nXh/4mk/sC5JMU/UzLzTOUCUDv92v4yzGecQir18vORd0ZJbyIpCMU8Rp9Xvoi4C7hL0huBLwPnFDpYjnwyfgf4TEQ0S+2NXlD55HuG5B44DZLOB+4GDi90sBz5ZKwBTgLOBvoBj0t6IiJeLnQ4uvZ/+SLg0YhYX8A8B6QnF4SVwMSc7gnAawcwTiGVevn5yCujpJnAj4DzIqK+SNmgi+swIh6SNE3SyIgo1s3G8sk4C7g9LQYjgfMlNUXE3VnIFxGbc17fK+n7GVyHK4F1EbEV2CrpIeA4oBgFoSvfwyvJ4OEioEc3KtcArwKHsqeR5+g241zA3o3KT2YtY864X6A0jcr5rMdJwCLg9RnNdxh7GpVPBFa1dmclY5vxb6G4jcr5rMMxOevwdcDyrK1DYAbwh3Tc/sA84Jis5EvHGwKsBwYUa9115a/H7iFERJOkjwC/IzkD4OaIeFHSdenw/yQ5m+N8ko3ZNuB9WcsoaQwwBxgMtEj6OMnZC5s7mm+xMwKfB0YA309/4TZFke7smGe+S4H3SNoFbAeuiPR/Z4Yylkye+S4DPiipiWQdXpm1dRgR8yX9H/A80AL8KCLmZSVfOuolwP2R7MVkjm9dYWZmQM8+y8jMzLrABcHMzAAXBDMzS7kgmJkZ4IJgZmYpFwQzMwNcEMzMLOWCYLYfkhokDZX0oSIs6zBJL7Tp10fSEklHFXr5VtlcEMzyMxQoeEEguf3BREm5/zevBf4cES8VYflWwVwQrKJI+lruL31JX5D0SUn/kD7Fal56e5C2vgpMS5929Y102rvT2yy/KOnanHn+P0kLJP1e0m3KedKdpHdLejKdzw8lVecuJCJaSO4TNCUdvx/wSZJ7WZkVlAuCVZrbgStyui8nuVfU+4BTSG5y+HeSTmgz3fXA4og4PiI+nfa7JiJOIrlT6cckjZA0i+TeSScAb0+HASBpRrrsN0TE8UAz8K52Ms4Hjkxffxj4VUQsPbC3a5a/HntzO7P2RMSzkkZLGgeMAjYAxwN3td5wTNKdwBnAs/uZ3cckXZK+nkjyfIBTgXsiYns6r1/njH82yf36n0pvAtiP9p+ONh+Ynt6++cPpPEnn9xTwF5KbHf4pIv47z7dutl8uCFaJfkly984xJHsM1Z2Pvi9JZ5I8ZOe0iNgm6UGgL+0/KGX3ZMCPI+Kf9jP7+cBZwN8DP42I2nSZE0meV/2RtPuPkm6NiOau5jdrjw8ZWSW6neQhJZeRFIeHgLdJ6i9pAMktih9uM80WYFBO9xBgQ1oMjmTPr/hHgIsk9ZU0kOSZG63+AFwmaTSApOGSJreTbz7JMweuAb6R0/8k4Omc7m0kt3k26xbeQ7CKk96nfhCwKiJWA6sl3QI8mY7yo4h4ts009ZIelTSP5KFKnwOuk/Q8sBB4Ih3vKUm/InlAyjKS9olN6bCXJH0OuD89i2gXySGhZW0iLgSOBW6IiE05/U8C/hdA0nHA8mI+k8B6Pj8PwaybSRoYybOH+5PsfVwbEc90w3zvBZYCjSQN0l+MiC0HO1+zVi4IZt1M0s+Ao0jaFH4cEV8pcSSzvLggmJkZ4EZlMzNLuSCYmRnggmBmZikXBDMzA1wQzMws5YJgZmaAC4KZmaX+P3h2Wbx+2ZSUAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "x = np.linspace(0,.75, 1000)\n", "df = df1[df1['VD']<0.65]\n", "y = [f3(x1) for x1 in x]\n", "ax.set_title('V-I characteristic of BC547 as diode')\n", "ax.plot(x, p(x))\n", "dfax = df.plot('VD', 'ID', kind='scatter', ax=ax)\n", "dfax.set_ylabel('current $I_D$ (A)')\n", "dfax.set_xlabel('voltage $V_D$')\n" ] }, { "cell_type": "markdown", "id": "exposed-explorer", "metadata": {}, "source": [ "How does the polynomial fit compare against the exponential fit, especially at the high range." ] }, { "cell_type": "code", "execution_count": 31, "id": "transsexual-belfast", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 31, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEaCAYAAADpMdsXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzUElEQVR4nO3deXxcVf3/8dc76b63tGxNoYit0CUttGzWBSnQ8hUpshaVls0qX35+FUUBv34FxSqCiqK2UtZWgX6rCFQEBAroFylLCoXuC3QL3dJ0S7qkTfL5/XFP0kk6SWbSzJLk83w85jEz595z72cmk/nMOefec2VmOOecc8nIyXQAzjnnmh9PHs4555LmycM551zSPHk455xLmicP55xzSfPk4ZxzLmmePFxKSOovySS1yXQsTUHSIklnNqLelyW9kIJ4fiJpi6SNTb3tbCLpTEmFMc8b9XcIdU3Sx5sqttbOk0crI+kfkn4cp3ycpI3xvuyb+z9dU8RvZoPN7NUG9nNQwjSzR83s3EPZd5z99AO+AwwysyPjLK/9hfuqpL2hXlXZ2ZJWx6k7IKz7p1rloyUtlbRb0iuSjo1ZJkk/l1QcbndJUszyOyQtkFQu6fZDee2J/B1cenjyaH0eAa6M/ecOrgQeNbPy9IdUv0y2XrK05XQsUGxmm5Ooswv4nwTW+z3wdmyBpN7AX0P9XkAB8L8xq0wCLgSGAfnA+cDXYpavBL4H/D2JeF2W8+TR+jxF9AXw6aoCST2J/uFnJLsxSR0l/VLSGkk7JL0mqWPMKl+WtDZ0sfx3TL1TJc2VtF3SBkm/k9QuZrlJukHSCmBFKPuNpHWSdkqaJyn2NeRK+r6kDySVhOX9JP0rrPKepFJJl4f1z5c0P+z/dUn5MdtaLelmSe8DuyS1CWVnx8ReEOLYJOlXoWrVvraHfZ0h6SpJr8Vse7CkFyVtDXW/X8f72l3SDElF4b39gaScEMOLwNFhH48k+Ke6F7iivhaYpPHAdmBOrUUXAYvM7M9mthe4HRgm6YSwfCLwSzMrNLOPgF8CV1VVNrPpZvYcUNJQkOHz9IikbZIWA6fUWh77d2gv6deS1ofbryW1j1n3u+GztV7SNbW2017SL8Jnc5OkP9T63LoGePJoZcxsDzALmBBTfBmw1Mzea8QmfwGMAD5JlJS+B1TGLP8U8AlgNPBDSSeG8grgRqA3cEZY/p+1tn0hcBowKDx/Gxge9vMY8GdJHcKybwNXAP8BdAOuAXab2WfC8mFm1sXM/lfSycBDRL+ODwPuA2bHfvGEbX0e6BGnNfYb4Ddm1g04nuj9BKjaV4+wr7mxlSR1BV4CngeOBj7OwV/UVX4LdAc+BnyW6O91tZm9BJwHrA/7uKqO+rV9BNxP9MV/EEndgB8TdYfVNhio/myY2S7gg1B+0PLweDCNcxvRe3o8MIYoMdXlv4HTiT4Tw4BTgR8ASBoL3AScAwwAzq5V9+fAwFD340Bf4IeNjLlV8uTROk0HLo35pTUhlCVFUg7Rl/Q3zewjM6sws9fNrCxmtR+Z2Z6QmN4j+ifHzOaZ2RtmVm5mq4m+wD9baxc/M7OtIeFhZn8ys+JQ55dAe6LEBHAd8AMzW2aR98ysuI7QvwrcZ2ZvhpinA2VEX0RV7jWzdVX7rmU/8HFJvc2s1MzeSOwd43xgo5n90sz2mlmJmb1ZeyVJucDlwK1hndVEv+avTHA/dfkZ8AVJ8b7Y7wAeNLN1cZZ1AXbUKtsBdK1j+Q6gS5yu0URcBkwOf/d1RC2munwZ+LGZbTazIuBHHHiPLgMeNrOFIdndXlUpxPVV4MawnxLgp8D4RsTbannyaIXM7DWgCBgn6WNEXQOPQfXRLKXh9un6tkPUauhA9Cu0LrFHA+0m+qJB0kBJzygapN9J9M/bu1bdGl9kkr4jaUnoHttO9Mu8qk6/BuKIdSzwndBltT1sqx9RayDuvmu5luhX61JJb0s6P8H9Jhpjb6AdsCambA3Rr+NGC1+wvyNqYVSTNJzol/k9dVQtJWrNxerGgW6o2su7AaXWuFlXj6bme7+mrhXDurXfo6NjltW1nT5AJ2BezN//+VDuEuTJo/WaQdTiuBJ4wcw2QfXRLF3C7f8a2MYWYC9RF0OypgJLgQGh++f7QO1fqtVfPiGR3Uz0i7KnmfUg+oVbVWddEnGsI/p12yPm1snMHo+379rMbIWZXQEcTtT98RdJneurk2SMW4haN8fGlB1D1PV0qO4GPkfU1VjlTKA/sFbRob83ARdLeicsX0RoMQKE13p8KD9oeXi8iMbZQJRkqxxTz7rrOfg9Wp/AdrYAe4DBMX//7mbWpZExt0qePFqvGUS/Nr9KI7qsAMyskmjs4FeSjg6D1mfUGjuoS1dgJ1AaBl6vT2D9cqIWUxtJP6Tmr90HgDsUHWoqSfmSDgvLNhGNHVS5H/i6pNPCup0lfT6MSTRI0lck9Qmvf3sorgixVdbaV6xngCMlfSsM2HaVdFrtlcysgmgcZXJY51iiMZ0/1V43WWa2nagL7HsxxdOIksHwcPsD0ZFRY8LyJ4Ehki4OY0w/BN43s6Vh+Qzg25L6SjqaaNzkkaqNS2ob6uUQ/e06hK65eGYBt0rqKSkP+EY9L+dx4AeS+ig6IuyHHHiPZgFXSRokqRPRWErVe1BJ9Bm4R9LhIca+ksbgEubJo5UK/eivA52B2YewqZuABUSD2VuJfokn8rm6CfgSUdfH/dQ89DOefwDPAcuJuiD2UrNb4ldEXxgvECWlB4GqMZ3bgemhi+IyMysgSpq/A7YRHUp6VQIxVxkLLJJUSjR4Pj6MYewGJgP/DvuKHUMh9K2fA3yBqDtvBVErIJ5vEB1e+yHwGlG34kNJxFif3xAlu6q4dpvZxqobUTfU3tDNVdXddXF4bduIDmKIHR+4D/gb0edgIVHiuS9m+f1Ev/SvIBrk3kPd4zc/Ivr7riL6W/6xntfxE6LDht8P+34nlBGO7vo18DLR3/flWnVvDuVvhG7TlzgwfuYSIL8YlHPOuWR5y8M551zSPHk455xLmicP55xzSfPk4ZxzLmnZOOlbk+vdu7f1798/02E451yzMm/evC1mFvfkyVaRPPr3709BQUGmw3DOuWZFUp1n+Hu3lXPOuaR58nDOOZc0Tx7OOeeS1irGPOLZv38/hYWF7N27N9OhNEsdOnQgLy+Ptm3bZjoU51wGtNrkUVhYSNeuXenfvz+Nu+xA62VmFBcXU1hYyHHHHZfpcJxzGdBqu6327t3LYYcd5omjESRx2GGHeavNuVas1SYPwBPHIfD3zrnWrVUnD+eca9Hm/h6W/C0lm/bk0YyceeaZDZ7seO+993LiiSfy5S9/mdmzZ3PnnXcC8NRTT7F48eJ0hOmcyxZzfw/Lnk/JplvtgHlLNWXKFJ577rnqgewLLrgAiJLH+eefz6BBgzIZnnMuncpKoX1qrq7rySODVq9ezdixYznttNN49913GThwIDNmzGDu3LncdNNNlJeXc8oppzB16lTatz9wZdcHH3yQhQsXcs899wBw//33s2TJEnbv3s2HH37IBRdcwDXXXEPPnj0pKCjgS1/6ErNnz+af//wnP/nJT3jiiSc4/vjGXHbcOddsmMG+Emif0NWVk+bJA/jR3xaxeP3OJt3moKO7cdsXBje43rJly3jwwQcZNWoU11xzDb/61a+47777mDNnDgMHDmTChAlMnTqVb33rW9V1xo8fT35+PnfddRdt27bl4Ycf5r777mPo0KE8//zzvPLKK/Tu3ZtHHnkEgE9+8pNccMEFnH/++VxyySVN+jqdc1lq/26wSmiXmpZH2sY8JH1C0vyY205J35LUS9KLklaE+54xdW6VtFLSstiL00saIWlBWHavmvGhP/369WPUqFEAfOUrX2HOnDkcd9xxDBw4EICJEyfyr3/9q0adzp07c9ZZZ/HMM8+wdOlS9u/fz9ChQ9Meu3Mui5WVRvfNvdvKzJYBwwEk5QIfAU8CtwBzzOxOSbeE5zdLGgSMBwYDRwMvSRpoZhXAVGAS8AbwLDAWeK6xsSXSQkiVxua96667jp/+9KeccMIJXH311U0clXOu2dsXkke71HRbZepoq9HAB2a2BhgHTA/l04ELw+NxwEwzKzOzVcBK4FRJRwHdzGyumRkwI6ZOs7N27Vrmzp0LwOOPP87ZZ5/N6tWrWblyJQB//OMf+exnP3tQvdNOO41169bx2GOPccUVVzS4n65du1JSUtK0wTvnsldZ+H9P0ZhHppLHeODx8PgIM9sAEO4PD+V9gXUxdQpDWd/wuHZ5DZImSSqQVFBUVNTE4TedE088kenTp5Ofn8/WrVu58cYbefjhh7n00ksZOnQoOTk5fP3rX49b97LLLmPUqFH07Nkz7vJY48eP5+677+akk07igw8+aOqX4ZzLNtXJo5l3W1WR1A64ALi1oVXjlFk95TULzKYB0wBGjhx50PJskZOTwx/+8IcaZaNHj+bdd989aN1XX321xvPXXnuNG2+8sUbZ6tWrqx9fddVVXHXVVQCMGjXKz/NwrjWp7rZq5gPmMc4D3jGzTeH5ptAVRbjfHMoLgX4x9fKA9aE8L055q7F9+3YGDhxIx44dGT16dKbDcc5lo+oB824p2XwmkscVHOiyApgNTAyPJwJPx5SPl9Re0nHAAOCt0LVVIun0cJTVhJg6zUr//v1ZuHBh0vV69OjB8uXL+fOf/5yCqJxzLUJZOP2gJXRbSeoEnAN8Lab4TmCWpGuBtcClAGa2SNIsYDFQDtwQjrQCuB54BOhIdJRVo4+0cs65FinF3VZpTR5mths4rFZZMdHRV/HWnwxMjlNeAAxJRYzOOdcilJUCgnadU7J5nxjROedaorIwNUmKzqH25OGccy3RvpKUdVmBJ4+Mmzx5MoMHDyY/P5/hw4fz5ptv0r9/f7Zs2XLI2+7S5eAPzurVqxkyxHv8nGvxUjijLvjEiBk1d+5cnnnmGd555x3at2/Pli1b2LdvX6bDcs61BPtKU3Z2OXjLI6M2bNhA7969q6db7927N0cffTQAv/3tbzn55JMZOnQoS5cuBWDr1q1ceOGF5Ofnc/rpp/P+++8DUFpaytVXX83QoUPJz8/niSeeqLGfLVu2cMYZZ/D3v/+9RnlFRQXf/e53OeWUU8jPz+e+++4D4Morr+Tppw8c/Vx1YSnnXDNSltpuK295ADx3C2xc0LTbPHIonHdnvauce+65/PjHP2bgwIGcffbZXH755dXzWPXu3Zt33nmHKVOm8Itf/IIHHniA2267jZNOOomnnnqKl19+mQkTJjB//nzuuOMOunfvzoIF0WvYtm1b9T42bdrEBRdcwE9+8hPOOeecGmegP/jgg3Tv3p23336bsrIyRo0axbnnnst1113HPffcw7hx49ixYwevv/4606dPxznXjJSVQuc+Kdu8tzwyqEuXLsybN49p06bRp08fLr/88uprcFx00UUAjBgxovoL/7XXXuPKK68E4KyzzqK4uJgdO3bw0ksvccMNN1Rvt2quq/379zN69GjuuusuzjnnnIP2/8ILLzBjxgyGDx/OaaedRnFxMStWrOCzn/0sK1euZPPmzTz++ONcfPHFtGnjvzOca1ZSPGDu3wjQYAshlXJzcznzzDM588wzGTp0aPUv/KqurNzcXMrLywGIJhGuSRJmFndq9zZt2jBixAj+8Y9/xJ2Z18z47W9/y5gxYw5aduWVV/Loo48yc+ZMHnrooUN6jc65DChL3VUEwVseGbVs2TJWrFhR/Xz+/Pkce+yxda7/mc98hkcffRSIJkns3bs33bp149xzz+V3v/td9XpV3VaSeOihh1i6dCl33nlwghwzZgxTp05l//79ACxfvpxdu3YB0aSKv/71rwEYPDhz1ztxzjVSio+28uSRQaWlpUycOJFBgwaRn5/P4sWLuf322+tc//bbb6egoID8/HxuueWW6lbKD37wA7Zt28aQIUMYNmwYr7zySnWd3NxcZs6cySuvvMKUKVNqbO+6665j0KBBnHzyyQwZMoSvfe1r1a2cI444ghNPPNEvNOVcc1ReBpX7U9ptpXhdIS3NyJEjraCgoEbZkiVLOPHEEzMUUfbbvXs3Q4cO5Z133qF79+5x1/H30LkstasY7v4YnHc3nDap0ZuRNM/MRsZb5i0Pd5CXXnqJE044gW984xt1Jg7nXBZL8Yy64APmLo6zzz6btWvXZjoM51xjpXhGXWjlLY/W0GWXKv7eOZfFqi8E5cmjyXXo0IHi4mL/EmwEM6O4uJgOHTpkOhTnXDzV1y9PzVUEoRV3W+Xl5VFYWEhRUVGmQ2mWOnToQF5eXsMrOufSb19IHn6SYNNr27Ytxx13XKbDcM65plfd8vCTBJ1zziVq747ovkPqjpZMa/KQ1EPSXyQtlbRE0hmSekl6UdKKcN8zZv1bJa2UtEzSmJjyEZIWhGX3Kt7cHM4511rt3QnKTdklaCH9LY/fAM+b2QnAMGAJcAswx8wGAHPCcyQNAsYDg4GxwBRJuWE7U4FJwIBwG5vOF+Gcc1lt7w7o0C1ll6CFNCYPSd2AzwAPApjZPjPbDowDqub7ng5cGB6PA2aaWZmZrQJWAqdKOgroZmZzLTpUakZMHeecc2U7U9plBelteXwMKAIelvSupAckdQaOMLMNAOH+8LB+X2BdTP3CUNY3PK5d7pxzDqKWRwoP04X0Jo82wMnAVDM7CdhF6KKqQ7z2ltVTXrOyNElSgaQCPxzXOdeq7N3RoloehUChmb0Znv+FKJlsCl1RhPvNMev3i6mfB6wP5Xlxymsws2lmNtLMRvbpk7qraTnnXNbZ24K6rcxsI7BO0idC0WhgMTAbmBjKJgJVF8+eDYyX1F7ScUQD42+Frq0SSaeHo6wmxNRxzjmXhpZHuk8S/AbwqKR2wIfA1UQJbJaka4G1wKUAZrZI0iyiBFMO3GBmFWE71wOPAB2B58LNOeccpGXAPK3Jw8zmA/Hmhh9dx/qTgclxyguAIU0anHPOtQSVFVHyaEED5s4551Kt6loeLWXMwznnXBrsrUoe3vJwzjmXqDTMawWePJxzrmXx5OGccy5p1dcv924r55xzifKWh3POuaTt9aOtnHPOJauq5eHdVs455xK2d0d07fLc1J4D7snDOedakrLUT8cOnjycc65lScOkiODJwznnWpa9O1N+djl48nDOuZbFWx7OOeeSloZL0IInD+eca1n2boeOPVO+G08ezjnXUlRWwp7tnjycc84lYe92wDx5OOecS8KebdF9p14p35UnD+ecayn2bI/uW1rLQ9JqSQskzZdUEMp6SXpR0opw3zNm/VslrZS0TNKYmPIRYTsrJd0rSel8Hc45l5WqWh4tLXkEnzOz4WY2Mjy/BZhjZgOAOeE5kgYB44HBwFhgiqTcUGcqMAkYEG5j0xi/c85lpxaePGobB0wPj6cDF8aUzzSzMjNbBawETpV0FNDNzOaamQEzYuo451zrtWdrdN+x5Y15GPCCpHmSJoWyI8xsA0C4PzyU9wXWxdQtDGV9w+Pa5TVImiSpQFJBUVFRE78M55zLQlUtjzScYZ70nL2SOgN7zayiEfsbZWbrJR0OvChpaX27ilNm9ZTXLDCbBkwDGDly5EHLnXOuxdmzDdp3T/l07JBAy0NSjqQvSfq7pM3AUmCDpEWS7pY0INGdmdn6cL8ZeBI4FdgUuqII95vD6oVAv5jqecD6UJ4Xp9w551q3PdugY4+07CqRbqtXgOOBW4EjzayfmR0OfBp4A7hT0lca2oikzpK6Vj0GzgUWArOBiWG1icDT4fFsYLyk9pKOIxoYfyt0bZVIOj0cZTUhpo5zzrVeu7emZbAcEuu2OtvM9scpPxE4y8wultQ2ge0cATwZjqptAzxmZs9LehuYJelaYC1wKYCZLZI0C1gMlAM3xHSVXQ88AnQEngs355xr3fZsS8sJgpBA8ohNHJKGA18CLgNWAU/UXqee7XwIDItTXgyMrqPOZGBynPICYEhD+3TOuVZlzzboeWxadtVg8pA0kOh8iyuAYuB/AZnZ51Icm3POuWTs2ZZV3VZLgf8DvmBmKwEk3ZjSqJxzziWnsjJt07FDYgPmFwMbgVck3S9pNPEPl3XOOZcpZTvAKtNygiAkkDzM7Ekzuxw4AXgVuBE4QtJUSeemOD7nnHOJSOPUJJDEGeZmtsvMHjWz84nOrZhPmIfKOedchmVr8ohlZlvN7D4zO6upA3LOOdcIu9ObPBI+h13SSOC/gWNj65lZfgrics45l4w0tzySmQDlUeC7wAKgMjXhOOeca5TdxdF9p8PSsrtkkkeRmc1OWSTOOecab1cRKCcrWx63SXqA6IJNZVWFZvbXJo/KOedccnZviVodOem50kYyyeNqosN123Kg28oATx7OOZdpu7ZA5z5p210yyWOYmQ1NWSTOOecab9eWtI13QHKH6r4RrivunHMu2+zeAp17p213ybQ8PgVMlLSKaMxDgPmhus45lwV2FWVtt9XYlEXhnHOu8Sr2w94d0CmLWh6SZJE1Da3TtKE555xLSNU5HmnstkroMrSSviHpmNhCSe0knSVpOgcuI+uccy7ddhVF91k25jEWuAZ4PFxLfDvQAcgFXgDuMbP5qQrQOedcA3Ztie7T2G2VyJTse81sipmNIprXajRwspkda2ZfTSZxSMqV9K6kZ8LzXpJelLQi3PeMWfdWSSslLZM0JqZ8hKQFYdm9ChdFd865Vqu62yp9A+ZJnYpoZvvNbIOZbW/k/r4JLIl5fgswx8wGEJ25fgtAOCR4PDCYqOUzRVJuqDMVmAQMCDcfyHfOtW4Z6LZKz3nsgKQ84PPAAzHF44Dp4fF04MKY8plmVmZmq4CVwKmSjgK6mdncMEA/I6aOc861Tru2gHKhQ4+07TJtyQP4NfA9as7Ie4SZbQAI94eH8r7Aupj1CkNZ3/C4dvlBJE2SVCCpoKioqElegHPOZaU0z2sFjUweyY4zSDof2Gxm8xKtEqfM6ik/uNBsmpmNNLORffqkrx/QOefSbld6zy6H5E4SBEDSVcCVknYBa4GbzWxXA9VGARdI+g+iI7W6SfoTsEnSUWa2IXRJbQ7rFwL9YurnAetDeV6ccueca70ykDwa0/I408xGm9kFwDTgtoYqmNmtZpZnZv2JBsJfNrOvALM5cI7IRODp8Hg2MF5S+3B48ADgrdC1VSLp9ND6mRBTxznnWqddRWk9TBca0fIAdlY9MLP3JTVmG1XuBGZJupaoFXNp2O4iSbOAxUA5cIOZVYQ61wOPAB2B58LNOedar9LN0OXwhtdrQo354j9d0r3AvHBrl0xlM3sVeDU8LiY6byTeepOByXHKC4AhSUXsnHMt1b5dsK8EuhyR1t0mnTzM7NRw2O0I4DKgf1MH5ZxzLkElG6P7rkeldbeJTIw4BVgAvA8sMLOdZlZINHjt4w3OOZdJpZui+67Z1/KYD+QTDXQPkVRCzWQyM3XhOeecq1dVy6PLkWndbYPJw8ymxT4PXVb5wFCiM8Y9eTjnXKZUtzyyLHnUFtNl9WzTh+Occy4pJRshtx107Nnwuk0ondOTOOeca2qlm6IjrdI8wbgnD+eca85KNqb9MF1IInlI+nkiZc4559KoZGPaxzsguZbHOXHKzmuqQJxzzjVCaWZaHomc53E98J/AxyS9H7OoK/B6qgJzzjnXgPIy2LMtIy2PRI62eoxo/qifEa70F5SY2daUROWcc65hVYfpZmPLw8x2ADskXQ1cRDQdSRsASZjZj1MaoXPOufhKMnOOByR3nsdTwA6iyRDLUhKNc865xJVWnV2ehS2PGHlmNjZlkTjnnEvOzg3RfZonRYTkjrZ6XdLQlEXinHMuOTsLo7PLO6f/UtvJtDw+BVwt6UOibisBZmb5KYnMOedc/XZ8BN2Ohpz0n++dTPLwczqccy6b7CiEbnkZ2XUy6Wot8GlgopmtAQxI/yiNc865yM6PoHv2J48pwBnAFeF5CfD7RCtL6iDpLUnvSVok6UehvJekFyWtCPc9Y+rcKmmlpGWSxsSUj5C0ICy7V0rzjGDOOZdplRWwcz1075uR3SeTPE4zsxuAvQBmto3krl9eBpxlZsOA4cBYSacTnXg4x8wGAHPCcyQNIroA1WBgLDBFUm7Y1lRgEjAg3PwoMOdc61KyEawCumV/8tgfvrwNQFIfoDLRyhYpDU/bhpsB44DpoXw6cGF4PA6YaWZlZrYKWAmcKukooJuZzTUzA2bE1HHOudZh50fRffd+Gdl9MsnjXuBJ4HBJk4HXgJ8mszNJuZLmA5uBF83sTeAIM9sAEO4PD6v3BdbFVC8MZX3D49rltfc1SVKBpIKioqJkwnTOuey3I3wNZqjbKuGjrczsUUnzgNFEh+leaGZLktmZmVUAwyX1AJ6UNKSe1eONY1g95bX3NQ2YBjBy5MiDljvnXLNW1fLIULdVQskjDEjnmdlSYOmh7tTMtkt6lWisYpOko8xsQ+iS2hxWKwRi22N5wPpQnhen3DnnWo8dhdCuK3TonpHdJ9RtFcYWnjqUHUnqE1ocSOoInE2UiGYDE8NqE4Gnw+PZwHhJ7SUdRzQw/lbo2iqRdHpIahNi6jjnXOuwozDqssrQwabJnCT4hqRTzOztRu7rKGB6GHTPAWaZ2TOS5gKzJF1LdC7JpQBmtkjSLGAxUA7cELq9AK4HHgE6Ek0X/1wjY3LOueZp50cZ67KC5JLH54CvSVoD7CLJ6UnM7H3gpDjlxUTjKPHqTAYmxykvAOobL3HOuZZt+zo4MnOzQyUz5vF1YE1qw3HOOdegshLYvQV6HZexEBJKHmZmku4xsxGpDsg551wDtq2O7nv2z1gIyZzn8YakU1IWiXPOucRkQfJIdszj65JW04gxD+ecc02kOnlkebdV4FOyO+dcNti6Cjr0gI49MhZCMsljYh3lP26KQJxzziVo2+qMdllBcmMeu2JuFUQtkf4piMk551x9tq3O6JFWkNzcVr+MfS7pF0RngTvnnEuXygrYvhYGXZDRMA7lwredgI81VSDOOecSsPMjqNyf8W6rhFsekhZwYPbaXKAPcEcqgnLOOVeHraui+wweaQXJDZifH/O4HNhkZuVNHI9zzrn6bKtKHv0zGkYy3VY/BnaY2Roz+wjoKumhFMXlnHMuni0roE2HjF1BsEoyySPfzLZXPQnXMD9ookPnnHMptGU5HDYAcg5lyPrQJbP3HEk9q55I6kVy3V7OOecO1Zbl0HtApqNI6sv/l8Drkv5CNHB+GXGmS3fOOZci+/fCtjWQPz7TkSR1nscMSQXAWUTzWl1kZotTFplzzrmatn4AGPQZmOlIkut2CsnCE4ZzzmXCluXRfe/MJ4/Mjrg455xLXNFyQNDr+ExHkr7kIamfpFckLZG0SNI3Q3kvSS9KWhHuYwflb5W0UtIySWNiykdIWhCW3RuudOiccy3bluXQox+065TpSNLa8igHvmNmJwKnAzdIGgTcAswxswHAnPCcsGw8MBgYC0yRlBu2NRWYBAwIt7FpfB3OOZcZW5ZnRZcVpDF5mNkGM3snPC4BlgB9gXHA9LDadODC8HgcMNPMysxsFbASOFXSUUA3M5trZgbMiKnjnHMtU0V5lDz6nJDpSIAMjXlI6k90guGbwBFmtgGiBAMcHlbrC6yLqVYYyvqGx7XLa+9jkqQCSQVFRUVN/hqccy6ttn4A5XvhiCGZjgTIQPKQ1AV4AviWme2sb9U4ZVZPec0Cs2lmNtLMRvbp06dxwTrnXLbYuCC6P3JoZuMI0po8JLUlShyPmtlfQ/Gm0BVFuN8cyguB2Mlb8oD1oTwvTrlzzrVcGxdATtvWN+YRjoh6EFhiZr+KWTSbA5e4nQg8HVM+XlJ7SccRDYy/Fbq2SiSdHrY5IaaOc861TJsWRuMdbdplOhIgvXNTjQKuBBZImh/Kvg/cCcySdC2wFrgUwMwWSZpFdFJiOXCDmVWEetcDjwAdgefCzTnnWq6NC+H4z2U6imppSx5m9hrxxysARtdRZzJx5s8yswIgO0aNnHMu1UqLoHRj1gyWg59h7pxz2W9T1WC5Jw/nnHOJ2vBedH9kfmbjiOHJwznnsl1hQXTN8k69Mh1JNU8ezjmXzcyi5JF3SqYjqcGTh3POZbOdH0WD5XkjMx1JDZ48nHMumxUWRPd9PXk455xL1EcFkNsuq460Ak8ezjmX3QrnwVHDoE37TEdSgycP55zLVuVlsP4dyDs105EcxJOHc85lq8K3o2nY+38q05EcxJOHc85lq9VhVqdjP5npSA7iycM557LVqv+Do/KhY49MR3IQTx7OOZeN9u+Bwreg/6czHUlcnjyccy4brXsLKvZ58nDOOZeED16GnDZZOd4Bnjyccy47Lf9HlDg6dMt0JHF58nDOuWyzbQ0ULYGBYzMdSZ08eTjnXLZZ8UJ0P2BMZuOoR9qSh6SHJG2WtDCmrJekFyWtCPc9Y5bdKmmlpGWSxsSUj5C0ICy7V1Jdl7Z1zrnmafnz0Ot46P3xTEdSp3S2PB4BarfBbgHmmNkAYE54jqRBwHhgcKgzRVJuqDMVmAQMCLfsbdc551yy9myDD/8Jnzgv05HUK23Jw8z+BWytVTwOmB4eTwcujCmfaWZlZrYKWAmcKukooJuZzTUzA2bE1HHOueZvyTNQuR+GXJTpSOqV6TGPI8xsA0C4PzyU9wXWxaxXGMr6hse1y51zrmVY+JfokrNHn5zpSOqV6eRRl3jjGFZP+cEbkCZJKpBUUFRU1KTBOedcSpRsglX/gqGXQJYP52Y6eWwKXVGE+82hvBDoF7NeHrA+lOfFKT+ImU0zs5FmNrJPnz5NHrhzzjW5hU+AVcKQSzIdSYMynTxmAxPD44nA0zHl4yW1l3Qc0cD4W6Frq0TS6eEoqwkxdZxzrvkyg3kPQ94pcPgJmY6mQW3StSNJjwNnAr0lFQK3AXcCsyRdC6wFLgUws0WSZgGLgXLgBjOrCJu6nujIrY7Ac+HmnHPN25p/w5blcOHUTEeSkLQlDzO7oo5Fo+tYfzIwOU55AZBdF/N1zrlDVfAQdOgOg7+Y6UgSkuluK+ecc9vXwuKnYfhXoG3HTEeTEE8ezjmXaa//FhCc8Z+ZjiRhnjyccy6TSovgnRkw7HLontfw+lnCk4dzzmXSa7+KLvo06sZMR5IUTx7OOZcpxR/AW/fDSVdm9SSI8XjycM65THnpNshtB5/7fqYjSZonD+ecy4Slz8KSv8Gnb4SuR2Y6mqR58nDOuXTbsx3+/m04YgiM+lamo2mUtJ0k6Jxzjmgakr/9F5Ruhiseh9y2mY6oUbzl4Zxz6fTmH6ITAs++DY4+KdPRNJonD+ecS5elz8I/vg+f+Dx88r8yHc0h8eThnHPpsGYu/OVqOGo4XDQt66/X0RBPHs45l2orX4I/XRSdQf7lP0P7LpmO6JB58nDOuVQxg3nT4bHL4bDj4apnoXPvTEfVJPxoK+ecS4W9O+HZ78L7M+Fjn4PLpkdTrrcQnjycc64pmcGiv8Lz34fSTXDm9+EzN0FObqYja1KePJxzrimYwYoX4J8/h4/mRQPjVzwGfUdkOrKU8OThnHOHomRT1DX1zh+heAV0Pwa+8JtossMW1tqI5cnDOeeSsX8vbHwfPvwnLH8+amVg0O90+PR3YOglzfas8WQ02+QhaSzwGyAXeMDM7kzFfopLyyjctoe8nh05rEv7Jl8/nbI5tmyVze9Z7dgaet6YbTZFHI3Zbrpir1dFOexYG02bXrwStqyA9e/CxgVQuT9ap++IaEbcQeOgzycOfZ/NSLNMHpJygd8D5wCFwNuSZpvZ4qbcz9PzP+LmJ96nbU4O+ysruevifC4Y3rfJ1k+nbI4tW2Xze1Y7tstG5DFrXmGdzxOJvTGvt6E47ro4HzPj5r/GbPeiWts1q7nN9z7ilpj1f37RUC4YVk8cZvxt/lpuf+pdOuYYqtzHD88bwDmf6AWV5VCxP7rYUmU5lJfBvl1QVgL7SqL7slLYVwp7tkUD3KWboWQj7C4GYmJr3x2OHApn3AB5p0C/06BLn3rfn5ZMVusP1xxIOgO43czGhOe3ApjZz+KtP3LkSCsoKEhqH8WlZYz6+cvs3V9ZXdahbQ5z2t5IR9sTt05FpRH7YROQIyV1IqliP6xx/jSKV5iASouNK3qcU0dgDe+j/uWJvNyG9tHY19mk24/3vxHznh3qPhp6n+qrXxVaUjHE+Xs39HnLUfP7fkhWJWI3HSihM1voSTE92KIeFNODjfRmjfqyhqPYTrekzgrPlnfu80OP4o4LhzSqrqR5ZjYy3rJm2fIA+gLrYp4XAqfFriBpEjAJ4Jhjjkl6B4Xb9tA2J4e9HEgebXNyWNT5NDqq4qD195VXsKmkDLMDHxpJHNGtPe3b1Bw0a/hDFfMBbeQUBhazjX3llWzYsYfKGt8j4qjuHWjftmZsilM/XnT1LQ87SCDGhjT89Vr/qknUr1W0d38F67bupsIOrJMj6NerEx3a5qCwYr3vk5rgNcZ5H/fsq2B18e7qHwQN/S0MyJXo37szHdvGGcCV2L2vnNVbdlMRkzCjOp3o2C5+//2efeWs2rKLinpeZNUPlIrK2DL4WJ8udGp3IJaq17B7XwWrikprbDNXcFyfrnRqH3/weXdZBcuK9lBmueynDeXkUqk2DDy6Fx07dqRSbahQGyrUlgq1oSy3E/tyOlGW24mynE7sz+mAqe7zpY8Ot8ZQQj+lUmtYvx4p2W5zTR7x/iI1PsJmNg2YBlHLI9kd5PXsyP7Kyhpl+ysrGfG1aXH7U6tbKuU1Wyr/vv6sjPeV1xnb1zMfW7YqLi3jW/Hes69m/j0rLi3j27Via0iHtjn8+9q6Yy8uLeOmeK83yTq1tW8jQJRVJLbd4tIyvteIOOLWmZD5v1VL1lynJykE+sU8zwPWN+UODuvSnrsuzqdD2xy6tm9Dh7Y53HVxfp0fxmTXT6dsji1bZfN7Fi+2CWccU+/zhmJvzOtNJI67LxnG3Zek9v8om/9WLVlzHfNoAywHRgMfAW8DXzKzRfHWb8yYRxU/2qp1y+b3zI+2OvQ6rn71jXk0y+QBIOk/gF8THar7kJlNrmvdQ0kezjnXWrXEAXPM7Fng2UzH4ZxzrVFzHfNwzjmXQZ48nHPOJc2Th3POuaR58nDOOZe0Znu0VTIkFQFrmnCTvYEtTbi9VPJYm15ziRM81lRpLbEea2ZxJ/BqFcmjqUkqqOvwtWzjsTa95hIneKyp4rF6t5VzzrlG8OThnHMuaZ48GmdapgNIgsfa9JpLnOCxpkqrj9XHPJxzziXNWx7OOeeS5snDOedc0jx51EHSWEnLJK2UdEuc5V+W9H64vS5pWCbiDLE0FOu4EOd8SQWSPpWJOEMs9cYas94pkiokXZLO+GrF0ND7eqakHeF9nS/ph5mIM8TS4Psa4p0vaZGkf6Y7xpg4Gnpfvxvzni4Mn4NeWRprd0l/k/ReeF+vzkScIZaGYu0p6cnwXfCWpMZdm7aKmfmt1o1omvcPgI8B7YD3gEG11vkk0DM8Pg94M4tj7cKB8a18YGm2xhqz3stEsyZfkq2xAmcCz2QivkbE2gNYDBwTnh+erbHWWv8LwMvZGivwfeDn4XEfYCvQLktjvRu4LTw+AZhzKPv0lkd8pwIrzexDM9sHzATGxa5gZq+b2bbw9A2iqxlmQiKxllr4xACdSeTS2qnRYKzBN4AngM3pDK6WRGPNBonE+iXgr2a2FsDMMvXeJvu+XgE8npbIDpZIrAZ0lSSiH2lbgfL0hgkkFusgYA6AmS0F+ks6orE79OQRX19gXczzwlBWl2uB51IaUd0SilXSFyUtBf4OXJOm2GprMFZJfYEvAn9IY1zxJPoZOCN0WTwnaXB6QjtIIrEOBHpKelXSPEkT0hZdTQn/b0nqBIwl+iGRCYnE+jvgRKLLYC8AvmlmiV9cvukkEut7wEUAkk4FjuUQfvR68ohPccri/lqX9Dmi5HFzSiOqW0KxmtmTZnYCcCFwR6qDqkMisf4auNnMKlIfTr0SifUdorl/hgG/BZ5KdVB1SCTWNsAI4PPAGOB/JA1MdWBxJPy/RdRl9W8z25rCeOqTSKxjgPnA0cBw4HeSuqU2rLgSifVOoh8Q84la9+9yCK2kZnslwRQrBPrFPM8j+mVRg6R84AHgPDMrTlNstSUUaxUz+5ek4yX1NrN0T+yWSKwjgZlRLwC9gf+QVG5mT6UlwgMajNXMdsY8flbSlCx+XwuBLWa2C9gl6V/AMGB5ekKsEUein9fxZK7LChKL9WrgztAtvFLSKqLxhLfSE2K1RD+vVwOEbrZV4dY4mRiIyvYbUVL9EDiOA4NPg2utcwywEvhkM4j14xwYMD8Z+KjqebbFWmv9R8jcgHki7+uRMe/rqcDabH1fibpW5oR1OwELgSHZGGtYrzvR+EHnTPz9k3hfpwK3h8dHhP+t3lkaaw/CYD7wVWDGoezTWx5xmFm5pP8H/IPoKIaHzGyRpK+H5X8AfggcBkwJv5LLLQOzbCYY68XABEn7gT3A5RY+QVkYa1ZIMNZLgOsllRO9r+Oz9X01syWSngfeByqBB8xsYTbGGlb9IvCCRS2ljEgw1juARyQtIOo6utnS3/JMNNYTgRmSKoiOvLv2UPbp05M455xLmg+YO+ecS5onD+ecc0nz5OGccy5pnjycc84lzZOHc865pHnycM45lzRPHs4555LmycO5JiKpVFIPSf+Zhn19PJyYFlvWXtIqSYNSvX/nPHk417R6AClPHkRTUfSTFPs/PAn4p5ktTsP+XSvnycO5OCT9PLYFIel2Sd+R9O1wdbuFkr4Vp+qdwPHhKnh3h7pPhWnQF0maFLPN/5G0VNKLkh6XdFPMsq+Eq73Nl3SfpNzYnVg07fdaoH9YvyPwHeD2JnsTnKuHJw/n4psJXB7z/DKggGhW0tOA04GvSjqpVr1bgA/MbLiZfTeUXWNmI4hmDP4vSYdJGkk059hJRNdYqJ4XTdKJYd+jzGw4UAF8OU6MS4hmcAW4AZhtZqsb93KdS45PjOhcHGb2rqTDJR1NdHnRbUTXa3iyarI+SX8FPk10XYT6/JekL4bH/YABRMnnaTPbE7b1t5j1RxNde+PtMOlmR+JfVXEJ8IkwvfoNYZuE7b0NvAl0A14xs4cTfOnOJcSTh3N1+wvRzLlHErVEcutf/WCSzgTOBs4ws92SXgU6EP/iPdXVgOlmdmsDm18CnAV8E3jUzDaFffYD3jSz/xeevyxphmX+AluuBfFuK+fqNpPogkSXECWSfwEXSuokqTPRtOH/V6tOCdA15nl3YFtIHCdwoHXwGvAFSR0kdSG6wl+VOcAlkg4HkNRL0rFx4ltCdB2Ra4C7Y8pHAPNinu8mmobduSbjLQ/n6hCuh9AV+MjMNgAbJD3CgavEPWBm79aqUyzp35IWEl3X/gfA1yW9DywD3gjrvS1pNtFFe9YQjafsCMsWS/oB8EI4mmo/UbfUmlohLgOGAv9tZjtiykcAfwaQNAxYm4nrjLiWza/n4VyGSOpiZqWSOhG1aiaZ2TtNsN1ngdVAGdFg+4/MrORQt+tcLE8ezmWIpMeAQURjINPN7GcZDsm5hHnycM45lzQfMHfOOZc0Tx7OOeeS5snDOedc0jx5OOecS5onD+ecc0nz5OGccy5pnjycc84l7f8D49jul6DhlgMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "x = np.linspace(.2,.9, 1000)\n", "y = [f3(x1) for x1 in x]\n", "ax.set_title('V-I characteristic of IN4001 diode')\n", "ax.plot(x, p(x), label='polyfit')\n", "ax.plot(x, y, label='Shockley')\n", "dfax = df1.plot('VD', 'ID', kind='scatter', ax=ax)\n", "dfax.set_ylabel('current $I_D$ (mA)')\n", "dfax.set_xlabel('voltage $V_D$')\n", "dfax.legend()\n" ] }, { "cell_type": "markdown", "id": "abstract-plane", "metadata": {}, "source": [ "This shows how a polyfit will always undershoot an exponential so from 0.65 volts onwards it seems I am not going to be able to find a polyfit that will follow it for very long without going to a large number of terms. The following image I found on Quora but it would seem to indicate that no exponential model is going to match what happens in the reverse bias and forward bias region of the diode anyway." ] }, { "attachments": { "diode-quora.png": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEvCAYAAAAD0BVUAAAgAElEQVR4Aey915MdWX7n90mfeb0tXygLj7bT0z09hhySS7N8kMjQwyqC+7DSn6A/RK9621CEXjYUkkKK1Wo2drgkZ2hmeqbRDrYcyttb1/u0ipOFQsM2CugCqgrIg7ioe/NmHvPNvOd7zs9KQRAEvMXl5o0b/N3f/pLtzU10XUeSpGNAI0BWVGRNxw2gb3sEBHzvmiWJfq9Hp9Ph2pXL/OWf/ynT01MgK8fQ56iKCIEIgQiB14uA+nqbO12tOf0+rb5N00wiTVwgPTCALMv4ISe/HC9LSEiqSrtSprayyIgZcOliEVVT8VyP78NCiizT7XYpV2Qsw6Fer9Fod0klE6cL2Kg3EQIRAhECR0DgLSagAKfXpdl3QgJSCkOkzp9HTPKe6x4BuqefIskyqmXRm7tLfe42l+IuP7uQwYpbuLbD99lvqqpCp91hc8dlo+NSq1VptjoRAT39VkRHIwQiBE45Am8xAYGQPordji8rKLqOYpjhBuVAVPZyAjNJkZF1EzQdLwiQfBddAUWXUSQFXm5jdfAYqSpxV8HSRF0BnueFbZzyZyzqXoRAhECEwFMReKsJSOh7ZPEKfHBdfLsPgY/n2LysrEwSZKao4Dph3V4AXdtFtz1c1/9+O6DAo+f49F0fP5BCcaHof1QiBCIEIgTOIgJvMQFJocHB8RgdvPytf6L9QJgrHK2Ia5+4/miXRmdFCEQIRAicOAJvMQER7iC+zwQuyQe7j8A/KmU8eb9F+4e7GEE9YjMmtknPq/GQfITRRFQiBCIEIgTOIgJvNQEd6oCeOdkLiwFJRlI1dE2YOns4fQfP8w92T74Umle/8I0PAhRVQVYV7F6PeqsbEo6qG+iGji7LyPf1U0/r233aE0x132LvhXsQXRAhECEQIXDiCLyVBCR8aSqlEnt7e2xubeM6LobyFF+aUL8SELh9es7BvQp3LIqC17fp1tvIioyejiOrKoEvti9HKJKE7/v0Wn32q3Wq1UZIJGosTiKZIZ80iGvygRrqMQYSuy5Jkmm329TX15GNJJockM/lUJ42hiN0JzolQiBCIELgJBA4dQTUarWo12ooikQ+X0DTjWPH5fr16/zv/+E/UK3V6Com+asfMjBjhruaBy5AwppNVlH6FWrri3zx1RauXuCHf/g+Y5NDbM0tsfDZZ5iJBLM/+VHoxOr0euGu5Ls6LERmkqawvrzF76/P4SoqI+cGUAOX8vI2TlBhYqLIzFieuC4jpHwPS/hk4XQqqyyvLPK3X/8T8XSBDz94n7/+q7/i/Pnz39X0S33X6/Vo1OvhtelMGsMwX6qe6KIIgQiBCIHHETg1BNTtdNgvl6lUazRbbRzPI1uqMDY8RCabQVW1x/v+0p9v3rrFv/9f/33oQzM+e5E/PXcRS9PhIYsyscuQVY2g3aG2foev//46bXOKc5dmGDs/RbfTYuXGlyQKRaY//QRF0zkgoO/ulix2MLrG1laVv//7mwzOnuPKR9eIyw79xjIbe/vMIREYFpcG48QNGd89iKIgRG+CgAJJYWN7l//yy7/DdlyWlxb54P33j5WABPFUKhX290u02t3Qsi9e2iefy5LLZTFMQUSRBd533+3o2wiBCIHvQuBUEFCv02F+bo678/NoVgIrXaBS63FnYYXh7CIf//AjRsfGv2scL/SdIoOuHijvxd/7krZQ+X9YkZhaxavnQw+VTE5H8j12t8rs7TYQhgdB4OEfOq0+RF6HdTz7r7hWhkAnHotRLKbI6jIpr4NlSXy177K002YyZ5GwVCTJe8R/KIyeJKugmuC0cF037M+z23vxb5aXl7l580YYeSGdG0SPxVlaXsZUJS5fvszE5BSxWOzFK46uiBCIEIgQuI/AiROQ4zjcvTvHwsIisqKTLwySyBTRzTZy4NHptbg9v4KHyrmx4WO5cZlMmmIhR63WIplIPBR+59HqhS2a7/nhan/qnavsV1XaK7eon0ug6Sq6FUMSPj+ivEiIgwBMTSJryUi9FuW9En7cpFyz2WsEqIpGNq6jytJTiEUohQKEwUI8lcbutkin0scaDaFcqbCxsUmz2SKTyzE4PIqqm8j47Gzt8PWdVSQtzqXzk48CFn2KEIgQiBB4AQROlIDESr7ZaHBn7i7drs2Pf/ZHDA6PhCFrRgcDLs1MsL6+xZdffEG1UkX/6SdY1svrIIQBwUGbzTCKgNi0hLuJpwB2MM1LqF6fhOKRG5rEMwKU3VvYeyvYqWK4K9E1+SUEUVIYyUD1e3RqNXa39ukmTO6tNtmr+syeT/LuuRQxXSHwxG7pKcKuQ2WVJOF5DtVqhVqt9sAvSIxLjPco5fBccX5pf5+F+Xna7Q4XL11h9NwkyVQmHOv0xBg37y5x6+4ym9slJkYHMC3ryO0cpS/RORECEQJvDwInSkCu41CvVvFcByseI5FMYpoq/SBAlyRMS6VZT9BpVdlem8O1W6GyX4SgedEiLMRUVQ2tz27cvInjumhi9M+ZpIWhtTCJFjqhVDFHMjlNq++xd3sZv9MiPT6ArBwQ2yNysu/sYIDrS9iSRTpTZHh4kLSpYEgGMy4MDaTIx9SQ2A4Coz5ZmeAfEbcORaXTavCb3/yGevNbfARGL0JAwjhC0zQ2NzZYXl3lvfc/YHr2AqlMDlcEUQ1AUxUGikWq9Ra+77K/v8/g0CD6KzAUeXLE0ZEIgQiBNw2BEyUgsT4XE6wgBlUTRgYivhk4rpg8wZJUhPuNZ7exe+0QezGpChPmFy3iOjHJitX+AwJ7zMT5yToPdhC+59LvdFBHZihM50KruMrKHfbKTdJBTFBUaK325PXPOhLgeBIdT0NPZRgeGySrw1AmjjBSECYHApejSfUOnFYPzxfjEy+B0YsQkDhXvBzXCdM9aLpFMpMLB9Dv2SiK2OkFqLJHwjgwTe/2es/cQT5r5NHxCIEIgQiBQwROlIAUTSORSiEiSPe6HRy7F676RdRnMfn2ex7NVjMkjtmZGX7+85+TSCTo9/uH/T/yXzG5inw/ot7dnS3+k6IiFvbfPcsLhpLCfDuCGFTdwsykGeptkk86LGCxZyfwAmHI8Fw2e6Svwn/INFRC3pX8sA0RRy4U/T3475FLHvkgCNoX9tmehxVP8vEnn/CTn/wsJDBBPi9C0oKwwkWAqrK2OkO+UMS04mzvlskkk2iaGtYrVgXNepW97TVymUx4L8K4d4/0LPoQIRAhECFwNAROlIAEKQhLqmQyxd5eie2tDWLxBLl8ChEPdO7uHHN3bjA6PMS1q1cYGRk52qiec1YmkwnFV2L+fqoE7r5uKPAcPMlAihfISBa6EaApMsbwJJMffExV2iJXzISTs4iO8Nz4OSHfBUiuRyptceHyECPDKXTPBffA30eQwZFK2PGwo6GJej6XJ58/2LEc6fpnnHTx0qVQFPrZ767zT//wX/nkk0+5cGEc24Fytc7m9k7oFzQ+Mkw2m42cX5+BY3Q4QiBC4PkInCgBie4ZhsHk5GSof2jWayzM3wmV3r4XsLZyDxmPK9eucuHixeeP5ohnCB+XZruD2AD1+k5oafYEEQU+gRsQ6Am0/CT5tIIak5F9myA+yNDVH/FJagNV0xFm3a59tBxCYtciCChfSPLRD2dIxU0MP8B3vBcQZ0l4jkO33QxHLDKkikR1x1GEHkjcj3tLS8wvLrG5vgxBn26vT6PVwXFcxsfGGR0bw7Ks42gyqiNCIELgLUXgxAlITHjT09Pk83lWV1dZXFxid28vFJeJdNPvv/cjBgcH0Y3ji4ggUhk499VIrrAyEzdfqHseNhoLA4IGKHoMM2cgJGxCVCiUPZ7jhibYAzPTD0R4nmvf3049XMmTT5XY4XheQDJhErMGHwQiFebeRysHuprAs/H6B3qxo133Ymf94Ac/CHec84uL/MPf3Q7JUUSmmJ6ZYWryHOlU8sUqjM6OEIgQiBB4DIETJyAhhjNNM3yJ90Hgk4jHQgK6cOE8ExMTj3X5+38cHh7mo48+ZnNjnfTIOJKhY/tPt6yTFBE0VDsgJ7ErEg6owvlUWNWZZthfz7YP5GdPbKOe3lchZRMWZaauhcYGofju6ac+OBqqhcSnwEcmIJ2MMzs7RSDrvPfe++Ty+QfnHsebdCaDCL3jBz6qwECSKRTyTE1NhIuF42gjqiNCIELg7UbgxAnoYfgHBgYoFosPRFGvKtXApUuX+Ld/8zesrSxTdqGTjNFznafrcEKrMrE7eUg3I4jS93FFArvDckTyOTxdiOJEJIWjqny+vc5HClzGRof5sz/7M+LpAX70wx8wNjZ2eMox/pW4cuUKly5dDusUCwTxikqEQIRAhMBxIHCqCEgM6HVMcqOjo/z5n/851dIeX9xb43c7Ffq2/YD4ngT2IfJ5+MsXZY+Hr32eAd5j5x5+FNZtnu+F/jg/mZ5iYuYy56cnQou0w3OO968wX49I53gxjWqLEIgQEAicOgJ6HbdFmGPnCwXy6RSbrR7afgP/JZxbX0dfH29D6JDEyzJjpIeGmZmeIZNJPH5a9DlCIEIgQuDUI/BWp9MU/kRhIM8XCFtzWu6o0M2IOHr9h8WAp6VzUT8iBCIEIgSOgMBbTEAHERFexGHzCHi+tlPELigUx52RndtrAyZqKEIgQuDMIPBWiuAevjtC5xTGidO0MMK00LHLYWbRl9N7iGgGmmGG+YFkRUVTVSxDB11D/b4KfFXBcER6cC20TDuq4fbD443eRwhECEQInBYE3noCEnHh+r0+TrtDr9tGkRW8wxw/L3GXhK+QL0n0ux3sfg/bcej1bWRNxenfz+v9EvWKS0SIok6nS7vToW+bqN/TCOIluxFdFiEQIRAhcCwIvMUEdGBS3G62WZlfore8Sq+yi6rIHMUv51noCwJSNIP91SU2790hW4Z/zmqYpoF9xGgJz6pbEQTUarG9s4kbG2IydymyUHsWWNHxCIEIgVOPwFtMQIRhdDLJBOOpBM1+l2SnjiKLaNvPMLs+wu0UIj0hepNkF3NshKQlUXIS6Cg4R4528PSGZE+m7wZ0tBzJ9GDofGqFqbGffn50NEIgQiBC4DQjIAVCm/2WFuFMWq7W2NotYTs2hi5SQhxDESkjPBff7qHJIgq3FobcOQ6khchQJKCLxZPkioPEE8lQH3QMvY6qiBCIEIgQeK0IvNUE9FqRjhqLEIgQiBCIEHgEgVAEZzsenZ4Tip4kRT6IU6YpqMp3W4IJM2DH8RC5bURssxcqgRcGBBWRzVRZpKj+7qttz8d2fFQpCJOj+ZKMpkgIO3Knb9PtewSSjGWq6CKLXVSOjEDQ6+J12khmAilmhpge+eLHT/QdAruLL+tIqomI3/q84ne7BL6HbFqI2Hu+a+O23PC9ltARkWBFtHDPk8NnTdGe87A8r8Ho+wiBCIFTgUBIQFulFreW9uj1PfS4STab4MJIioGU/kQnBeEIMlBMjU6jQ3m7ip5NUBzKEnvi7GccCDxajTr7PRlXTzKQUEh9p/TLZ7fWZbPcIaO6YSTpnp6gkNZIuC47q3ssbDVwdJPJ8RyTw0mMFyXEZ3T1bTjcX7xD66svCKZ+gPXBB8RivDQJ+Xsr9DbmcHLTqKOXsYyDRcKzcAxcj/bdOdxun9i1y+gpg87mMuXruxjZQYZ+OgOaQ2+vTGNPwipmSI9FkR+ehWd0PELgLCGglrfLlBoObVlF16VwR7NX6zCQs8glVdxej71KFztQKRRSdBo9trbryJkksmPT3mug9V1sTSOpKqQsnZgmEbg2lZZN15HIJE0S1gHD9Ftd9ktVtqot6mqC9GCSogzNRpf9So9sNkYm/VDqBT/A6/TptRxa/QDN7aOoEh0piVa36bWb7LZcHFXBw2Zxp0ov8Lk0ksFQj7D8Pkt369j7KsL69OmXt2jcWcAuZ8hkpzFmk7iBjV2tIPfbyGJnlCyimmqY+wh69Dd2cXoByugohqWFEbqd8ibtrz6ns75KcCVN4tzBTsXZ26Xf6CAPD4cLnG8tXxzcXoPWbgXXVjHsAL+5R3/uC/q3twhm3qXnT6Ej49b26c6vowYzMHb12JGIKowQiBB4/Qio87c2kIaLvPPOGIM6tGtdtmvdUPwmUhQ0Gk1WN2rUPYMBR6G/32BjtYQyJJFL6xjI2F2HtfU6IqH05FCakYJJtVpnab1K3zc4N1YI00+LmJblcpP5pTLbbRetaJEqunR7Ho2dGutbbQo9FyOWw1Dk0MRYJHqrbtfBVRgrJDFFqm7HC5OjlUo1tH4Pa7jIu5fj+N06v75R4u56wGQhgaE+uYN7/RCf4hYDF7e+hW8oMHkJt9TBXlokGL1Mr71H9fYNNN9BNvIouT7JiRHkBPi1bbqLc3TaMgoq6XMFNLdBd2OF+tI2ds3FPK8iSx6+06O3tkxjuwZdl+T0BKn4wX0J7BZ2dRNHMZELwyi6gb1VwtvaJTXg4Bd9GtU+6WICTfEwe3NIHQPXv0q0tjjFz1XUtQiBIyKgru7ZzAxKTKS0UISWHVBIJgxUXcUT4hFb5IFJY9gSS6slOrtVcoZEMiN8W0SuHJlAt+g6Ms2dMglFRk3q3NruUNlvMZaXqXQ93FKPrNqnbENNSaBJTVL06LVr3C27JDyX4WGLzXaH0h2HD6by5JMGPdtlYa1GYBjMjqexMLi9WuJ3ayXW7tWYycT5i9kxhi2dvprE8iq4ro8fhQl47iMgdC8h4Wg68R9/DJ9/jtpbIPDO4e+v4e/ewxm5iFfrIq9fJxYPsPsWnfkVkdAIczBJZ2WJ9vp1zFwM2x/AS40i9xZRjQC/XKK7tSSyjUM6Q/fGDZRGhfinH4fm7m6zSW97B6Q4xkASxfRpVz263iC5DzLYeob6rS2MS+Mk4jpWUsZxArpNiCXClEzPHWN0QoRAhMDpRUDeb/Tp2x6HanvhSBk3NXQJ3J6H3QuwNAVNctjaLlOtNilmDc6NWKSTCqoqEUtZpNIxAtun0+xS67ps9g2UVIaJsTSOpHBrvc3qWpkOMpnxQWYm0oxmArrdJl8t7LG018FI6LiBx06lheMeJIhzvIDdpkOt52AoAaYqhf2tt21sCQI1oFprUG47+K5KRpJIhcm231rr8iM/bUG/R+fuMr35TWTPJpbsIPsVuuUmzl4TXdawxqZR4ymC6i50Kji1Kq21MurAKMnLs8jVPRr/8Gta38yjpIdIv3uF5GQKPaXilkt0bl7Hqe0jnGilvV38nW38+7mV/I6NV+8gmwpqwsdt7tDdr9H3YjhBGndzj+DGFwTVMkoihprK4AUmIhHs93DVOjI+J3Wi7zrs7df5cqHEF/fqbNRd+k/Pl3hSXYzajRA4FgRUXe5Tt/usd33GDIl+u0+50ccScn3bplups9lssd1xqDdtsmLHIwUIYnAcP0wNkDCFU6dCOW6EKaolxyNuWGQ0HTOmE9gyna5D07cxVRcrLRGXNRTFJ2gENNo2zUofy1DRDJVz+QQx40BTIBw7dUvHNIQrJ2GYnLgV4+pkltSMg+k0uLtRoifJXBsU8iEbPySviIC+8wkRqcH7TbqVLv3SPrFAQZd8HGJU7+4SVFxi6WFi6TRStkc3kwFDZIb1DqzS+j5+N8APFLotBSoeht/DSng4loavKrhBgGO3CObvgNVEUVW0XA5Juq+bE45RwpIxFQsje7ur9/DrW6iyRufeDsHWInq3i+RewXYSBIjoFY+lTv/OQZ7NL32ny92lLf7j70v48Sx/8uk0n06pCEnp4+UgPcdhHq3Hv/3uz+IX8sCe8JEP331d9G2EwHEhoP7wo3Ostn1+9dtlBkwZVZhWewFXZookJJ+9vRorew0qqLS6AamkRMtzae336Hc8sj0PTQlwFSk0g/ZVLdTdaM0WO7s1buwbeAMFJscTDPgSq6Uuy8sV0l6XwdEMairJZK5DeavC+naT1GCedDEZTlZikMIUPBuTUeMKviLTt310VWa0mGYyr6A0NKrVTWqin4FPo+thGQrK9w38eVwIn9J6/NoadmkRCkPo2TjxyQJ6XKVdqlP/8hZ+rYb10SVUVUMRChdFw8NAjWsohkfzi9/TNAp0ewbKtXfwY1C/tYS8cgO1OYeSnoHpizA5hnt3A3dzG0mYWWvCKfcAlEBYWMdAUsHeb+Mu7mFYFqnLFwjcADfew2ns0KrW6bc66L0+SsFH0j0RMfaUIvv9uyUpGqamojt9FNklFVd4umeBxzdLJfZrDpdmCoxmrec2LnSqtVKdnS54iRTjOY1cYNOq9mhrBlraIKnCdxqlPreV6IQIgaMhoH7w4Qz2rV227u6xp8kkTIW4ZYQ7EFNWMJMWuUAhqVtkOg75eEAyF6ONhIpMImlhiZWxLJPPWKRzFomYTlF16TZbVCWP0WG4NJkkhUW5s02v0UZ2PfKDOgPpFKPnAyoJiZKrEiRiGCK8zH0HEvHDy6UkWrjstWziHFjaaYZEzFKJy2neH++x3+pRa7RpSybJZCKKDvCc+y8MAEQ+8Pg719CK0yQHYwer4ZVVequbeKqBns8iCQKKWeiFArKZREnHsEYHaH1zF6dZQZu8hnXxPJJXo/VVDXurTSxmokk6ajaPcvVDVK2AvdpCGGRriQTy/dW2HIuh5dN41Sb+fgvVSBObGSf93rth751mgebmKu1ynP7ePlLPD41fVCs4fDyeM8qz8LWH67h0fQVFUYmpoOgWowM5fjBRxsxbzBQMrG9NB8NBCf1st9tieaNGqQNj4xkCz6Pbc+jYHmoYhV2l13dxfUgkjHAH5ToO6xv73Ni1kQZcLCNPzvRxup1QDB40k1wZMsma34PgA59+p02n0wkXs67vh+GpYsk0MctAfbDtek33J3APUpcECrKI1Xi4AnpNzUfNPBsBVXh8XJ7MM5g5cP7Q7juVppNGKPJ6991JbC8IV5ziQRK7HUNXcFAJPDClBKalkUImfbkQiuJ0XSF5aZDpkTSSqhBLx0iH232Vy5NFhtIHk1BckFfcQM3lGB9I0PUkxA5KENrh869qMpm8SbXcZ22nzVQxzkghjq9o6AqolsHY5CCpep3NaoeWHEfLpEInxmcPO/pGzoxjWUUMLYliWQ9EMebICMU//xMC10XNZFBiMZTREaxcDiUeRxL39vIHmEPT+K6MnMqhpvVQ9JlIdPGvTaFqLnJxENmIERRmCaxR/PM2QvWjJuIP5D5qvEBswKG/che545F+5zKxsaEHN0dLjpCaymANQleX6cztEPMtYsL45cFZZ/uN266xU6oy30mSSOV4f/RA/6oIYx5FhkDCc0PoHhlou9Fha6NMyjIZnRK/X4tWtcnScomNhkMik6SYjbFfbYe/q5nJQWYHdOzApWQHVOtN0mpAt2UQpFMYBYO91R32NxuMx0bJmvFH2nuRD77fZ23+FksL92gHMj3XxUykmbryA2amRkg/RqYvUvcLnyvIp7MXivm7UoZEIknS+h7k+sIdiC74LgTCR0GYxR6axj5+ci53dKc/SzMfXG5kYmQEqT1WMgkT8Xq0aBiGxtNaErl50rk0GbeD2wZNVkN90IPrJdBjBmk5SR8ZKRsjEbOeG8XhwfX339i2Ha6SRLpusUo6jUXooZ1+P8wxJHIYfZ8iGSkU8XqsElnXMMfGHjkqqxbEvhXvyMksajL7yDmgo40mYLT46HHFhJR4PXpYfJIVAy0xiJRYQ1L6aCMFlPjDz4yCaiRRhWpxokindwkpWwwjZzxZ29k6Eng+vXqXPbEbWdvj62qVzECHJDlmhpIQ+PhBQN8J6NkBXihx+HaM7U6fzVKD5GCRqxPJ0IL17nyLxaUaRi5Oo+OwurNDKqZgJS3mtirgqSR0ia6ZQLe6ZII+rZZNyZNJCcmDEFu3e/jfK2hugOd3Wd0ts1bqcG5qjLyloxkWCfH3PvmInVgQ+Gj6Qz5/94cnnvPHn8tvR37wzrH7OG6AopvcVxeHX/i+hx8I8j7YZnUbVZq79yi3XOzYNIoeiwjocTBP8PPrXIu81DBFgjcrlmSkaJCMO6Ssp5ODJ2nEEgnShoalS899gB/ujFDk7u3t0e12GRkZIR5/+dXfw/Uex/u+EKu02rRrVbY2N0PF/uz5CxQHHpvoj6OxE6gjkHT0iXNIdo9AlkL7uCclND3kdALr6iU048kJ6wS6/f2b9APsVo9qpU+p7FCtOviyyn7NZGIggSzJYQBbSQkt3p/Y8fWCgLrnY0keh8u57ZrDfgf+8IMiFcfly7ldfvbeAFPnEvzqZol+xWZmKEOgxsgXcyS8NrtlGznpcDWvUoxZOHH/weT9+CAP09crsvDRk4Xlw+OnIPZqfuBS7/v0lTgj45MMDw+gahrxWBz6NuV6lWajQaDoxLNZ0jEDORCBgZvU2z1002Agl0EKAhrNJsm4Gd73StNGVwIsxaNSa9HtucRiMWKpOCKwcLvZDUXGyWQMU+zuOj12N7cpL9+j4SroY6Pk/af1+SnDiA69FgROPQEdopCM6Vj6oSf+4dFv/4pYdMLUV8SHe9EiYtqtrKxQLpdJJBKnhoBavR53l5ZYuH6d0tfXWZhbIDYxxb/5d//DG0NAkqQQLw4hVq6K8izH4QPryKQunFtf9O6ezvMlRcLKxhkajTPpd6gnY6QLBcYHU6GRjTAzFwsjXZUwjScXVF4gY6MjHCgOl2Q9oCtiOJoaMVkkMJQxDCVc8RuBT2mvj+a0UdIyQ3kTvw1bm3VEmsTziQKq5CF5PULZ+mOwCfJZW1uj1WwyUCySKxQQ0oIniyRsFfGbNarLS9xKwEZpnGxhiGuzE7R2Nvjy95/hKyokinT9Na7OZEia8OvfrrK8tsP5qQIff3iNasPj65tLvD+bZnhynN+v2qSpMZ3osV7XaXd6ZMw2bSvOvR2f5maXy1cvcu2qRGNjnh1B7nWH9toutmwQL3g4D9B6sufRkdePwJkhIDHx6NrhT+1JoBTlyR/pk2c9/Yj4odfrdUqlEv1+/+knvWNm44gAACAASURBVKajLddla3uH0so9qovz7KwsU5qbC6MSLC6vkvzwY5rN5mvqzatvRiyitYdEt09vUQ13tC+xtnh6dafhqCyjJ00GtDyBpaC24yRSWc4VVXBtqo0m2003zCs1UHdIKiLE1bcd1yThyqBgPCSK1U0ZLSbj4odiylzSOPjNOB6mB9s9maYjMZtQGB6I0W5rrG1VUXtN+kEOQWAiGWNoJPJtU+E7QUB37txhc2ODa9euYcXjzyAgcboUKvrFvRXGEo7j4Dg2rt9kt15ifrvJ+LlR0prM5sI91rUUucEC+80+vXYXv1lif3OFxa0ud+8skAiS+AZU+wXiQjet2NiNGvsbW1SlPbZMk8VSHLWZ4MIVCbff5t78Ak3XojA6Sa4/RLXjEoj4kMeRE+UxbKKPL4/AmSGglx/i0a4UVkMnof8RARtc8SO1+zSqVVZXVvjqm2+495t/wr/zDQO+y1AsQcHUaQuxWzZ9YCV4tGFFZ51yBCQ9QSanczEh8kZJyEGAbfdo93r0VZ2WrbJVcTiX1MIYi4fDiesyQ3EZSeS0cjzSqkw2aTCaj4UWrJ7qM1KIkYqJSHoycVUjk5UojGaYHM9QSOrYCRfnXBJXlXCkgI6wXLRSqGJ38lgRBDQ/P8+XX34Zit5Gx8ZIp4Vp0eMlQGisvFiazNQVPvr0h4yODoSm/IbepCvCM2XHGJy8xFjcobmxiN1u0GOEc7PneWd6jKJWZmV7m52dBsUs7NVqOKu7jFyc5uK5JFZrh9h6G3ptyr0WJa2NqlucmxllYiyH5lYoV220VJapiSHkeI3V7RptTUKOQqQ8fsNO9POTT9qJdufkGg/NMxUF4fj6uoogn7X9Cgu3brJ+6ybVWzdwNzdCk9hYvYJULWNpGoamY4hgr7EYrmGEosbX1ceonVeMgDCqsVQMw3/w7Cmqzuhwnp9aaXro5LMa92P5PuhMKmUyNJzi650227d3+Ggqz8RwinzaIp+yQvHdBxcGSae0cJd0+XyRcQ9SGZN8ygzTn1gxndnpAXpOn0avTV9WkPMFZONJ0ZpIhLi4uMivfvUrhGHQO+++y8TExIP+PPwmCDz6fRdPGD2ksySF5WNYfOj5UN+mW01T8RNU+gp5V+zQeqhKgoHBYdJBwM1//IZyq8snH07x9cIOC7dL/M07kLP3WLt3l5qfwBwaJ1VponRquL6DZunh4sySVNK6TMu2Wd3Yo7u6xF7DxjSuINK4ROX0IBAR0Gu+F30/oFytUtvfp1EqsXNvieWvv2Tlqy9o3b5FttPm3GCR/OAAwcgoThCEsdSEZZIwgxfpwoXIMCpvBgLhckcCkYfrsAjLruFB8To88uRf3TLJDWbQKiJySQ/b9RnOxcg/tClJ3g/6Kq4eH3+68UYsm8S0NZxKjULaQLZS6Oaj04LQkQr96Pb2dqgH+uy3v+Vf/fEf8/EPf8iT1pgSsmQwmM2i4yCFYbEO+x8nn8gykVYIOmWqmkZs8BzDAwHFRIy2I6NZJrpaIJ0fJlnwuXT5MhUnzW5NIicczLst+p0WQWyQTCbHQLqP3G5QCooMZeKh6NGyUsyen2K94rBXqtKougRajHzMwBS+G1E5NQg8+qSdmm69mR3p9nrcW17hy6+/ZvH657j35sm2GiRdh9l2C7uQRQsyxEzzfjQ7MTOJgHdirxSRzpv5VLz8qCzT5Nq5Au2+Ryb25K7lqDULZ+NkMslsSkXRVWKPzdHtdpvbt2+HJCTqvHfvXrgbatRqZPP5x5qRUNUU7713NUztkss86lwxNjmBFTNpixBLeowLl2bJxpQw4oOZlTFNC0tN8pd/8cfho18sZkllp+nYPiP5NJpsce7dFFbTx7E9zOxVRnQNT42jqhbZhIxmJhi59AFmtUGl0cIZG8SKJUhnsmSsKObQYzfsRD9GBPSK4RcWRhvbu6wv3mP71g12735DfXMTe3cbqbSLJAWY8QQJXSfI5fBkGU+EQ/L90Az1FXcvqv4MIyBLEqP5ROgvJGbrl55aRSZhYc78DPGzMM754osvwh2QgEv4zAljhN3dXVLCWfkhQwjxvSxrDAw+3U1AuEqIlyA1UR52eTBjIrakMD+HyYnx8Hvx34T1MIkZZIpJjHiTfs9B001iwpFahAIT/4IgjDWoxZIMmHFSmS6SYYWWhXK0iHuA6Wl5ExHQK7gTHcel3WzQE747q6ss3r7L2u27lG58CVv3GDEMJjIZglw23Om4kownfvxCQRrc/xG9gn5FVb6BCEiE/kLfZ2TP03tubm7y+9//PiScw3a2d3e5t7LC+OTEgX/P4RdH/Psw8RxeIkI1PYMDD0958Ff4BloP+yyHtnciWO23OlwR2V9Y631bvv3u22PRu5NEICKgY0a/3mwyt7zM/BfX2bv+OyrffINXrZIydMbECs2ySGha6Csh5P5i1Rr6fBz2I9LvHCIR/T0lCGxtbfHNN988Yv6/srbKjVs3ef+D91+KgE7J0KJunDACEQEdww2o9fvMLy2xuzBPd2WJ5s4O5ZVlqndu0VtZJaFIZIYGSRfyeHELzw9whF4nUuscA/pRFa8KAWF8ICKECPIRTqgPl1s3bvKff/Gf+fSTTxgZGn4yKoJTpVkusbTVplxvk4ibTExOURzIv1CUkofbfJH37v1V3WFInhe5Njr39SFwKglI+ByIrfTjsuXXB8t3tyR4o9PrYXe7tGs1Fubn+Jfffcbyb/6Z+NoSY4pCMZmiEDNxz8+Ekb1VRcEWnCMd5FD67hZO17eud5ANTYzhqEVENgh8IY+XEKKQh0UjR60jOu9kERD6lEqlEsZIFCbXwllbkJL4XWqahmPbtBpPc4r2aZfWuTc3z421Lpt7dXLZGA4GWixFLi6mnQNx2KHETLQlwumIZy0IJDRNQQpEahgP+X6KF79/YO0nKTqWeeCVG/gett3HF86vqgig3KXdbrBVCbCsBGODySg1y8k+Rt/Z+qkjoEajET70wim08MxwH985plf+5U6zyef/9M8sfPZbGndvQ3kXkV10tN1Ct20sTUVxHWRND4MtivBTwoxaBJc8a57Y3Xab3f0aLhKjwwNhOKTnARz4Lp3qLr1GB0VJExPOs8mnmwE/r67o+5NDQCwaBgYG+Ou//mvee++9cCe0v78fxkscGx2lODDA1atXn9j9uF6XGytV1nZ8JqbPM3tJQ5K61G2brZ0d4uNZbFfFcX3SCQUvUGg1OritMvv1Do5iMjWcRrKbrO7WiI9Mko1rVO58xepOE3VgivevTJOKadT2NlheXaTlW2QHpikqFXbWl/hsVWFo8jwDhQTWa8//cHL37Ky1fGoISKyuVlaWD0w9A9ANnfX1NbKZLGNjY8QeUSa+XpjF+n+vVmdnZYXmxgb766ss3/iaxc8+o704R1EOmBoaJF8cwE/ED3x3DsVr93cPr7fH37+1UmkvDH7aabVodB0cX2J7Y5PBQo6hoQLJVPLbzKaPNRd4Lt7eMp3NMhhTKIoVEdBjGJ2Fj8I5WywCxevjjz9meHg4jJl45coV3n///XAX9MQ4Aod+q8zidpuqneJnl64wXEwR0GduuRSaW7tek3ubfbp9jwvjBl1bYeXeHt7+KrZiYQ6O0Ky3aNf2WdkNKMoaQcpgp9Gn3qqjqWvMrVlkVIf+7jx7tRZlL0WtsYhtNajWG1RbFpm++0T33pQDYsdYbfS4u1EPzfAvjWUYH3jY4OJsjPRUEJDwsp6bm+M3v/lN+FCL7X6312dnZzvc7n/00UeIhz6MwPsKcBX1itWe+CvSRosi+EOIA/rdLjvb29y6c5vrv/xbdn71K4pul8lijvc06E+eQ5XlMEWEIzY44bVCvHDIQMfcYdHPQ7nFMVd9WJ0Qs9y9exB2xbIMcvkCnhuwurCMZZm8884FLl46Tyr1kNfj4cVhmgUJvVNBLe/Qiw3hut86WT50WvT2DCEgJryeCA/U74ex3YQpthDDPVECG6/TwO338ImHBjbiHAmDiZEBCNp4foXFzRLtrsdAKkaj7XN3YRW5tMHU1auMjOQJmneotloE8Qn86i71mk0jNs3gbArL2eXO+g69/R0m5Q0yMx+Bn6K18CXVjI86NMGFZJrxYg7tTYle+xjQrY7Nb25u8b/8v3cpdz3+p79+h/GBqcfOOv0fT5yA+v1euLVfWlpiaOQcxYFB8rlsKK4SCboq1XI4GQqSEmKAV1EE8WiqimmaJFMHiWvm1jf46puv2ROxrxbn8VoN5N1dEnsbWIqMHjfQLQtfOI1K0mvz3RHkoz/th39MwAh5+sbGVphPpjAyTSGXpJDLhHxaKLbZ2trmzvwKZizOtaupp+t2ZIGNFkZjRreQT3D3ekywvPXVHJKPIB5BQuLz00ypRX51xYihKgGKbSPifx4Uj3JNhNvpYRoO7T60+gdWoI7bp9nqoPV6YbLLbMrC7wrfpATp2ADy5hqlrUWWYirFjMGYoaFJKrYjUnh0yWSTGCRx7jZxXRUjniRrZEgnrDc29vVOtcPffbHJL7/YIJGw2G90sR0P/em52w9vwqn7+0oJqNFos7FVC1NpOyKVdtxgdCDJYC6GFjr4e9Rrde7MLeH5En/0s5+GDmzdrh2qKC1LZ2Njk7/7219Q/7wS5v6wrG8Tox0HmmLnI4wetnZ32d3c5F9++UtSqsqdmzdCM9Pyl1+Q3VhlIptmZnQE6cIMwsJGkE5XbHIeErG9Ui8DocwPoNfpsL2xQX5w8IHP0HHhIOrZ3Fjn1u27ZAfP8aMf/wHZdAwp8EJxm6oq3Lk7x42bd9gtlZloNsIMk4LAg36X/uoC9vY2brOHs/R7WpsV+maT+tYi/lgGKTWAOT6KNZw91EEfR9ejOk4TApKBkSpwbiCOulVhc3WZWiWB5zfZq1uMDscxdA3d7dLbrbC1otGXTQzTwIzHEM+YQoChasRVmb4mY6UztHZhf+lr9nwdf2KU/NQ46WICpaaiyi4JzcXUQYR663ValCsOpg9TYwnhXXSaEPrefXFdn8XNOr9brGB7cGU8TTGln8kQXa+UgDbWS/xf/9/X/Ga9Q0OJM1VM8N/+fJY//dG5kIB8x6HZbCGrIq13PHwIRUisMKOIBCIor8iUahg6pZ3t0BnOMIxjBVpEwbYdh/mFBe5+9RX/8n/+H6QqVbJ2h3zCYlSXUUeHiIlIBeLRkWREkrDQafR7P0pHq0CQZPgKAprVOrdu3qQruuA4oVXS0Wr57rMEiYjX0uIiS/fu8eOfxclnYoj06r2uf0AYAWE4kxFBxLihvs60YugiekOjTO0//W+U/+Mv6O34eL0WgS2SrFm0TIO9eA756h8x+G/+itG//EHouf7dPYq+PasIKGqMd6bymP0yt2/eYKfSIps2mLn8EYPFCRS/RsIuY2/cYK5vEh+fJZVNEtd8TDN+oFuUFHy7Q6D0yA1PYsk298q3KW3t4zXiKIqLHLegHSdADSUY8UQSLDk0dijtVkiqCp4/yhnbFDz3tpdrbe6sVlmr9sikDN6dSDNWEOR99kTdr5SA4nGLqcki/bhNRzEZTJkMpE0OjVKEea4sizhQIuyMGwba9D0xt4sVt/irHRzzgzDKbbFYDMVkQh59XEWYlIodkPDsjieT9Nppes0O+/slpFqZVD5NLp9H1U3sABwRDJTg9a+phJmqyJ1j6GRzOYqFAoHnHSsBCZIr7e2Fdcr4oThEQC3wEeQk8vGEIxdKYWFm7Qnj14Mi6Sb6ufMkflBFK7u45Q2cegdXzaPncuj5DPLEDGYxFe1+juvhPaX1SKhkhyaYCTR6VgMj0SCdjDE5WiAlRNZumkuzU8QVCUnXiQ+OEktkQgvSTC6DoRpIyREyfgdTTZDLpyBp8akwNCjtk8xkSAwXkLwkUj5NKl1E1Q3Ui+8iJpeWpGPJLfIiTNAbqAPa3Gly816Z/XafiWKcdyazDGbMI0eROE2PzSsloHMTA/z348UHikgxWymhEv0AAmGmnEwlUKQ+7XqDWqWMZcWRxdYngE7Hplqthv4Go6OjfPrpp6EY7rgBFPolIdsWxgQjI6O47R5Ln/2W2s3PqbVqyJqB2rfxbRtdO1htISuhf48v6Eg4vb3CEvpIhAQkkcxmwlD4H37yyStpUZC8SJ9smDE2t0phzhdV1ULRhut7VCpldrd3GBvIkAl/4AerLiWVJ/tX/yPZ/+bfEfRa9L/4BdWFbTrxD8i89y652fTBylakvHgDJ4VXcjPOcqXmAPmpIj+dOIzeLox8DpYrimpx/p0Pmb32frigEQsfMXseLmbCYafHGEgdmPKE3xtF3vmocCD9CM8XZ4kV0eQDPWTm/NXwUrFounDuwDo8vPYs4/hY34We5/ZGPTRzx/O5NJrm4niGREzH9fww5t1jl5zqj6+UgMTNf16mUqHTyedydFprrK8uibj05AZGQqe0/b1NttZXScTjjI6Nh+myXwWaYnUvLHrEhHrt3XfIZnO8/4MP2L23wOrCPKt377B/4yvi1RojMRNLUfADQT3ywS/kVXTqGXWKXCyqYbwyi8DJyYMf9I3bi/z+8y+5dOUyE2NjuK5NpVZlZ2cLu10hmRgglU5/2w8xgYiFgwKSlkPNplCSDeRkFiVXRH75YM3PQCI6fPoR+JZ0nuhrKFZWHiWdR04SpPTYZvm+KPrR0x6mrYP39/nskdPelA/lRp/PV+vM77YpxnQ+nMgxNSIi6OthNttAOXD+PivjfaUEdBQQhE5nZmY2tOyq1esszN1GWVk5mNi9HoYmcenSRUZHxw5EQ/LxyzmFiEmkDRaPb8KyKGQz4Wv60gUGNz4gJaJYz8zCxhpyvcbu1gbllRXkZoOcZZEt5NHCFAoS7isOJipMpIXO6lUV4QA8MzNDtdZibv4ey4tzlHe38D0HW3il43NhdpzRkaFwp/S0fgROD9cowICCyG0j+SLy8dnzUXja2KJjEQInhYAwPljbbbCw3aDtB7w3nOTyRIa8UGsoEq73aiUxr2LcJ05AwghgfHycbDYTOrnNzy+wtroUrqwnJyaYnb0cOsAJohI7lVdZhKhLiOMOi7A1mB4bYXyggPPjTynv7bM4d4f9f/pHal2HoNVFDyTiQgkvDAIcF1lEQRDiufvLMPFIHKfO6rBvr/KvwPnSxRlMTebe8jKLc8uh71GuUOD8+fPMTE2G/kDP7IOqI49dw8gL20ctNFl/5rnRFxECEQJHQqBS73JjscTWXjNMv35hKsvIYDw0sjhrc8zhgE+cgERHhCFAOp1hamo61PFM1WqhXDdfKDI0NBQaHhx2+FX/ffxGChJSdB1T10kkU1j5PLnRMcoff0J5YZ7qxibljVWqd24Qa9YYyReIxRP4soKviNw+hzLwV93z460/lUoxOztNIhlH7EyFOFUkLRscHHq6/8dDzUuSjBpPEhObnkBI5c7eyuyh4URvIwROBQIbe01+/c02y5t1xkcyvDeRYyQfE6ogfPxXvkB/FSCcCgI6HJiY9MTrtBYhohvMpBnMvAfvvUel2WJhYYF7X36Bls/hb62HSYh3Wk3aeyXUfo+kZZJIpZB1A7FDFiK0E7GiewlQY4kk08K09SVKSNziulAsfyCbf4lqoksiBCIEwqgsPvPbDa4vV2m2HWYLMa4Mp8gnzAPL3CBAf7UColdyH04VAb2SEb7CSnPJBO++8w4XJiepfvopm2sr3JtfYO6rLyhVm+g7JUZcDzORQHbdMFqCsASShbecyGB5jObkr3CYUdURAhECJ4lAELBXaXNns8Fex2Ega3FtLMVI3gpdJdyee9ZiHD9AMyKgB1C83BsR+drKZcnmsuRnZsidv8TwlavsffADSrdv09reYXlvB3t5kZRvMzI8SiyVwpUk7PsRsqP9wcthH10VIfA2IOB5PvOrFb5e3KfnBnwwnuG96SzFtBGqmsVCVvw7iyUioGO8a2nDID0zzdWZado//SnLKyvcvXGHtc9/R9UykJoV2jGhU2ngt9skk3Es0xRKMAJZPsiMKtJyRyVCIEIgQuA+AiIa/e/n97mxUEYJgtDybfZclpihhQGTzzJQEQG9orsXN03OX7zI4NAw7Q/fo/av/4z11WXmvrnB7V/8An27xBVdIxmP4Qi90NlcwLwi9KJqIwQiBA4R2Kl1+d1KjfXdFgPFGOeHkgwVE0iKHAYgFVPHY268h5ee+r8RAb3CW2RIEsVMOnwxM81A/UPiMxdIF4awV+5heH02tzfZW5hDqdYYiMcoDA6gxkROIfBEuJuImV7hHYqqjhA43Qj0eg4rW3VW9tt4ssT0QILZoQTpuEjwGOCecYFJRECv8fkbSacZ/PFP+OnHn4RZX+/evsUX//hrbMcn8BZpqzK6rCC1W0iOg/B9EmFwwhAm93MWvcbuRk1FCEQInDACm6UWn9/ZpVLtMjyU5IcXi0wMJhFxR51Dl8UzLD2JCOg1P2AiOKKiawwNDaIlEwyMjlL/6U8pLS2xunyP9bm7tK7/lly7wfjoOFZKQxK7oINwWffNml9zp6PmIgQiBE4EgbubDf7LVztsldr88NIAP7w4yHAhge36oc5YGDCdYf4hIqD7j5UQdYU+Oq9R5JWPx8lfvAgXL9L46c+4tbBA8vp16sNDqLtbYXDB7f09+pub0OtR8wJis85rTQVxIr+6qNEIgQgBOn03NL3+Zq1Or+swXYiFBgjZlEnXds4289y/vxEB3QdCePqLEDQnFT03ZRh8ePkK16amcP71X7C5scHNL7+k8ut/oF6tYddaNAiwRB+jH2eEQITAG42AML1e2a4zt1mj7/uh74/Q/QxmDQxdpmu/EfwT7YAOn2KhbxGRuUVYoJMqhiJjiPTV8TjxgUGsgUEmZ2ao/8EfsnLrNr27d1ELAyhqtG44qXsUtRsh8DoQ6PYcbi6UuLVcRlNlPrxQ4IOZHAlL5Eh7c6xmo5kMkdZHDgOeJhKJ58Y5ex0Pn2hD2LjMjo2FL//nf8TivWXS16/jOza5YvF1dSNqJ0IgQuAEECg3bX5zd5/5eyL1icEnl4pcnc6hKDJ9kYf7DSkRAd0noHPnzoUrC5GO4LQVEeJpanqKYrFA4LphfqTT1seoPxECEQLHh8BmucPna3Wq1R7XBhOcH0lSyMVCf0FHRB99Q0pEQPdvpBDBneaiAdnkywUGPc3jivoWIRAh8CgC9WaPhY0q2/UuRkzj4nCKyWKcmKHS7Xth9GuR7eVNKGcwfuqbAHs0hgiBCIEIgacjcG+jxme3tmm0+oyNZfjoQpGhbAwRpSvc+7wh5CNGHxHQ05+B6GiEQIRAhMCJIHBrtcavbuxQrXWZHk3zwfkiubRF3/FCNcEbxD8RAZ3IExY1GiEQIRAh8AQCAZVGj5ubdRb32qGJ8qWhJOfH0iRi2kH0/DdH/ROOPtIBPfEQRAciBCIEIgRePwLCuu3OaoX57SYoKlN5i8tDcXJJDVXE3um9/j696hYjEdyrRjiqP0IgQiBC4AgINFo2Xy/ss7BZJ2apvDOZ4cJIEl2T8fyzHHDn2YOPCOjZ2ETfRAhECEQIvDYEdmsdvlgss7peJ2aqfHipyOy5DEEgYdtvmOztPqoRAT32eImVhnhFaRAeAyb6GCEQIfDKEAgCn5W9Jrc26rSbPQopg2vTeUYGkngB2O6b43z6MIiRDug+Gp7nsrjZYHmrQTJmcHEySz5philvHwYseh8hECEQIXCcCIjF7k6pxa2VClv1Hpm0yUcTGaaK8TA0WBB4B5Gv3yTzt/sAvrUE5LgezbZNvW1TbnTY2O9wfaHM3eUK788WGS4mKKTM43zOoroiBCIEIgSeRCCA+bUq1+f2qXYcLk3l+MMrg+TjOq7r4ouEC28g+Qgg3koCqnZsltarLK7VuLVc4c56LVx5rO53abb6pNOxM55l48lnPDoSIRAhcDoRcFyf+c0mN5YrdPsu58cyvDNTIGbp9GwReDR4U/nn7SCgXt9FZBbc2GuxVmqxvN9mfa/N9n6b7VKL3UqHju1S7XiIYEsdzycQbscPp3p6A4xQwgdZjtR+p3Mainr1tiKwX+9xd6vJZrlLxtS4NJxidCCOpil0bfeNhuWN3AG5rk+jI0RrfcqNHsvbdRaFc9dGjfn1Olu1Lj1PQpLBkMEyVZKWiml4ND2fcrPHf/16i7n1Wih7DRBGCWf7OQi77wVYlspozmSsmCSdtM72oKLeRwiccQTsvsvcWpW5rYYIy8+V4SQXBuNYhvJUsduDvGViIXl/UhLpGfwzaqb9RhJQs93nX77Z4v/+bJ2vlyq0uw49kfHU8/BEOAvXRxEJ6CQZVZIQabJlCVKWghUoIVH9z/9PG13IXYP7+6AzTkDhKNyAZELjR7NZ/rs/mOEn74+d8Z9v1P0IgbONwF6ty5cLJRZ3GiQSGu/NZJkcjCMhPZtUJPEtBCIi6RlfGb+RBCTLEpahko7rpGJqKE7zei5N26PZd8O52FRlxCJDLDPEzQxfAcgBGJpCIq4TU6Vv7+9ZJiDxnArzcscnbqlYhvCsPrnEe2d7yoh6HyFwfAis77X4fG6PtZ0G02MZPrxQZGIohR8umB+edA7mKbvbpbJfolIp4wryUS3MRJpiLksxl3iNGZ19/MCl1RU6KoWEpYYL+RdF5o0koGTc4CfvjfLuhSI7lTYrmw3mVip8tVzli406+20HkfVHDgKc+z4/QjPS7Hs4AfzJ5UH+7c+nGS8mQi2Q0J2c5YWGWCgJlZYI9SGyKxYzBoO5+Is+K9H5EQIRAseIgON43Ntpcnujjt1zmSjEuTCeoZC1aNsi8Oh9Agp3PBJS4NJr11iem2dlZRU9bqAk86QKI1hWjKKUOsbePa8qh57dYHGjgyTFuDyRQ9FffFH7RhKQ2AGZhtDpqBQzMWZH0rw3U+Bn1U5ogCBMrrd2GyxvNljcarBT79F3g4PdkSyTiht8NFtgdPB13tDn3fDv//0Da5o3JZnI94ckqiFCNEOBHwAAIABJREFU4EQQEBKJUrXN3Ead7YbNcC7ODyazDGYtZEVG+P48WoQ0po/vN8O5Kp4Z59LlMVK5NJJqEk/Ejm334/sHbcvydxFKn0arzPxqBV3PhXOsGRHQo7fs8JNl6pwbEa80nwCtdo97m3Xm1mrcXq0xv9ei1OizvNNkp9pBWB4I7+M3rQgFZlQiBCIETh4B1/O5vVzh84USDcfnJ+fzfDibJ26q9N2nh92RZA9J6tO3+/T6KpKkkognUDUdXQ2o726xXq3guy7xTI5UfgCDLs3aPjstj05gUkhYnEuDF6jsdjViSh/h7tgNLNxeD9wuPTT6tgNOl1hMpeep/P/svedvHFub4PerXJ1zN5s5SKLyvbr5nbD77hrr2Z1dG/thAPvTwoAN/zf+7D/Ahj2wsTBgzCa/mJ3ZCe+88QZlURIpZrJz7q6uqi7jVJMSxUtKFKUrUVKXQHWFE57znFP1nCfX2gNymSjRsM7ubhW3vUmtXmJryyWRCQ59lU6B1g+SA3oZHsIhk8vzOvOTCf7RZw6lRo/tUotf3dnlN/cLTMZNBh+s5f3LsDN6PsLACAM/NQYaHZvfPijx3aOKbwB1YSrG/EQUU1dxhRvIETJ/wZGI241akYdLRRy7yET1PJnMGOMRj9LWJveXVpHtLqmpeUJ5i5i1Rm37ATdbYVY7cebD8CcLHj0pwt9tBskbVS6O6zQDc1i1MlJzm7aeZqdYp729RCyl0Naz7LSifHo+wXRa4fZShUF1m7Daw+sm0FQFSZgUn+L4KAmQwJMIbx5WdcJBnVwyyOJElNlshK8vZomEDeLhs52i+xRzPaoywsAIA2cEA5ulNt+u1tipdTk3HuXKVJzxTNjX0drHiF98oiRJBIIRsnmdydlpJsaywnqbRuEJza5FZOY8YyEZy3W59/AJgcod8lGLqckF7JJCd2uJVaNPW42yvqXRlpqEjTFi5zTi2TiWW6ZUq7K1skJh+QGRnELsSpjk5Cz9RpFirUIytUBq4hqqV6K14hISOqojCOZJUP3REqDDyFE1lXPTCf/v8LPR9QgDIwyMMPCmMNBq97n9pMJSoYluKHw6HePSeIRoUMNxhcHT0SK4gSucUj0i8TShRIovvr7kE61ycYedapeBopOcPs/cmE6xsE175QndeptzE0nOf3qNC/UOj/72Abd2HTpGh7hh0256rLaC/GEiRhyd7VKIULBPImRQxaPV7TIWD3Plk3Nojxr01pukLqaYzI7RaQ7QNqp4trAsPp3OYkSA3tSqGrUzwsAIAyMMnAAD67tNvlsqsFXqMJYM8Ol8gmkReFSSsPe0Kcdpa4UeV1FU8BSErYAwF9B1g3gyS3mrSWH5EUq5j2wYZMfzaOwiqw6WJzGWMuiPRfjPmwp9S+HnM7DmqFSsMJqr0C7ssLW2TXTyHLNz5+jurlKWqgwER+bKZHJZWlaFwlaFZqGM192g0FBJhvJDn6QTjP1wkTNDgJy+RWlrhUKpiiWHCCcnGMskSIROJ1s8PNDTXFvNCl3HQwnFERYe2mkaEXUGNtXyDtZAwozkCAU0tP0V5rVoVXZZWS9TbnhEk2nmZ8eJh99FlAKPRmWb1UcrtLp9JCOALMskEkkSqQyupKEqMvGwifLupuW0szCqN8LAmcDA4+063y4VqdV7XLqc5epCmlQ8gIgJd3ziOQ9J0jHMJJkxHcsOMBg4dCwHT9aIZGbI2dt0N4uUC21iuSmunpsiOK6BW0dWTcygzMSFK1y1LDxV4vqsSzqv0FbGCesabkAnmQyjmApaOsnijRtYqk0oP0dMVkiOTRFUJMqPijRqdUzdYCyfJjue9MMGnQa5754ACR8bt0+tuMXy42W2ixUsKUgwJqzR5onNZ9n/1jm2DbKCoshPTQREGAohMxXRDMTHURyCGzxs8CXYV9cZTpaiKih7BEDUd13XD3uO52J1WliejCM8kRt1XFlBM6OYCJPEAbbtIMkKqjI0URS2+iKVg6woKIfirNkCXknGsXqUNh9S7UtEZxKMGxranoVjs7rLyqO7PFytUmxKpNMNgqEAAcPA0PZHvjcoMbi9gYkxCmc1EcFBYmi1J4iFGJZrWww8CVnVDxAKD2Fc4++gGFCtNmh2+8TiUaIhcw+ffYqlLX71mx+w7AHZiQxC8Wn3WjiuTaVnEopEEX5WsjdAhDxSVM2H4bjFJ/ArXOgkAejoGGHgI8dAq2OxtFnn8U7T34SeH4v6jqdmQPPfORH260dvivhGIt51AzOYYWI6ieNKmAEVV4i/JBUllGJsUiEUMtltOhjRFPP5OKaaoNPv4xkmqiIRn7nKv0qIb5hEPCgx3pfoDzTfYV8JTxOJB9kud+naEuncF0QiETQjAIrmB0c1ZJ05Czq9KEY0zUIoRiQU9p33TzO175wAea5Fc+s+G5slqnKK/KUFQnad0voavbJEfz6LSIrQbrcplUp4SohkOkHUlMHtUSzVKbf6xGNRxhIRer2eb0USDIf83bv46Aoi0Snt0qxVsc00iVSWZETGtiwqlSrdnkUgnsBwW9Qef8vjhkM3cYFz2QRT8Qiqz/30sFtVtksdtECMdDqNoEG1WpV6o+kTqXg8TtgcLh/bbrO7W8aWAqgM6DTq9FwNuT/AT27oE6A2d5d3WX5iMTV1gYtxA6/XodVqsrobZDITJmioOLZDr9NG0TQMw6Rvden2XTxZRfFshN3+QDYIRUNoTp/a9hrNvkQwPeHvrBTPolnvUO3KhEIGMbXN3d//jtvLZW784TfcuDq/x91ZdDyFmj7F+ESCr25M+GvKoEG9WaJQ0Ilj+MSo16pTqXUJxtIEzACq5GIaQ1y7joSmy34SrVarj65pRELC9Xd0jDDw8WJAbNiE+O3+ZoNy12UyFeTyZIRUzPQ31Z54p1+AHrGplGSNUEjbU7kME2f6JEtSMMJxcuEIkT7Imk7QHL5zIVXz2xVfJkkJkE0860R7TqwTJpA0GDN6/mbVNAP+uytKC78lsfdVghHGpmd9XZVsBNE07VQREPYheOcESHAH24/uslPpYVz6ExYWJ8jYTbaNAQMzhOf0adULbO6W2Ch0cCyPTMokmTKotRzW18sMrA7T58/7XEhrYwkXidjMRdx6kVZhHScQxnFknE4PT93CUwZ0+yaVtYcUd7fxIknMjoPZLmKvPabQM2g6eRKqRzas0tdNtleXaW2vYWsx+mqHzY11wnIXx3YpWyptp8h4fozFuSye1aRaK9HsSvT6Nt3KJo3CDk44N/zQC8bG6WI1VlndrlEYZPh67grz+RCDdoG1yoByrcxScZ2Z6RyyovJ4eY1EIkYyEeX+7SUGksfk/CQ7m3UaDYeZhQkM2aLbqFCsNGhZEOj1aNck2h2L7d0eruUxPRHBTsg8WVvl8cMi89evPbfjEvlHWs0uLdPAGUgYwSg6FkbXRlN0+s0GxdUqPavHbs1G3tj1d0uRSICr5xJsNzzurLa4OiaRiAZ4XA+QiAkCtL/kRr8jDHycGPADj65UfN9DR5a4Mp/k2myCoKHg+tH3X4wXQZx8Z3JhdSYdiM4iwvaIP1VDM4PEDknvfcLz4qb3noqSOsEjNov7EgxBhPRQzI8kc6ImX1LonRMgEY6itFun0/eYSgQIqCCrEcYXP2EgyVi9DmsPvme71sMyJ3BaghCt89hQ2OrGsJsus2aD3liK9XIce+cJkqJQMcepLd2jsfQ3KOkUgcnPCQZS6J1tqhWL7UaUzVvf0e9USF79hkqxirO1TkbRSOXnMM0I/cIyO0oZO3ORuz+sQGmHq59labaq3P/hNwTdOvm5C7ixBTbW17E6DSZyIZxGkd2NTZToBK1iidV7v6Nq7RJZSJL0lYhAr0WvuOUnnJKiKVDFVkRGDmWZNAc0yre49f0tVOkKiVyOh8vrTE510FSX776/SzisMDkTYWllh61tl/xkDqeyztbqKhV1GtuVaZbvYzk1Nlo6lYbJuNojowbYIktXD5DOJUlEzAM5OVSkXpv++hLrOzLfR/vEMpNMJBxCqkI8alLeLfK4sEEglUVWg9TW7nNrpUggkSamzHGvBP/+91tYczbXL0xRlC9iRN/5MnvJazB6PMLAT4+BSrPHD8sVlrfqRAMa1xdSLEzGfNGY4wgh28mOo3yERE1BHMSzobrBxd0LIaYINYKuISLE+GlmfAI2lNScrMefrtS7/zIIpMkqkiJ0OMZTfQ+DPpIeoNWz2Fgr4agm565NY1gmD2+u8Gh9l5oWZm5snJmQiuTZVNs9kqkk0sDm8XaJlfUulPqM9ZdBS9CIyMjdOuEBKNEgtisRCSeYyOZZW68izBkTeZ1kLk/UTKFvr+C1tmkpQbY7HuHgNIncJPr2be41NtmwIRhIMj2eo17YxuvV6Hoummbg9m0KaytsPHrCzpNl3DiYQkflx3USjkgKsmogSX2E1eWz5eD4uqyuZVOvt+g7AzxZp9u3sXpdPLHzMYJIhuxzfO0B9BQVXVfp1YqsPl6iFtXx1DBSvczArWFreUKpHGNmjZDZpSBEeqpJJKESCxwUjbmYeoCJ/DTRRIQL5+b9QIdhuYbbb+NJPcr1EuVKhavjC5ybG2O7u8LykxaFosT3tz06nkTULbOx2SAUlUlevkIuckCX9dOt5VHLIwycaQysFFv8/aMKO7Ue31zMcnUqQTYR8l/+440PTjYkodsVvo12v8H9H26zvrYFhukHIA5Hkyxc/YRUVMduV8CMYoTDBJ99dE7WyU9Q6p0TIFU3yC/MYe1U2Xz0ENoxoo5NpbhLcnKaSCREKByn2bPpNOu4Xo+BpGDqOulUirGpceJKl3K3i+VIJGcvYm18T+F3/w8lK8/UuZ+RUx/Q7pbZLEnIdocpM0A8JmEYYV8Bn0lmKWyUsds1HDdOS3yg3R4Jx8VQPNy+g6Kpvi6p2qhjt9p4qHiKhh6JE88kSAYUulaPvjfwQ2F0WnV2Sm3WNrao7lYJGAFchlYuvpm/GsRMz5Ayb1PffcjWqozd1FCdBmY8z8CTCaoeteIudQsKxSa5TMQXxwXCUYyAhCfpeGJnE1LQTQ2lF8J2obC1iSuHiSsDghGTWDJBIJojrytEzBoFL0C3YyFVG7RaPfo+4y1Wl42rqcipSaYWZ7l+dd5fcm7LZmNzh1qzTcvqYwhjjV6TWj1Ax5VZmMmh1xV+d3+b8bTOz2YD/PpBkcpSjf/hcxgTCWZHxwgDHzEGavUu3z0uc2+nSTCgcWMmzkIu7Ec+6NmOL0J7XXqgKR6dbpuHy6ssP95memEKXXEo1Ry6awXG4yY5rYVhhukLg6xug3a7i6cYRGNxP4OAMLQSYvxW18bTwkTDQd8C+KeaundOgDQjyOTlK3S5x+/u3qS+rqNrQUr1Plf0FF/n0ly+PMsPd5f5/a9/oN9pkTAHLIxP4KSFlZZHx+ljeyq6ESAYTuE2K8gr/5Hs7H/L4pd/yqyUYeXRMpTbmJ5FVJUJajJtYU8vKTiSUNqpBIIB36a+3uj4sZMGTpegMDEMTZA2alg7SzxZatPsuvS0HFnFIqe6QxGWbxmnIXnQrlVoNxvo0RTRbB6rVsAwxLh0VMEM+Ly2gRoZYy5xH2v3EWvLcOeBR0jqcfXTEMlYgFxUoby9ys6TIoVSh4GnIyGjDTyUgZADSxi6hq7iW+DF89NMzBbZeljx4zql02ECaQUrEvYtbhRBNvUgATlGYODRrFeoNXv0PIa5j/Do41L3LNres0yMoh8kDW+gkYwmSYWatMpr/HJjl163x43zkyQnFG5t1LC9APMzs/zdI4diyUSxX/e1+qmW/qjdEQbeDgaEWOzeapXf3iv4H/ZzE1E+XUgylhASkKEhwZuBRGxxB1hKgGBmhuuffkIy5vJkp8jNYoNus0FySiOievR7bcprT9jZLeAYMcYm5pieyiL1q2ysPGBtt4Uan+TCwjT5VOTNgHdEK++cAEmyjBHMMTnr0nF0RPpsVJNk1mAsk/StvozJOWYdHccs0ev2GUsFyOcTeMEMPccj4F4gNlDwwhGiwmJt/CJf/ZN/DeNfMn5unCghVCNFMF5F91wyE2MY8SRpSUJTFKKBAPOzU2TNPyYa0WlIEeJtj5S6SCadZBDKkvAsOmkNRzaJSyFmZ2aJCQI0MY5qmsydX/Tlq8lgiF4yi3TxGpYRZTo/TffiNFpEITE1TzqqE/C/ycKiRWdi9hyqrrPdNf2U4EEdErEY8aCO+fmXlGsNYl2J2Tmd8wuTRMIxrl89j6ZKRENJPlvUaXc8n5PTQmPMX/4cYiXsrkM6FkCPazhaCNwAMckkEJSYkiN4n1yhPZFjIp8+oAMKkkuN8/WNKLlU/Nly0eLEUhKLqspgyiUiZak3m2g1D1kzmVnI+Sbjf+rGiQYN5uYz/HM3T8OSSIQOaUSftTo6G2Hgo8CA0LuIrKffPyxh9WwuTIxxeS7puzPYjntk3LfTIMbPGOQNkDpNOqU666txKnqPetclHc8S6FfZXX2MJXm4oTxt8U3IjWE5Lo8fPaS8vUQiorDThJZrknY6uLbYoEb8DepPIUiXvOM0WqfBwBuoY1ki5PgAwzB8M+r9Jn1/HcE2gu+zo+z54ew/f9mvsBIRfkCC/RCexMJn5rhD+AWJRSN8ew6WE+bOltX3+9f1g7qTH7ck4O0L+3sh3hKmii+C1/Po7Y1bFZYsqvrUb8aHxRugqmKvcDJuQtQRsIoAgWKsgoE5fAj4xJ+Ay+dwDhd4ybWwlhNLR8B1mvovaX70+IxhoNvt8otf/IK1tTWuXLnC9evXSaVSZwzKsweOeEfKtTb/y/99k//1L+77sd7+pz+9xP/8Ly8ylggMdby+n8/pYR/6PUokIiqtxhZ/8X/9R5YebjF3aR7Vs1HNIKkLX+JVVrC2viNx6UvU3DWcepvJtES9WuLv/v4OEd1m8fIsDTlHt9YkoTRJzZ4nPT1LXMH3hDw9lEfXfOcc0GGwBOE56hCEQH7JR/+oevv3ZJGC+3mj9/1HP/r1icURBEM4ZQYCJ9vRC3hNU3gwneCQpGPLDgnXntfqCZoSRUSdYb3jK/j4fAERPr7m8MmQIL6s1Oj5CAMfNwb6fYel9Rp3Nht0Bh6fiKRzuRCRoOZvMsXG+E0dHq4fEke4lSRnInz6xSfEwxr1XpkfVks0V7aZDZkkkik8FQo7qyxtCqOIBqVCk/GrF5mePk9hd5ebG7fZtmzmgmPEhTvgq32CTjykM0eATgz5qOAIAyMMjDBwxjHQFIFHH5V5uNVERDu4Op9gYSziO2++SeIj0CBEcCKQqdVp06y1qVWquD2JVr+FRwzdNJFkVaQ7o1Wvsrn8gHprm92uR7Gkc0kEmun3aBbWWHu8RFcKkb3Y96PGHC8ver0JGBGg18PfqPYIAyMMjDBwLAa2Kh1+/6jMbqXNRDrM9YU049kIwu/U9/3ZY4COEpMf2+gxDzxPRpEU34G+2C3zeOkBOD3MYJzFLy9j5IN0Nu4iHGKFxe7AMIgaGSRXZaB4yF6HRmWHljUgGM+TCUfJJyOY2kmF/8cA9oLbIwL0AuSMHo0wMMLACAOvg4Gl3Sa/XqnS7jpcykZYnEqQ8EMVSH7w0YE3GOq1hSXua4jEha7Jsj0MM8EXf/CHLFxu+hGxhVOqrgcZm86gSgm66RiYQXKuxGQsiCwPcJFpdz3iQY14WEVPTjG5cBVD10lkMpxM6XA6LI0I0OnwNqo1wsAIAyMMHI8Bz6Pe6rG0UedJtUsopLM4HWMiHcQ0VHp9YSgkTKKEi8MR0ZOPb/nYJyKXkBkIMbFwnmEUx8NFDYLBAzGxMkcbkcQOV/sJr38q0d5PCPKo6REGRhgYYeBsY0BENnjwpML9ZRGNxGNmMsb8TIxYRPjyeXu+gMPo9KqIYv8GZHCiiTdo0/BWEDzigN4KmkedjDAwwsDHhAGR2+d3D0q+86ky8Lg2FefiRJyQofnpY/a9XwTzM0ytMsyCKpLSCYvd09vGiZpH+F2cUeSPOKAzOjEjsEYYGGHg/cVAod7ldysVHu00SQVVPpmMM5cJoysK9oHAo4JcCFGcK8Rxp6c67y2iRgTovZ26EeAjDIwwcBYx0LNs7q9VWSq0/aDDi/kwF/Ii7qQ+jEh9BKURqST9SAZDAd1ZHNZPAtOIAP0kaB01OsLACAMfKwaKlQ7f3t9lvdginQzyyXyKqUzQj9PWd4dpEg7jZhhGR/LzAr1p/6DDfZ2l65EO6CzNxgiWl2JAhBgSoYZcd+BHEH6a6+QNKHFf2vmowAgDJ8DA8naTf7hboFBuc20hzZX5lJ+Z2LJdX9SGJyF0PUJTc1DqNky87flGcUfGzzpB3+9bkREBet9m7COG1/P6VKtVqtUGIr2x8KEwdJNEKk00GhlGGv+I8TMa+rvHgEhdfW+7yW+e1Oh1bGYSAWbyMSJhg65IuzAQaSePNhIQlnCyJCMf/fjdD+4ngGBEgH4CpI6a/CkwIIKnNlh5/Jj1tRqZbJxkzKDZalBpdEhlsszk0yjKR/T2/hRoHrV5agyI4L6C63m4VafUsUlFTRbzETLxALqm0O07PmMjVuhRq3R4/6gnpwbpzFccEaAzP0UjAIcYELvHBhvbBda2+kzNTDE9kWB3Z5fvllap1LuMpaKYmsgKaTNAQlFl37t8IEQeftRvsLqW/xEwTd1Ph26Jj4Ks+vmaRMJa17YQaeJFll5xjTcU+XmSiqrp6KqM69h+VHQRU0tERdd1kU59dLxpDAhxq93vI1IWiENTFUS0eElEs39D32kRO63X6/lzrqian19LVU8XeVOkkvn9gwL3VsoEdYVrUzEuzSSImIrvC4TgfoZJkcXpj4iQsE0Qf/tl3jQ+z2J7IwJ0FmdlBNMRGBAhSwb0dRNiUZJj44TTKWzPo/3dYwayim13aWxts3T/EZYqUqvHCQRDtHoG+bEMsaDE97+957/ln306S3Fnl5v31lGjGa59coXxmMLmg5usFxooiQkiOriNTcrVOv3wFJPnLnE+p1NZX+GHm4/oDjxmF+a5cO48odAJI58fMbLRraMx0G1UWX38gMcbVV/cOp0xSE8uEMicIx7kQB6ro+uf5G6n0+a7775nfatMKjvBtcvnyGcTJ6n6ozKNrs1f3drl9/eLGIbKlbkk5yZj6KowvR76+YhKwshAiI+FHkj8HdQD/ajRD/zGiAB94BP84QxPsCMSg75Fs9ZgY22VbmWTZquJHo4zlk9i1be5d+cW331/j0DEIFLO0ZMjdNsKP7s6Rmw2QbHRpV6tkw6U2dgsc+fODmYogGpIlDIJivfu07Y8YmaCXnGX4sNvKXchcCFNomdT21rjyf3b3H+wxUBkjrW6lNwAV85NMh4dEaE3ud6EPsWxHWzXoVsvs9Oo4hoh0ulzBHstPMfF1YIo2PTaLVqWSzAYJhYbZvAc2BadVpOG5WEEw6Siw6hmrtWkWGmiGCE/55fQJ4o8ZCJ/lxCjneYQjqWb5Q7frtYolLpcWEiyOBklnwn6UQ5s+1m7wthgeBzNxu1zQh+DXc2IAJ1mtY3qvAMMyEgi4GJpl937m9yU6uhuk17XY+yLnzM2maNXusNqoUrXiDKX1ukMZNa3O+hWg5K5TUyZIzlzEYwNNh7+LVU7QmpynHBvi9LOQ1YbE6h1m3PTeaYXJig9rFKSdVITYySnpzG9LsWHtyiXykTyk2SMNlWnxz882kYNx0cE6A2vCjMSY+7yJ0wsQm19ie37v6TdaWJ068idAgGR/yaUoVcpsbuxSsMekJ2cY948R8hQ6NTKrK+ts9ORiOcmCBoZdLVPtbjG8koRjCQTk1NcunKNi5cuoqo6kXD4VKNotCzurlUoNHvIQY35TIjZbMj3/XHtgW+1yZ7Ty1PxoQidc0RvggD5xgp74rojinwwt0YE6IOZyg99IANhvYocDBPOTTA1O0vC7FDZrVC1bDZ3yuTdLlo4zXgyzfUrESotG0faIdhpcPPBMv/fwzZ/9K8usTgTZWuji54Q4rMvSDQfUfdgtSP7Ij1VlYnGYrjTF9ECISLpCGv1PvdvPyTb2UENZUjlrnAl41Bt1OmVgn7K4g99Bt72+ITOLaINMw+HmKSxFWd1a53d/rcEYlEWZ2JEvDq37qyyvbbO7EKEjmOxWmwyFbapVKoUmzbxaBCdDt/deUirUSQV9Iil0lS3q6z9UGDxixvkcrnXGt76ToNv7+1SbvQYz4S4Phsnnwj4ih5HiNwAWVAb/0Qw857PbYlgpH5yyMMm2Z6HM/B8fZAiDe3mjiJWrwX0Gag8IkBnYBJGIJwEAwOQVBLTs1yIhfjiq/NMpKG4vsp/+O0W21sNxs9lmZyUqHVVepIgHCZffh4h3A3wqNrhh8ceX3W7zM3HUc9fY3uQQBYfh0COsUSYqOOx3SmCouF5EtFkFlN1cQZ1KqVd6h2budwc8WCMXdemY2skU3l+loyRSRyIMnyS4YzKvBoGZBlV06hv3GV5tYZ6+Y/IXoiRlivs1HsULY2vcjEsTWV9u0g4VmWnUGejpnItpRCQO/ywtsH9O0vMTmT5oz+aRnE3WV9dIXVuhnQmtc+gvBpce6WXNhr8+l6RUq3Hzy5m+OxCmnQsgGUP8NU/+9I2QUX2YpEKraZgio4yefBp1V7ZD9mwc0SATrXcRpXePgbETjHIeC5HNBok4iv9ZSLJcaYyVdA0Irlp8Lao3HzA73ZlJhcv88m1BeJejj/sR4jOdLk4FiMUSzHz6R/Q+uEuD3/4NZ4R5/KNa0yNxdGt88iqgaHKSP0qO2sPebxTZhCe4ouffc18Qqazu0b57hL3NlWy84ssXoqSCRydSv7t4+kD7dF1kaw2ntui1w/illq0Sm0GGQikIkQUFT0S9ZOpdRsNenKJWqXI4xUPt1fn/FyUSMAF2+Lx/VVikTDYLexQCMfQsYHTzmC7a/Ngp8m97RaO5TKbDbM4myQWMWlbztCy7dC0CP3k+OePAAAgAElEQVTOUKs5fHCYuxFuquL5ntTuSFHdoSbfy8sRAXovp+1jBFpFkSLMZE1sR8XYW7mqEebiwjRoBrFYipBISTzXYqfuko5FiZgBVAJ8dv065+b6REMBUAwCsUkmJlv0LbCNBIlohHg4gj47j+tJmKoq7H6JRBOkbIP4+DTn57MIMwMTh9lWG7MlE4nHiIUMREj90fHTYcDudem16kTGZzgfOk+rVKD9sMkKeRxFJRk2fB+wbtfCdmSUUBZVqdDavM9qRScgn8eIJ5jJRansbLPx5CGtnkskmcEdDD/2p4HecVzWtus82GrQdgZMp0Ncnoj6kQ+EG8CgK1IuDHU9gsj4jNAeZ7NvZOB6A9859XBKhn0iJOocJlCngfUs1hkRoLM4KyOYjsCAgiQFnloy7RcQPhv58cn9S0jluZbIccXzkGT56Q4yHAgh/g4e+blFcjPnQXif72mGo5GhBZVfLpxm5nKKKQ8U3yloWNtMjLHwWZZ58VWQh+HzD7Y7On/zGBB+WXpsjNncPBey52j+8PfYgwrN3hiRQJB00CRoGISDCpISJTYWZ7zncmmyiMKAoB5BD2a4elXBmYmw04D1nTZhM0RQVjitJ1e9ZfHruzvcfVImFND4ajHN1ekYQmzWd9ynEXXEUjmg/nl6IcRwwtpPlUQ67X053TP8+bZzwiphL3TPsycfxtmIAH0Y8zgaxQEMCMJzlFz9QJHhqQh9oryopIQkS0e2Jfr48efiRz2MbrwhDATiGWY+/cdI4QRaIIyjfkXP7uKE4gyyGgHJIxiSCUQlXE8nFjUJLFwkHE74fl9qMIpsBAmoNrg95roDrnVsNE0nk06eGspircff3Nrh/nKFcDrMlfkEs2NRZE/yw0WdpOEXcTfCX0g4PCuyhyR9eFz2iACdZIWMypwJDHieRXF7l1KhgiM+/3qYcDTJeC7mR0A4HZAiGUufds/BGqiETB1D+/GL3un1fI/8gGmgC/Hc6HirGNDMEDHzAAebneQAr/oUFnPo6uNfa5EYocjRCaajT2u83slmpcutjQbNhsWFuRSLk3FyyZBPNByR5OdFx14mbsF8C98g4aAqktEdPIQxzPDp8/cPlnmfz0dv0vs8ex8V7MJstcnS0j1u31ohEAlhRlPEU3kUdY6JbPzYYKRih3n49RWOg0OZu1BMC4upDlUrxNxEEmPP9Hcfve6gw+rGFs2WzcLsFKn46XxF9tsb/X4YGKg3ejzYrFPuOpixAFfyUWZSIQKmRrNn+5GvD6+7pyMXi1IQoD1fH1dYYw4GaEJsfCA6wpDPPr2O6ml/Z/RkRIDO6MSMwDqMAYeB16Zke3SCeS5fmGQsatOql1jfCtKVApzLGX54FhH2RPjyiJffdhx6joSmKJh7gn5vYNFq9lCMAAHTw3LaFGsNP+LB5NhwxyxMZ0V9RbZoNgo8vPeAek0il0r7BEiIRrp9z48xZx77FoldrZAAiZArnnCbxPZkVAn/7/AIR9dvHgNioyHSd+xvOIYxAY8lCycGYDDweLBW5XcPCtS7NvPjET6Zi5MI637KbccVup0hgdlv9Dk90P7NA78vEsW9PsQHOjpDp8e+OmcIxhEoIwz4KlzPc+h2+1g9D1U1UAYdnE4dR3eoVUo82imjBsJE0lmSIYVOp+uHXBEfoFA0hBky/JAtTreD60h0+hIBwyYa7mI5NuVymc3HbbSJCK2BQatlobo1bKvE9tYOXSuEa7XptAw2t0v0O10810Y2DZITM2iSR2PzEeFIlGBqgt1CAcnpEIuFqLccCuUGkjwgN5Ynn8siJH0f6oflrCxZwVU0m00/8GwwGCQQCOxxvq8HoQhie3u5zLcPCnS7NouXMlydT/rcjzC9dt2h9dvhXvYYnyPn/UVrQXBI4vlhEd3h9t+36xEBet9m7KOFV/FD8fSLu+zc3eIHqUpAE5GsDa5Nh6C1xbd/85fo+Ytc++ZrTLvN8lqJh2s14lqPaD5BRwtR3y0Q8iAcibP8eAdJ6vDlV1N4DuysrOOs9egsJFDiSVa3W8hWk3xKQdJ1JEml395la6PG/ccVzH6VZnGN1abLzDd/QiaksfsP/4H85DSJS/+Yu/cfE/KKnJ9PcXdjwN3766T1Fhc++QI9miUTejMBNT/aJXGCgYvNR61Ww7aFwYHmE6ATVHtpkVKty9JWnY1iG1OWWRiLMj0WwzRUevbgaVTrlzZ0ggK+fmgw8C3qJEVYdn44AUxHBOgEC2BU5CxgQMgzJPRojPi4zMT0NAmzR6/Tot+tUioUqPVdpqIRgoEB9fIyD5bWuL9pMx51idgd+lqSqGRjaBKVcpGlB4/Qwyrnvpiltr3C+m9/RWV6lvR8ijmaxAM6UnyOsYkQlUGFlccbrD+4S3RymujMNBNymof9bdbvPKIT+I72WIpKqU5nsEXCeEK97RIMa7iOhasECUUi5PQOkt2mXG0R1YOoRxg8nAVsfygwCNGbCDL6OoFGD+Oi0+3zcKPKva0GfeBSPsLieIRIWPdN/wXXJWwJRDw38ftCF7E9lkgYIvhGbseyQcc+OAzee3U9IkDv1XR9zMCKWHCCdYkSnc5y/tJFpgIFNlcesForslG3UVMTjM9OkkkY7BZ6tDtt+q7CQFF9v3LZFUpeDVX49AwsvL6F48i0VIOOC4O+gxoKgaFj9VroaohwJkc0biB7FRqVKiX6BMYniWYSJOUwubkFck/atNfvUOvE0LIzlDsNqnd/R/78N0zNZjGUAvFUgmAwxryk0PKg1WjRTwQIndYB5WNeCq84dhFr7U3pfkTXlXqPb5eK3Nts+GLdz8+nOJeP+PJUEb9t35BNuO8cd4hHPknZK+PXEdZwwhjhkM+PcEgd/hvWeUGzx3V3Zu+PCNCZnZoRYM9jQPathvrtNvXdGjtbUQZqmcJuF3UsTywi0axXcPs2uh4ikZogn7OxJIfptEFuMkKhC6v3CjTMIFPTaaazGRpOx5erxy/e4OLPA6SDLbzqFt81HVrdLlONNnJDZ2ttF3sgkZieQjVNVm/eo9WvYIYDXLjyBSu/+n/xamUyl6+xs9qltnKPc9e/Ip1NMqhsI3vCKVHkhXFxfZfEoUz/+TGOrt4HDOxWu3z3qMrqTovJ8RiXZhNMZMP++hTGKS879h1SRbmnfM0e8XGEz4/IFfRCtullPbw/z0cE6P2Zq48C0u3tbTqdjh+dOPxcaHwFWQ4zk03hdeoM7Db1gYaWmCU3MUM2bVEO6CSjYSQMIql5zp0zCYTrxIMyuVychKwhWQE82yOWiLN47RLWoM9UNMlgLEdWTxPrb9BqVelXPUKWRzQ4wO47ZNIJchNzLF6bwBu4VIsbtC2IjeW5Npsjq9TodyuMXbxIPh6mkggzP5UhHo3Ss8dJKQE/REzAnUKVgkhRU0T6GR3vGQaEheXj3Ra3Nxv0LZe5ZJCF8SjxqEnfFmnjT8afPOWADoxf3BP1j3N+Frog4Vrki/X22awD9d/H09Er8D7O2gcKsxA/LC8vs7W1xZdffsnzBEhGkeN8cuUysxMt36RZ0QIEQxFi0SAyLlY+hyaMBUQAHiNBfkL2M6I6gwFmKEYuFiefmqBRb/gJyGLJFOFIkGhYQ0Tj6k+nMLU0tu0w3raRRfx8t0e302bqnEk0kSAcMLA6LdTLASxX8dM2JGMBJrP/wre0MgNB5san6F/9jEAgiAgVJKfOMRUVegEJTc760ZE9FAxhjz063isMFMptbq1W2WpaZOImN6ajjMWDaKrsR75+kdjtJAMVdOW4VSEcVcU7onxA4Z9GBOgkq2JU5q1hQJjMFgoFnwt6vlMJSTJJpHSisTi27eKJCMi6thcqR/HDqhysI8yhDdPw86poqubrAQLCH8jQ6PX6yKqIerAfimfgR8AW9TVVJRgYZjf1vAj9fhxVU5+KRUTWzbxu4KD6/kbCjkBTg0+7VlUV03yWHVU3DHT9mVmu2OmKD8kHsol9Ou4P/aRvu9xfq3J7pULfdbk+FeXqTJxIUPPXmJDBCcmZMD7YJ0TiV5hki/svnO99p1T5WQTso/Ap2jsZj3VU7bN3b0SAzt6cfNQQ+UrYgTBjPe41k1FUHeUEK1eIMnTDZJjS7BlahS5G+IM8f/w4/I54LrgWwzjUgiz5nNZJ7Qf8He2Bba04PRz5+HlYRldnEQONdp8fHpW4s1xG8eDiVILzUzFMXXka983nYHx9zrMR+ERjL+zOs7vPCMn+0thfJ4LTERRMrJH9Z6KeuBL2Mx+SL9DRb91BLI3ORxh4yxjYt1o62K3Qu7i2NfRqP/hARBfo2/7fc7efXng4rjtMifz03ujkY8KA2Mwcv6E5OSZ2qx3urNXYLLWJGgqz2QjZZBhVUXBF5IPj9kxHdCGKCmOEo0wWhNOpEBsLmA8SIEF4hAXnUVGzj+jivbh1gn3kezGOEZAfEAb8nd8heUWvssnO8h0aWo7Q1DUmEhoBxaNd3eV3v3+MrAX48qurmIGD3IpLrVHm1r0tdEni0rlxoskkQv9y8MX+gFA3GsoRGNgnQK9DhES0g9WdBo9KbTxF4nw2zFwu7ItzheGAIBgipcehZXsENMfc2qdIewvzKMIkavqBS1+B0B3T25m5PSJAZ2YqRoC8CAMDp0+vVeDWTgO1HiN6Y4pAuEej8IT7j9aIZCf5DJdWtUCz1ceIpYlHdXq9NneXVuiVtvGqeTIXPyWazhOhR7PRpOPIhOMpohHTzwnj9TvU6w2aPQfFCJGMRzB1aNVqfkruYDRJVCQ/exGwo2dnBgNiMyP0cUIvJ3yBTntUal3urlRYK3f8VA+fzCeZSod8fYzj+Fl9nuaUEn0IQvQqHNFTxc4eATpugyT0S/vtD8/e7/9HBOj9nr+PBnozOUH+6hd0125SvnuH1nyUrNegVtwiPp5jbOEcA7fDxtJNHq81iM9f4+rVaVCEvkilvLHC7dZjUk6EmcUQGWeL1SeP2Wgp5GYucfnieTKmQ21nk6WHj9isdSCY4eK5aeYzKmsrT3i00SAzeZ7zC7OkotqIi3oPVp8gOolEwhfdilA8pz3Wiy1uPipTrHZZGI9xcTrhW8EJfc3QdHrYsiA6wuBA/ApisR8N4bT9Hqy33+a+nungs/f1fESA3teZ+8jgVvQA0ew5ktp32NY6KF+wW2lR3KkyvXCBaEzjyb17vm+GGTapbzxgO91HjkQRJmgBQ8cIeqghg+5AodFWiCfy9NUe9SdL7Eh1nLEUdx/v0mwNiMVDbJUK/PKXW2zn4yRSCT8Kdmv1Nut2Ff2Tzwgb6tOMqx/ZdLw3wxX6RGHOvy9+O43xh3AevrVe59fLFTx7wJV8xPf9iQR1eoL7EabRh7Yjh0Vxb4p4iHYOt/3eTMYRgI6MEI5AyujWGcWAq3A+o3Mh61JrVvlhrUO5FySbCENtm/s/PECLj3P9809ISGWqOw/Yadbo2A6RZJrZi4tcuDRNIKRTaUM4OcXUWI7O1gpb935DobzJelfFnLjCF199wVRS4dHt7/mrv79J3dKZGM9Cc4vC5mOa/WE8gzOKqRFYexgQBGffqOU04XgEcVndbvCbRyVWqj0y8QBXpuOk4wFkRfJz+OwTt6OQvk8sBOEQf0cdR90+TgR3VP33+d6IA3qfZ+8jg12kwZ6dn2Tg1Ln3w222mmEmc/OEonGsWoGWZeMMFMJBg3BIo9Xv0a00cHo2hqKgaxqxoE6n0mJj7RGNiuaHxlnaKLOgRhhXZVKZFMl0nkBAIiQiDzttygXHzwc0aMcpOwoRM4a3/2X5yObgYxtuo2XxD7d3+P5hCVmVmZ+JMTUR8Y0PjiMor4Kjg7YH+9yAH5hUOKQKPdKrNPYelh0RoPdw0j5WkMVuNjqxgFkosvI3f0ktsMDi519ihsK+scDEWIzCxiOKu+vUi30m5zJk9CAR1fTjsA2sLmsbO6ztWBQ3H1Hy+jRsg53GgNnQFKFojnS3TXf9JjfLHktrVbRgkomUQb9b4s7dAj0HLkyEfM/3/Q/GxzofH8O4N0od/vLWDvc3yoyngny9mOL8RMz3xxGOqfuH0AMJU+zTWMIJInOQ4/GjYgsd0geaA2gfZ+J3RIAOYmN0fsYxIEEgSzA1QyIsEUnA5Hjcz8ESzea4fGGamw9WuL/cRjZinItNM5PPUS+qOEaPUMRhvdqh3rBIxWOosotq66h6kon5RULBOF59mdLaMluqyr3VNkp4nBufT6IrA9ZWSmB5BE0TU3mxx/oZR+RHBZ5IjyDEZEIU9yo6oGq9x9/f2eUfHpfpuDaXJky+XEgwnQz7nLMtArPtHUM/oAGaJvtE6HW5IwGvO/AQ2X+EqE8QqA+RGxoRoP0VNPp9TzAgkZ6Y55/+q/8OKRAll9T9SAdyMMrY3EUGwTSZeQvVCDM9mSERDnD9ionbS2DoLhFXZ27MJXBpElny6A1kXFchlY2gY+GqAUKpcZKqy3oB1FCSxQtXiId1Zqfa2A7Ek3GC6ulNet8TRH8QYIqEdI1G47mMqIIQvewQQUf/+vtN/s///JBHWw3Gc2E+WUwylRk6nvYdkWD9ec7ldYmO3+AzmvYyED+I5yMC9AFMY7vdp1Lp+MnPUonQ0xF5Aw+r06Uv0gMbJqYu+2mgnxZ4T0+C4SiLn/7BIehV1HCKafF36Ek6EwXEH8QPPXt2adGtlYjGE2iagSH3uXwpRiCWJp/N+3qlTPpZ6dHZ+4GBfQIkEtIdjtF33Ai6lsNv7uzyf/zVY/7uXoFwQOWPL43x5fk80ZBJt+8MTa8PNXBYLbh//UqESVC1w5TtUD9v7dITUUYsWn0PSzYIGTKRAxTD9RxKlS6SJ5FMBId5tl4RuJdvBV6xwVHxt4+BaqXFD9+v82C5TOdA9yKq8+pKgfsPCxSajpAejY5jMWCgBxNMJIIElT49V2Lh0gJffnaRUNA4ttbowdnGgBBlCeIjUnKL42UiOM8b8Pv7u/xvv3jAX9/dJRjU+dn5NP/VYp4L2RSmqvqhnfx4bS8ZumC09pmtVyJCL2n37T32sLptljcr/P1SjcdFkf91//DodLrcelzk9pMKVv90rNsBerbf8Oj3fcOAjIfn2BTrNuu1AdMRmYACHavPdytVuo7EP5rOoR3UdJ7hQb7IrPWnBFvRgyTTaWRVpePKJLNZwsaI+PyUOH8bbYv1dJI1JTifX9/e4X//q0f8u++36Fg2f3Ahw59+McmNhQxhXUdIFYYpt9/dyySI2b6Dq89l/VQKIpE+RDeoN6r89vsCXM7xaX58OGXdPu1yj0JbwggZfhbX08zliACdBmtnrE4sqnF+LsTNqsTttS7R+SCBkIfV7rNjKci6RiQgY5xxflfsTkWU6mAw6OfSeRdoVoMx0sHYu+h61OdPhAGxrl7E+XiDAduVLr+8u8u//S/L/OXNbWxvwDfn0/w3n0/w9aUcyXgAxx2G3HlRWy8bgiAe+6K5l5U97vk+N/W67RzZvudh9fq+FNAwhfN2mJj4bTboN0MIHkjEk2iVmmyv1RGpSTLjCT8tyZHtveTmiAC9BEHvw+NgRGN6KsC3lQ6rm3Wuj2mgDrBqPZLJBMFUGFM/fRiSt4mDfYsl13XeZrejvj5wDAgmQXywD6cyEByNMLf/d79e49/+ap3bT6q+1dkXMwn+5RdTfHN1jFQi4HNQJxG7HYdG0fc+4RDcy75o7rjy7+p+r2ezsbKL60F+Jks0bDKRCvGzSzG8mMFWF/IB2Cy2ebxZI3MlwoWsjnFKm5wRAXpXM/0G+5Vkg2A8juE2UepV5EGcerPP5laDsXiSybkYpsiadgYPIRqpVCpsbG6xvbXJ3/7NX7O7u0uv1+Hy5WuMjeWYnJw8lB31DA5kBNKZxIBIXzBMYaASFpHS99iGTrfP0lqNWysVfvmgwF//sM399TrxiMEfX8ryz66N+ZxPLhX0uQFhFfcmjlfhgASo+4K+t6G+bVsOO7tNHq9UsRyXtqIzMZkinjT57HKUX+94/LDaIjJvUhxIPO4qTGgymYMB6F8RSSMC9IoIOwvFxUe713foWa4vezUNFVONMBU0kJtN2p0OG9UOKztNLmbjzMbkHyVlOwvj2IdBwPvtt9/y7//dX/D9t7/1s6HevHmTn/3hP+JP/ut/Rjab3S86+h1h4JUw4LoD+s4Aq+9SrFlohkS50fXz+vz1t1v8l1s7PCq0kTyPxek435xP8U+u5bkylyIZG2bTFVzSSQ9BYPY5nZPWOaqcT3wEx3bUw5/oniCy5XqPUs2i27dRSx2CqTipjEYiG6LxsMrW1g6XQwm8oIGSSaObhxM7vhpwIwL0avg6E6Vdx2Zjp8bDjRZ9SWVuKsHiWJjFyTiy43B/rcL9zQaa5fCpLvEsWfSZAP85IIQ8PRmP4zkO33//PY+WV/3npXKNyelZotEoodAz0/LnKo8uPiAMDA0FBLHYd/AU7pfCwVMQD5GC3T/2WYITjFxTFDrdrp9AbqfaxlruU2kNeLjb4NZmg4dbDSp1i5ih8OV8ij++nufGuSRT2QihgO4zS75I+AR9DUVsIhqC4JRkFOE8ekDsdoIm3nmRgKESDqoo6gBlAKGARkSXUdCQAkLCUqO/WWAz2sMcz3DlfNr3w3sdwEcE6HWw967qSvhiBUNXkCUFzfeU9oiNRYnWW9z662VWmwO++WyGRPIsk58hAsORCJOTE8RiMWRFYeC69G0bQ1OZnp7GGFmivauVdmy/J+EJhHLfsl26PZtO16FjOXT7Lv2+S892cQRn4eHvtjs9G8sZ0HdFBluh7BehaCR6/YFfTzh+iuMV6A/IGv1+i255jWqjx3Y7ykpJRMNoY7se6ZjOH1xKc30yzlfn01ydS5JOmCDJPhEUxO9VDz81g+T5BOhV6oqexN8rje9VOjhBWUOVySSDZPMxfy7y6SDxgIjzLeFJBouZMDtL2/zFL9e4+LnMP/95lnTo9SAeEaATTMxZK6IqGlNjCcYyQ7dKVZVRhVZT0jGiOqbjMBML88mlCdKp12OR39bYZ+Zm+frrr9nc3GJnZxtTU5mdmfKNKN4WDKN+ToYBEe9MV58Jh/YzgjrOkAPo9W3qwjm62afaEiKdLqVql3LD8u+LhIG1Tp+eLULkQLNr0xSWVyJcjmAb9j7E4vtvufhESaSpPukhWhClewMF1WuTl7aJaDJ1RaHhasSiBgvJEDfm4nyykGRhQkS3DvqO2o6giSJ0zyuI3U4K14vKCXiHvNO7JUKRcICp2THf10kYXxjKs/m4NBdjfTPJf/5li1C1R0r3MF+TZI4I0ItWxVl9JnLDqwrqEbOXysT5F//kIpJuMjceJPjsO3FWR+PDlc3m+PLLL/nNb35Do1Hn0+vXufHZF+/MHPtMI+sdAScIhKAPguMOmUOryma7z0qhwUalw+Z2k2KpS63bo9ZxqHYdKh2bWtui3en7zoo9x/V1l8LnxvE5DA/XHoAQXSkyQbGZ8pXvHpqmDK03ZelEfjyH0eK5AxTFIxwJMp0KEExl0CNREhGdqXiAiWTQTyoXDhl+nDjBeUl7CeUOt/WxXBu6ykQu6uNb1yQUEZp771DjQW58Ps2/SUVJJwIE3oBh0xGfsP3uRr9nBQPbO7sUimWikQhTk3k/pMhxsIVDQT67cTgYzXGlz859oee5dPEi6XQaXdf54uuvufHZ5/6H4exA+fFCIgiPrko+d7Bd6fCbuwU6Xo2l7Sb3tqqsFtqsbzbYLbT9tBiSJPu+Ia4sIckSim+NJmFqEomQjqGHQFHxJBG8E0wZgopMYI8ACX4gZOgkQoYfefxFJtBD5ujHHJI7EJyaSybokE8FSKXSJGJhoiHdb9PzhI5pKCbEE8QKVEkeipw+0qkW8xw8zqZalslPxPnXE0PJi2Pb7Ozu+rH2hP9eMpn0xeivgroRAXoVbL2lsmKnKZSfnU6b9fV1/uq//B2/+u0PfP31l/yP/+a/fyEBeksgvvFuBNGZnpoil836C/nixYvMzc290IHwjQMxavBYDIh01qYZoGHJrNyrsvvtPVZrLtttm+Z+bDRngIuMHjDIhA3GYybRoEokZGCI7LGyRNQYkIsqRMMhJDOMq6joqiA+IqvoUytp35TM0DU/66wwo36hSGxPbHcU8BKenzpBKNhNU2Swlf00B0NBl+cTR9kTzJfkR7JWXkli8Iw7ONi3ILbiT4B1FGiC4B7lByRaE9376Rj8E3EtjAB+DJRo15e67+cM8vClIq/jJHtwDCc5t/p9fvWrX/lSC7GBvHbtGjdu3CCfz/ubyJMEfR0RoJNg+i2VEYRndXWVR48e8eDBA5aXlykWC9y7/9C3DhsfS/uRAt4SOG+9m/zEBN988w2KqvLVV199kIT2rSP1DXWoCG7FzLLS2Ob77T6rtSodW3zUNTKJCOPJIGMxg2hQJxzQyERN0lGdkK746TKEyFh8YA11QDQgExCGJZrBQFYQ6iRNGvrZiP/31T2CKAjd5vCj+mMOR5QTz3RVGOIMB3qwlOhPlPElfXs+NUJP5Rs5HCwoPvy+WFuItiUOSJ1eiL3jCIzgpMSfaEdIFt1naYP89o4jQKK8ED+K5wI88SdIz4/Jzx6heiF0P/1DQXREnD3hMrGxscHf/u3fMjMzQzweZ3Fxkc8++4z5+Xl/Q3kcNCMCdBxm3tJ9y7IoFos+4Xny5An379/n1q1bvkmyIEYHj8dLd/lP/+k/vTdmyfuc3MEx7J8Pd4Y/3kGWyyVf9n/n9m06rZb/Eu7Xed3fH/f2ui3u1X+Fhl+h6OmAO2rLfZqWxNdvbwevSAqOZPDrBx3uVeOsVOt0mkXiapsxU2fMNUlbGqmeQVzRCckaZkvD6kpYBwjKPhiHvv3DL+3+wwO/Pyp34Jk4FetLcFXCYMU3ihga1R0qJS4F1r3hWjqmUUGoxIdfGPQIHdc+ETyisae3RIZe0f/hQ9wSXIyYChH1QPwdPPafH7wnwFIEERQiSdaR5jcAACAASURBVElCJHx3Bq4Px3Ec0D4B9Ifkge7rzNS3JjVot9vcuXOH7e1t7t6965/vj+ncuXP8/Oc/59KlS4hz8Tc+Pu4Tp/0y4lfyxCyOjneGAeH1/4tf/II///M/Z2lpiVar5ctUxeQePoR4amp6GpHb/qxPm9iZilD4IgrxcbAefnXFCz1wLF/PIKvCa11sBQ8sz8MVDiPonV6/e+DeCAQHGhGnYh4lEf0rNEt/7BvakQv0rTZm9dfEuzd90VlfmFe32/5OXbgGKHsfZm/PD2Y4hcN5FOd71tf+3Io+DszwczN4sN5zD567GCrK9+nAUW0N07k9JUHP1T58Ica739bhZz++Hvr6/Pj+3p29wR2G6QCKn6vqExShgZIkHGHCbtm+Ofi+ZeBzhZ/vwr8SxPBFZY+qf9p7PoyOQ7lc9iOXdLvdHzWVSCSIRCK+SE4Qoz/7sz/jiy++eK7ciAN6Dh1v/0LI1oXiXewUwuEw9Xrdn9SN9TWE8cHBI5lKcfXq1feKAAkidGgD6BMkx3GHUYUPmXHGYxFMQ6fWaNHrif3z8IPlf6WOe3MPIumYc0EERYbJg9a1r9Hc016GH9TBcBQv4D5EX0KRLiy/hD7jBUWfti1OxMdLfEBPUl6IloZOnMNazzV0wgvxEfNFX6rsW4T1LZtC1Wa9rNKRLPLhATfmEnz2+XXyWoLBwKXR6lOvtRC+OuLDJHDtE4/DX94TwnDiYgKpPtezx90cU3E4z8P/X1xyv71jGjry9hGDPHxr2PWz2oefP3synG+xeRsMsPtDX6kj5/6INsSt4zZ7B7r4/9l7sx85rjXB7xd7ZGTkvlXWXsUq7qSulqvR7enb62AMo3tmPN0PA9h+s41+NjDoh3nxf2IY8FMbYxuw28sMZutu37591VfSlcSdrGKtWVVZua+RsRonikVRFMUrXRYlUswAqjIy48SJ73znxPedbz+TUzHPYnMpVG+C+TzJgETw+NzcHDMzMxQKBUqlUhzPJ+jb08dUAnoaI9/xd7FgfN+P//r9fqyKE/afX374C375y1+ws1tjOBrjOA5/9md/xr/6V/8qzhb9HYP5Gz3u9GXwhVPFox7EuyjiRlzXxxfR7U+9nKdlk0+TkorbhA79ZDf868F4xnsZPyKIhEpDxKmcvKTP6u8pUH79w2J6dRL7EhPd0zsEEI9sDqc/CSIimI/rnTCgp8d92u7pTwGT6C72AnsW0LGUcoIfkb9LBHgKWASBePL40rdHX0QbcSqanrYXMTAiJYtg1mMn4LA15ObDNh9vdLh/NGS5avNf/nSJP/3pKivz2cfM5vH4H03AryX0TwL3Es/FWhNqboFF4egitAev9PHEAn7i9JUEWWhphPbmL/7iL2JnBAGkkHreeuutOKRCfJ4/fz7eYItigOLvafxPJaDveWrFiy+kIPEnXBmFNHTu3Dnefecd/ov6P2d/r8bnN27ETgmnk/k9g3xmjxdM6ZQxnXYav3SPUtaLc3H98W76UWPx++nf6X2nn6Ltkzp3QVxPjbqx9COM0oFgBiLg8IT4xvd+iUKf9vbrP8Vtgsh5j4zbT97xFA+IxyEI+8k298mWX38uWITYDTtikyLiVJ7FuQQQEVjhCeP4ygO+wgxPBnvKeITnV9xvGNEbunGm48PmiO3GhDtHLlt1idZYJvAGFGSXteICSzMpVO31qJUkmKOQuG079fWInl751hgQZVOE67XQygjaVK2cJA5eWV1lplqNJR/TNJ/b75QBPRc93/1FIQGISRV/ly5fjgEQjgn379+PJ1SIuoJRvQ7HyW7aj9OxCGFHMA1B+p4kzE96CAnaHF8X/2P30ojokXeUuDlWXcUMSUJExp/ssk+IqehbHIIBCcby+Fw8T7i9nrqtCokqloTCx0W9Tu457U/c+YjMi65POz7p8iv/xVhEk1PvqvhuYXwWjDA4UfmdQPho8I8+fk23j58jNiiCAU08P4b7VFJ53CA+Eb2dqOlObQCnzEV8FwRYSIAxIxfthSrSO1HxjLwgTnUzHHo0By477REbR322DwfUWiM6Y59yIcVaRUezJS4UJ+RMD89z0BOvfponIf3s7+/H6iKhLhQeWt/EPfjL+J1+exYGBC0S6jVh3xHqttlqlULx29WtnzKgZ2H2FftN7C5OY2KEpPQ6HqdM5zExfjSILzQiEsoj4eALoi9aK/HXSIqIZMFZJESooCzSpQgi/4hHPCbosTop5l+x+61wgxXtYoJ8+szYWHuiiomZTywVCYb0iHOd8p0Tuv5cdJ8+V1VOgi1FYwG1YJBxEejgxN7zdFdP4+HrHxKhCnh19QsGEmPkix5Oz2IWegrQI8lMNPX8gJF7wsAE8xU1X5y+S7/vcTyacNgaUz8esddx2Hcm9ETyzyBE5Aa7upDhD340z3vnbDp7Dt6gGbs8u37E65IiVjDtZzPur8f69Mqvx4CQboT0IzY4gi49rV779T3AlAF9Eyx9z23Eju2HnJBTGL51RY6j0wXDmHhClRTGEkTgn2RJjj2qTljRibuqIsVShkjj8gXbeET9T+dLuNaeMpNHjCi+FAtYp2T7pLFwgRXeW4J7COLrPrKlxNzktL/nfD6pGhPMTthsYrvNaaDgKRzP6ePrLon+hJrM90N8Md7YieELKU2ciYBLRyT5dP2YIAgcdoYiCahHf+zG58IGNnID9ttjjnsOIydg4Pq0+xOGAxcRqZO2VVZyCVbm0lxZynN5IcvVpTyllMzH7ga7buuRRPV10L56v58yoCkTOtu5Efh8Ubo0ZUBnOyfT3n4NBk436EIlFhcKk+XY5XQ49hg5Lq2eS6PvMhi79B2f4SSIyeujnIgxC4qj1lU5lgjiLMlPixdPwHDKZk6f+8Slx6cnbb4g6KLP2JgvJKJT0e1x629+8gK3fukhp2MQzgHCM0rsOE/krBNJS8Q5RkHEOK4R5ceMT2SdbvZduv0J3cGE/jiI1ZBC7uu7AaMwRFJlDE0hmdKZr6ZYzidYLyZZrNhcWMxxaTlPpXAi5/jeBFGTbeI9pVb8EqTTL1MMfDsMvJEM6OQFfuQqGnsCfTM312+H2t+gdWzXEDTvlOQ80cfzrj3R7FU/FSMTw3tE7uMd+3F3zIaoz7LT4WGtx0FrTGswoTHy6PshhixjPuJAMemN1WwnOHpuihaBjFNUPo8DPW73qM9T6eULOv/t0Pqb3vdrnnKiLoxi92gR3e9HIZMgwnvk3v14GLGZ58TlW0hyQgUXhlKcEXoupXNlLkU2bWBZWpxrbXHGZmU2y2w+Qc7WySbNuBaMKHR4egipK+Z7pz9MP5+PgUfvq6A1p+/z6efzb3z5V5+3PJ937WVA9sUKexm9v2J9+pMxjd0N9o7qdHwJWVaJvAhJNTl3bomlucr3CnHncI9Wo45cWCRXLZGOCbVDt9Fkq9bFTudYXa4+pqknwDp0Oj0ODyekszlmZ77qa/+9DurRw8XCFgRM1+TYtiBckg+PB3y20eLvNht8stVhq9aL7RFCbSQJNzVZRtUVsqaKpYu9+wkRFH3FotAjZvYyxvd9EQvBAuPxPWNQ4lrMvCWJsReeSIcijY12EpEvCrDZCVF6WsPQToqiJUydnG2QSepkEyqVtMFCwSKfMhFBo0lDpZg1KeUsVO3ryYGwHX0dXM8A9Q3+yaG2ucXm7R1cEVNl6bF9pLywzOz8LNbphug7wtCwuUen30fKz1FIp/FHbW7d3EeSdN66voKma3iDHq3DHQayhV5ajtWtX/iu+bTbHQ4Px2TzOaqVE/oi1sJZDOXrV9x3hKDv8jGeM2Lv7ufc3a8xzlRJaiZB/yTgUbx7wgU6aSj4vhcHQWp6AllViAIfTSQXFGnhQxFPcgK1KoW4kwluAAnLilVKhKJUtksoKZimgRz6uI6DF0moRiImvvguI2eCh4ppGDGxED26wxb1nQe0ujKzepaLOQVtuM/h1ib3arC4YrIq+nccAlQSlomMT6dT55OPa9imSvDOEpnKfNyv7I/jaOpIPnHxPkm0GBFMHETNlhAFwzTjFB4QMBoO8UOZpG1zqvI6q/kRhFMY6nVFYjR2ub8/4G8+O+A//mqfDzdbdCYBaVMjn0+wZKbIGQqFhE7eFhmRdUxdOCN8d7vws3i5vi3uRDE+RVbi4E4RwPus40Q4lmKngv7Yx9RkMpaOqonyHDKphBaXG0hoSpwmJpUymCkkKaZNLEON2yX07y5dy7PG8MP9TZDlAbv7O/z8wzskCzbl2RSarpMolDmpNeQxmbixg0zCSiDHmUfBnzgngdmaiaKKFKRfPoRNVGyKhOp6It7fiY+saiRMM86lJ6okCxufommoYpFEPoP+kM2bH3Pc7ZC6nsROp/GcAXd+9TE+Fotrc5R1jX63xe1PPmKcnmM5u0g+CBm7Ln6kkEwE9PsdfvXZTpzD7+r1BYxcJQ6aTyohk/E4rlir6CZWQj+BO/AYC/oWSRj6yUZHjCb0nNgBxpNUEqYRp096oxiQ7/mMRyPSmSwXfvw+ZSOB29ynvn2byajL7nGf5WqKfuuIvYMWqWwlJtC+06WYz5IyNQadJqNQQ9YSqF6P5nGdvicxv3KOUsaie1yj1ughWRkWZwsoTo+D3RptXyVfXWC+mGHSrrO5c0AnSjI/V2W5motXW7qYp9AtxiW1x9oBS5cLDHe3qO/vYJfepVgt4Q7q7OweMghs5hfnKWdFTItP/fCAzd2beK0qCz/9Z8xWF1Daexw3W/hahpnZRcoFCyYOjb0tDhtNJopNvjwXx3TIXoftjW16jsbKuXWKhdRXXoIvvxLf/Jt4LUVSSZHOfzz2+OjeMf/b3+7ybz894LAzjj1h3pnP8JPLZa6tFSjnrTgtv1C7CaaaMPSYuMY78PjfN3/269TylLkImE/UxM+APpaKwfX82FFC2NEShnaS1VnkEhNMXlNiRw3R30lNHTW+/ozepj+dKQbEpsFlpCZwS2tcuTTH9QuFeCOQSGUwA5dB+5C92hETyWBxZZl8Oh1vKHsHOwxGE0hVKZSzJPWIwShAVUJMA3oDkfdOJmkG1I8O2DnooJk287MzZBI63U4LB5VMqUzB8Bh3mzzY2Of2jVu4BCyfn8QSrCYblIw+x5Mxh0OPbFYUBByycTigoAVUjQB52GVzp84wMllfyRDK0Oq12P38V/T3MmSu/yMuvXUdzRhS299jvz7AzhZYXJqnYCn0mwfsHRzR81Ts7ExM49J6yKBxwNb+MX1JlJWZZbGSecO84GIdRkAUSgSehCtHhJKKbudR7Hwc21B7eITnjAlDhUZtD6d9hCz5hFd/zMDQad/5FDOTRS+fY2uvjjsekCtmabdq7Nw/pnPcwDfLlKoJOrUHjEYTal0JKRphNXc49m06fY/OyEOKjmg3hIutSTFlYmVLFOcdglufMzzYI7yQQwQENtsTlq8WUYIJd2/dZRQqtEcOnWaDt68UUTWNUJMZj3oMWjK9bpvQyKB3hphyhDPucu/eXSYLeSxViheBYLiyNeHmpse9baiYLkKF43su92/dxlmaY2Fx7kzEbBGLIqQvYY/48EGD/+nfbfD/frhHa+xyfTXPH1yZ4SfnS1xbzbM2n0EzXk9X8xelZf1uk53dbaozVfLF6ot2N73/EQaEe/2TmTVeHmIEgVHwXZdht023ZTJ00iTsDEldxe21uHF7k1azSTqfZ1sz6Vh19LBPq+2wU/cJgjZvnbMZJhP81QOfvBnwD1YNGmOb/kRmxp7EJc2JJMbtPR4Odwlkg8FIozizRDLts7u3SafVZCxo3MRlMOoRem7MgCzT4tJyBrnhc3Dcp2yLGLMhrlnCtFKYfpta7Zja7hFaQqNmDGiPREkLBdXtM+o4qI7LsD9kOG7iRUq8ufE6O9TkIXuSwej4CNkb4kQyW7U2rVaTK4s5On2fjuMjK02O6xKdnvtmMSDhZStLAZ32gP6dhzQsHafbZOCpXHu3RNYMuPWzj9HMDLNrF9mvbdPe/IxMIcth5wK9YcDg9gOuX1lEL83w2cYBSdNkZT3NQW2Ln//d3zMcw8UfL5DLZgga+zR7PgOq2FGP8cF9mvsBR+oSppZgQW3T6zV4IBXj9PSWbqJbOUqGS+gfMugvcegk8Y0ShYTMwc42d+8ccOWdd8hHHTY++wWH2QsolVWkVJrs3BLVxRz5lEbPGTEaw1opybjZ4u6te4x7NnPzs7QRO5A86cSE+59s8fHNXZZyaf7RT98nkwz49JNPCSOP2cW5M1kgQn05cHxu77T5i7/e4n/95T7SxOe3Lpf5r366zH/+/iLzlUychfhFvM5eHmH5bnr+5cef8pf/91/y+7/7e/zxH//T7+ahb8BTRAoYIVG+/ABUoTjTiEZ9Rnt3eBjUMS2fXEnYflKM+iKd0YhsMkspn+He7gEPBnuslmCcukQrMhlvf0JFqPWTRf7mRhBvDOekLE5qnc5EJzFqYSQzpC2LTvMuW5sPOIpsDPsalQULLXT45PYm3WHIu++9BSsLbGzcEVWQ8AV0us7M0hqHfoMHW9tsjHzSCZhZOUcuo9Cs77LbljHTOWbtMQ/3t7h7EIkqT8wvLFEoG1gLZdTIYdTuIBsVchmJyf59Hh7eZ8/NYigZPjhfoaQH3P7FJv36Lll/joZaZaLbLJhtWv0WD7bCM6Evr80Sjr2IJI2knacwv8BcXmP7doedjRb+eIhm6ext7uIENQLDjI13ejZDbq5IvVvj0/sdvLbCOc1G99tsPNzAdSSqBZXQHeH5Kq6owqgrFPMZZGMdV9mju1djr9FB7e8iBV329DFhIs/IGGDYBnYqeGxzMY0E67NWnOL83u0bNEYJyvPrpJIKD8ZDOp6JlcqTMxz61pixPGEUgicraJqBZafI57MoI5l6q85Wb8ROZ8BuvYUu98lkU9gz1ygt57EnR2Sjz3Frm2zWM9wpFynmdNxgQqhI8YJ9ER2tUAEJnbWkKOwd9/jXf7PNX/7tNpOJzz++VuG//oNz/OHb88yWpylShG3x1s1b/Mf/8J+ozszyx3/82rxWrzSgIjhSZD8Q+RZffhC30A/7aOkk+dU11tfmuHxhlYSVQovqjJwuRmGGWaGqyviMH+xzvH9IOVXCmMlQLEoMD0P2Djr0dShpIYrvcKsWsXBVYbGUQTtqcHy4y/5Rh05tl8aoiZdTY2/GrC1sRH2Oxz5D3yadyZFdruJPWhimEb/PyCrGzAWsekDn08+5uTNm/doVllbnyHqH9JuHyMkLzC3PU47q3Nx5wPZuh3RqiayeIJHUSWdMRIE/r+FwdFyj3WnjHO6z367TMRaYO7dCavYiGW1MMd+ld/CAo9omG36PiZpAzglbVR7bNt4sBhSKbMFuiJXMsHJuhaWsjt6vcbhxF+GBpklVZFXC6dW5d+cWAyfg/MUVMovz7Pzt/0Pj0w1yl/8Io7qGLHUx/DYH+w1ufK6RL+eRzSQ6PoYSYRoKUmTjuyMOdu5wb7tL2ZZYKiXwOnW2N2q4KY2l8xlKCaGrP3mPFVVnaXWZ/a27/Pv/8/8gd+F3uP7+j0hYEkktxGTA/sM7NP0hfckmb9pxnqveYII56OMMdNrdDp12wPHOJgOvw1Y/pNVTubAknCxMmp0aGzf30H2HXj8glzDB7VN7eIfjRjJ2oJA0/QzUbyI7gEKrO+Gjew3+7a8O4pLN1y6X+Be/u8o/+WCJbObVT+fysims2J232+04EW1tb5+jwyOGwxHJ5BQ3L4p7sf4ymcyJgf+lZ0Q4sQG5qo5UnGfx4hUurM3EQ/D6DlKrizRuc7Tl4qVkXE8mmUijRmqs4pqrpoicWf7930/Ybfl8sC5x3A/52U7IH19J8E4mYm/jgJ2tI+7XRgyPmoS6g52X0EwNSVORFYlsQsIZddm8f5vBrRvU6ocsXJo8ep9lMHJkbQPL2eXDnRGt1Hn+5KpFScpy1Ntn3KzxcNyhJY/wgwArqdMZD+nTZdg36NYalOwEeveY+5s9NnYPSIx2kZIGpq0hT1oc1B5yLGLOBi52Jk8iA6ONI7Z2u6gzWZYu2pQXkm8WA5JkBd20kHUDXTvxcyrkclxaSHIc+hw7Covnlyi1Tfb7Cp7jgZrDSBRJDmrMR9usX5qnOrsAPYvr5+ZIylFcbthXFIyUEVd/tBN67DnndI44bnZouhKRrFKenWHl0gzOg2PGzW1yMtgJBcNSkE7dzmQNq7KMZGSo7+2RXe5RLKbQtYhq2qJhDDjYvEHdsdCsGS5qxbggl52w0NPCey2icVjnqBUwFulULIuUF+IHBgtLaxTzKR78zUc0atuQTLM1SGNW1lhPdlGsBPWJApKBKmsvvjjiGCuF29tt/urTfY46I2aqKf7RlRk+uFiZMp9H1FV4Xd6+c4eNzU1EmePDoyM2Hz7k0qWLqF/kKnpRWvxG3i88x4QKThyC0b9c9/oTG5AUyUgiVdQTnoxacgY7OSKo/4y7+4dkZxZJVdeolGyyegsv9MmkLKyVZaStgLHfo1KQcRWPfj9L5Bsooz6DToNAVkkXZ9F8l0AGM2EjqTqTMBGrsdfyCehus3m3y62f3cDzfUq/7/Jk6thCOsG5pTx/17bYdxIImO38HN6ww+d3PmHjwS7ZfIqlqytcu5Zj40GTlGsgywYHtS6BPaAajPGUiECOsJMm+aXzkK7gNbfZvfmQgW9wZ3PIW1fXWLp0juPhLbrbDYzJGE0OMVPqi9OY12lVG0mblWvvESkqaf3E0dEqzLH+zm+T9218I0tqPkE4GbDYCxgMPEqzc+QzGS69/0fMrn9A6fIaGVUltPO8/8FPOX+pS6RZYBiEgYccRpTKM7F7pZZIM7d8gZ/klvDHHrPlLKWZLOl8j3Pz5+LYFqtcws7ZGEJXdXooadbe+i3+eZShvHyerC7CNiVKs0tclxUa/QltP4FpZ5gp5uL6LX/4voY8rlCyYaKnKRYjWCxjGDLDiTA0Kqwt5zCVgGJ1kWzSwMNnb1cnm83x3vUcmq7QcSCSVKozZU6ypZ0C9Zt9ihIBH242+Y83DmP36z/48QL/5CdLrM5lfrMOf4B3jUZj/r+/+U/88qOPGI3HbG5s8MknH7O4uEAmnf4Bjvj7GdLLZT5iTIKmpDm/uELK8lh4UrUsa+SKs7z1o+vMz81hZIoxE8olJLSwi2fkSNgGhrXI73yQ4nLP4cKMRNUJKazonK+kUAyFyto7GMs6rmQRDNYJGSEnbYxUlVJSQdctFs9dJJkr0BwEZKw0sqxwXsQgPYF2K1/l8gd/yJ8uBgRWhWLSQFI00uVlLl31yeUqmHaSubVFpESa1VKHpL+EoatkI+GlBxklg1KFi+cHpCUHu1BkHKoc72fIGhP6gyFbeyP8SCNXmOPdtw1m8yWSpoo9M4ORs6cVUZ+Ykx/+adin3+6yUx8jeQNcd8TtYyiWZvndt1eIYz3PEAtix7l/POB/+Itf8T/+X3eZSWn8yz+5xn/3T6+SFit4esQYEKXX//xf/vf8L//6f4+/VyoV/vRP/5Q///M/Z2lp6ZXAksh8LGq/7OzscOXKFa5fvx4XG3slgJsC8YpgIGA0HrJX66EEI8bjHje22uQLZX7vH1x9FG/4ZVBfxMb85Z6m3159DMhJJGVM0Ntka78JyQIXzq+yWi2fOfMRyBDBchv7HQ4aI3RDYW02w2o1TdqaMp8nF8vR0SFHx83HP9XrdW7cuEGj0XhlGNBj4KYnUwx8LQYUhOVYm7TY3DliqFgsX7jAymwRTX22PmXKgL4WmT/ECzK6aVMoFnBCHTlZZHW2TDbxchiCSIJ5c7MVB6qJdDDXVwoszaTPJofHD2R6ms0mN2/eonFcfzwiITnW9nfZ2Njg/IULpJ5Ryvhx4+nJczEg4n9GoxEis4TI3Cyqor58d+zngvSDvigrGplsmuI4JK2nWF4QqsGvj+ubMqAf9HL46uCEE8bc6mVmV0+uvUy9eH/ksX00oN4ZYyU0Fssm5czXL8avQvvD/0WotoS7+tWrl/HcCb3+ENPQee/dt2NCKdK2pF7N9H6vxeQIxtPpdOKCdKJc9Mt3xX4t0PLSgBRB9fnqErnqier419GXKQN6aVPxCncce6e9fPiCIGTi+nheSDIZYek+hirC4abHKQYEUfzd3/09rl65wocffsjHn3zCxQsX+P3f/33KlRls+3Up+3Y6olfrU0hAInei53mPXbFfLQh/gNB8C/oyZUA/wPl/VYYkVB0iV5k4Ik7cYbVHLrGvCozfNxzJZDKudisq3poJi4nr8Vu/9Vu8+96Pv2/QfjDPP03F8+t24z+YAb9GAzmhDq8RwFNQXx8MiEqnqjA+xgk0FQzDjt1EX58RfLeQCnXcZDJBuGVPj7PDgGA8U+Zzdvg8y56mDOgssTnt6ykMRDHzEYxIRGjLisjKPF1yTyHp8VehJhI2CxGYOj2mGHgTMDClBm/CLH/PYzzNCRdF4deXGfieYZw+foqBKQa+ewxMGdB3j/PpE6cYmGJgioEpBh7ljpgiYoqBKQamGJhiYIqB7xwDUwnoO0f59IFTDEwx8F1iQAT2ir/p8ephYMqAXr05mUI0xcAUA1MMvBEYmMYBvRHTPB3kFANvLgZEOYbTktxTSejVWgdTBvRqzccUmikGphg4QwyIgnQi2FfkgDutC3SG3U+7ekEMTBnQCyJwevsUA1MMvLoYOC3JLSQgwYCmiUhfrbmaMqBXaz6m0JwhBoJRi0bjmL2Gg+MG5LI25fk5irYG/WM291tstSOMhM3KXJHZ0jcr/tbY+Jj6zm30hfcorlwgrZyUIjtD0KddnREGRAYEkQV7eryaGJgyoFdzXqZQnQEGvE6Nnduf8XcPJ/Q9iYvLZdR8jrQaMtz4iBs3jvh5TUHTrbhgVjl/CZmIIAwJIxmRxk4iwo8klCfy2u3d+mt+/m//Ncq7/w3vpNa4VlYwnihoewagT7uYYuCNwMCUAb0R0/xmMFJfkgAAIABJREFUDjIch6iRxfz5ZcxshvM5m3zKplXbZPPWLmaiyHuXC7T2tnC6B+w3S8iDJseNPr3QoppWUAg4HCtUZmZYn8tC1EdKl3Eq73JU98nd3+JSZgHDfDk1ld7MmZuO+k3BwJQBvSkz/SaMM4oIJgP6gzE9J2B81CWSFXL5JHLSRESCqFHE0cDnYVPi8nur/PTyEg9+2aTlt9mp7dE9OqbfbKKaFn7PJpi4dL0ANZGglNGIju+hF1dZ+sOrOL+6hV+7RRDOAGfDgKYxK2e/UE8938TnNDHp2eP3RXqcMqAXwd703lcLA1GI22tQ2z3gQcNDnzSxpD61jQE7By2yhsYHf/CH+IqBp5ugKOiqimFqqP0u3W6bjbZMUTU4Vwppejq9AcyaTZLqhI1al+GNm2iFCpWFefz0hITbo+tOsKwkL/oynRLKVwuprzc0wvnAdd3YDVs4JIiCdNPM2K/OnL7oO/PqjGQKyRQDkoRiJEnnisyqPrqSwzYg4/iUlZu4wzadnkO754E/xNR8fEli7Li4rkOUlEBPY5kyhZxPb5xBnozJ6A0M2eGgB7vbx1jNETNamqzUpz0K+NVWh3AlzVLmxV+nKRM622X8ZEXUbDY7rYh6tuh94d5e/I15YRCmHUwxcEYYkGT0TJl58Qe4ox4jZ4zlR+SiHuOWwbFioEUupYRPv1Pn03sWh4cuVsokk7GY8WwsAnx5gmbqJFOArzPu1hl0DfpqDhkd3XVIF6scT/rc+OU9UrLOwvV5XiS1iKiOeu7cOYrF4hkhZNqNkID6/X4sBdn2tLb5q7YipgzoVZuRKTxnh4FhncONO9xtOBzWu2SMBGtVjR9fLtFXZ/n4YY37n/fJKEnemU9Tzpi4noY60ZEkD0OOkCwLw8/QbB7S76pYc2ssLy5waSmFKkcMo1vs/fwWo4U0/vX5F7IELS0tkc/nsSzr7HAw7WmaBeEVXgNTBvQKT84UtBfDQCipaEYCK6FgF2wy6RzVQoZK0SQrv81hsMckIVEplFlcSZPJCZdsjdBNkjHHGFGSMDSwIg3ZTBBlJLTCORZnK+Qf8YjzlwIix6U0kxWFX1/oEBH74m96nC0GRPCp+Hue7SeMAiZjB1Uz0TTlKwCEQYAnbElCgtblb23vmzhjPF/EnFk8o/uvPO9l/CCkwfCRI0aMj5fxkG/Z55QBfUuETZu/PhgwC0us5udZCiPCOBmyjKYKJZmEUVzjg3+4yo/DCFlWUBVRthmElubEWwpy8VAFW8mRm1lgWRR4VVTkJzhNZaFKsVqKK71+lWy9Prh6YyGNAgKvT7vTpdF2CTHI57MUCzaqqN4bhQS+R6fTodUZIjY1mVyOQjb1DRhJFJdYb7W6DIdDgiBE0RNkM2mymSSqCDT7Dg9RcdfzfVTDwHhFKhNPGdB3uACmj/qOMSAJpqIS85yvPFpGVb+6kxVM6Ks7ZQlJkZ9p3xFtVU37Su/TH14PDPjjPo0HH1JrDdlzChwcdpgrp/nJ7/yYgp0k8icMj3bYa3TZaYwIuh0qlSrB1XeYyWp8/aYjgqDD3tYuH906wkqYpK2IRrNNJl/hypWrlIr2c+4/e/wJCW7sTLAUDekVofyvCBhnj+xpj1MM+J5DbzABxSRlG2jf7Ybz0QQI0SvE88VXKd71CiY3PV4NDExGI/buPqAXaCSrsyh+h9Zxj+PBdZJWkjiJjyShmyYJ0+Xg/j7hqItRKTMJsmTUBJmUQavVptcbUSnnSdkWYeDR2dnkcGcHT7KxMxmKsZekj2pqCJVeOB4yGHRoDSZIRops0kD3BzTaQyaSQbWaR/LGHO4dMnJDTDuJZeo4ExdJNSiViqiSS7/TYDDy8SQTw0iQMkEKxnT7Dj1HJpnKMD+TA9eh2zhk7A0YJnMQqthahKZGjCYh4+EId9TH8QMkzUJVNdxhJw5XSJXmyaaTWGfMMc64u1djUU2heLMxEEUhvj+ifnRMozUiUm0KhRzlfBJNUfhutQ8RYejjuIIRKSQT8gvbit7s2T3b0Yt5OWhDMpvh2vl5qmabvUafjhPS9aGimdiVZc6VIgrZQ7ztDYb+hH7/gP2jFnkzydXzZe5vbnP/4TE//eB6zIB812XzziajyYR33n+f2WweLfKZmcnjywZyGNKubbKzvcnm8QQ/UWIhp5END7m/P8ZNzfM7aYnB4S5/9e8/ZBJGlOZnYwYz7HdJpnJcvPojUqbL0dYtdg97tEYmhmkxmw/QZIdaw2e37lKpzmP99juY/pD24RbhKIFnzuI5Jitpj0wyZLsZUNvawWnu4ysavlkgEJumYQ3JTJJehSvnVzlXPFtpf8qAznY9T3v73jHg0zza5+bdLbwA8ukE3qDO3brBdnaetcUKM/nvNjllGCmxLUHo/J+0H33vqJoCgBdCx5VQ0cjaCeScRWs4iddOvGeQJGRVj70bC9kkpXIWxZeJtBxHB3tMwk3WiiuxrWfk64ScEOjQD2m2RriqSqGQJWPA7u37bB41UQvzpJIJ6rfu06zXcc0c7b0dmvcOyKRcgsw6s7NVzITE/e6A3aHM+ZUMmaLNxp5DUgpIWwGt7ghJTpEpL9J3D2k1D2jub9M7GpNemEPNrpDr76CNdmk7F1AnY4adOrKSoRfkGXR9coxRJJ/jbsTD/TrmZMja5XXaY5nN3R1W5220TIGt/UNytsW54sKZrpopAzpTdE47+14xEIV44zrHextsbh1TrC5QKRcJJuDXPVzBkaQIdzyk1eowCWRS2Rz5tEngDOh2e7jCv0mCyHPw/IAIFUlWwHdiBwQzXSSZUMAb0Bv4jBwPQ42w0sJ7QWbY6uCMHfR0ilyxREIDZ9Rj6AZMfAVjoJBJGmiaymDgIgUuquzSd1yGLiiyGu+UozAgUBKkM2ly6cT3itbX/eGx91cYfk1Z7hCiCaHkMw6h1x0yGfRIa2AJA08U4E0moBqxA0Iub+G5Jn2yJOUdnMP7/P0vjvFzF1m/tE42IwLHTuyIqaRB0404bjmYOZNJv0nt3ud4xS5Wvsr2nW1SpsXFy+vkazts3r5NQ9OoXlhg5eI6qWSLEQnk8jqX3qmQTZtsd5pU0haLsyYPOwPcesRSKc3yah51HHD/6C77jTbh4jnOr1xmSXMIOps40YTJ2MN3xhjhyVoNXAjcCYE3YeLL9Cc+STPFhUsX2a/32dmqsXrhAoad4e6/+5zukXD9nDKg1/19mML/kjAQhT79g23G3SYz80vMr6xRqthEYRG7GCAkkVRizOHWBr/4+7s0xxIXrr/Fj66u4hxscvfmDUbJMh4RkwMhQYX4ahovkFAnbRKpFKnldzm3kCbh7vHZvTZbD+vkE2NmLq4RRBb7H9+h2zqmfHGNi+/9NktFHb+3Rd0J2W6A33W5fqFKPpfl5o1D6O2TT/XZ6E7YaoEZyBRUF98P6MkZrly/wgdvn5+q7V5gzTzPDVvYBQsW6EZAyxlzcNzBGwzImiG2AsFkwqB5iGukkTThzh0RuWN8x2GpYrJ74PNvfrbB2gcL/PPfniFnnOzpVU1mfi6NWx+yf9DDMtOU55e52quz54bUu1081yORNSjmC8zYKlrY4NgbYeoGkhTFuQt1w8ROKui6ganrZG0b2wxRlAg/HFLf3SE4klm4eBU7k8bQI1QnRJJENncJQ1MIdSF5nxgexe+x16cko/kh8tghNCcgGJ2qxv0KxxrFMNFSWRQzgRwGKI6DdGLIfIGZ+OqtUwnoqziZ/vKaYkBIDZNuO35xKysrzM4Xkf1j9uvHHA0VpADsySbHezsc1Ef0ewO2dRdXCfDrO4wbTdKFeQZDh3q9xcxMCd1KsLl1SCUtjLkWB7UDLAMuVAuocg+3V49zyHWVCUOlxGQUUcyksZIyh402jKGgdXADhXpzQq/WZqmSIJk02T08Yrxzi3NzIeSX0Q0f6rvoM2Vk2carHTJo5xlH6ySER99rOi/fJ9iC+aRSKXzhfqx+ldwlU0kuXj7HbrPDxx99wqAO8+VF8qpLOO7TmwRIuHSPN9k+7jNstrDSFeaLCaqJJSLnEmZ9n3Qyy4ylPY4PEmq78spFHO2Q+0cPudOpkU9ApBawTJs5yWT+R+vgT6jtbqKYSazCAivRAC2TOAmCRkjLSSpZkVZKR5Y08pkk2YREwopI2zKR1UNyGuxu3KEzcBmYZTKZDDPZLBlTxkqlQK4gJwyYuKj5MnZpkYScIDzYonFcZ0gKLWmzsDRHQfZQNTVW/5WrZUwzAWFIrpQnlTn7TBJfnZHvc7W8rs8WRu/JKPb1dzwwLRsroeO7Dq574nsfeuPYc0W3C1gJDe2sqEngMOz16Y480JOk0mksXUI5q/5fpzkRqXhEIOfApzUYUxxPSNOlfXSHv7s7od1VWPE/J5vSyS6+zbzfRJcG7B8fMToespBIsbyyxEGjx2Brh8tXrqKlc3R6E9bOz7K4PMe/++vb1Ld3uVi5yOLyMmY0wW9tcKPf4SAymF28xNsX0hTSHp/vjKh1HbILoGo6UTjCmzgQ+kgyjAOHZqfJQiXDwvpVSqMx7q0DKlfWiJIVEj//DyQYMAwjTBGn9DrNxSsC65MVUcX504eZSrNy9UcMbtxkZ6OBnl9mZn0FW5WZuC5+pJHJ5ND6TQbtJl0/SbEwz9p8AUuTCRSZ/yzRplQofCkLhqRomMVVqpLNaPgZuwfb7Cg2dm6WUnGO2ZxJXi+zv/uQmw/buJ7KQnGGuZSPWcij6woyJuVcLnZiydoGuqFQLRkUE0kySZV5RWUhlSbs77Gx32DkS2SWrlMoqFQXquQzCTR5lmiSigPcTGSCpQukZ+bxAx+5KdNoWfhGiXKpyly5ihV5WHaavOJzfnWWbCYTx9CtXzlHMfvNCjY+jePnfZ8yoOdh55teC32Gh/f4/NMbbDYkVq78iAtrVboHD6kdNqg3GrS3P0crLrH8D/8FV9eKlM7ImSTq7vLg44/52e02UvUq733wD7hU1WL1wTcF/4fSTlIUUuUq0bHD/Vv30SOZxcs5FmaKJDZrbHT6VBUPc7ZKdvEiSymXrHTMtpdhu99DCk7UE4JQCTWFpuvouoaiyPG5iGIX6onW1i1qdhtt5T2qF64iHzjsbA7xe1FsJ9IUCTl0Cb2IIBK2B8E8TtlHhISwLQV4EfgRJ2UiNA1D9xE7B5GxOTL0ODhWvP1hAMKPYXp8ewwICej5FVFVpFSVlUsmmeoIJZEhl0mhqx5yKGGgoKkmlbmLvJ9awIsM0pkM1qPYr2JxjvetMqqwEz7jsHMF1i5dp7I4xEVHS6SwEha2KYKfU8zrKRKFIYFsYlsmSQ1UXScS2RswqRRUcukIQ5fjTcvKbIQuE7vzz5gScpQi9HNYlSFrvhRn/jANhYTI8K4ZSHoFwiJoOoFqgp1GNRJEkY95+RqzTgB6AjORIF63CLdsBVWPsJM2uqbE6/fK+okH6TOG+EI/TRnQC6Hv9GYJWTNIJFOkXAnT1IlTv+sm6YxNf9zio8M2ipNjjRBLCxm299nab2FkqyzMl9H8gE6jRnvoolg5srkcWfOEaPmjJntb+4R6msLsApao6NmuMxiPMBigWDaZbIhkJzBU6ZkBk6eQ/pA/JUlBz1QpV11mW1u0d+/ycZhFlSXsVJaVBZsLlTK5tMnDbp2DYYQ+m2d5tozpTBi0GrHuPJkwKJSLKLqJJKsU85k4/kKKIJdPE7gpFMa06vu4mKQnMrnUDOtmnnzKwlBkdEkjl7bQ5ZCkZRDKFgt5mdxkxKDf5N6OjGommV89T66socsaQeQiJwpIsh7PYcLOYCZTqKe864c8eS9xbGLT8PxDJZUtkco+2Up55M928puVKiD+nj5USSGdfDbzEW2FA4st1F75p+8U31WMZI5ZEZPzzEPG0HWMJ0pNPZnGx4gfqyAalJNfAv6L3uQvbo6ZpHb6XSOVLXPiMvFF89MzEaqgqV/skrVnqC9P277I55QBvQj2Tu9VVOyZ81wrrnI5BEXVUFWFXCZNadQmmdPZ7WjY6SpXZpPITpOtB3e5u9XArHgEYq8zadA62uOoHxEaeRYXQxILOeRoSGtvg+17m7h6kcEkxFZHNI4OaLsyi2urrL53idUfhSA8qDQV9evfh1OIf6CfEsgp5pZWyCZkPr91n5t3Gpi5MulcieUFm4src3idOgd//0tq7QmqdoW3Zm1WVlZoZrPYVpKEYWJeWCedL6FoGufXlshnT35fWaiSXMpTSIYM7tfYOzjATVlUSuss2kU0M0spC0nNZ0lIT3JEJhWiRQmMhRxBBvaaxxy1hsxVZ5k9V4n70pNpTDTc2fMkUwUUw2JmYQXVSmGqX8hPP9CJ+96HFQY+rucjK0JyEOqv0yMi9P3YKSQITxwDZEVBUUWGDZFf7rTd13/6kzFeEKFoRixRiJZR6BFEoua7HKvLpSgkFBdkJZaVv0G3X//A1+jKlAGdyWSJVC0auvLFjiHuVlI42tvn/u1NFlbXuHbuArYl8/GHG9QPHJaW1xlPxnzyN39JFPYpza+QLi1yvL1PMxxRyV2jvb9Fe69GbnEFd+Kzf+OvGbhdRmaZZOUtVLuMJYqrnW5szmQ8r3cnipokPbPEeSGdtB1UK03KTpK2TNLJBJ6hcvWt68yPApL5MumEiZo0SSTtWNUmRp8xRVJKHUl4Ei3Mx2oJoeJbWdBjzyJNDlmT0uQrQwyhk7dtTNOMNwG6UKNIEdWEhCxFCMcoNVRJJUKkgolZmKHsyaTsHGlTQ/SFqmPrBoFw0TaF5CWTWDyHpKroUweEl7wgHfYf3uPmgxqJwhJr6+tUMyc5/0QqnkF9l+3dGnuNAV4Ykc5XqMyvMFcR8/f83d6k1+Lh5x+z03RIzp/nypVzZI0JTveYpq/hBBqG52CEDnIigZKuYBoaiTeEA00Z0Eta2oHnMu4esrfxkP5A4d33F1iqppl4TX71yT2a7YCV8+uo0YDG3gZdd0xm5Qori/OMdh/i9Y5wJutsb+1zuHXAtfl1LG3MqHdEfdBEWZqjMrMYE9aXNITXu1s5SWl2ldLsV4ehGSZzaxeZe+qS/UQZBOMJlYNmfZGhOi2U9I+OyuwilWf0f3o98cTbdSKVCnVJjplkDlHE+yuHaGR+sZPQU5mvNJn+8O0wIBLLnlZEFV5w4u9JlZzvjugf3eXoYIfWwCXo3MPAI339AinDODHQCelExGUFHpE/ptmQGIV2vOn4OgYk3v/20R6txhE930dWFXqDBp/ehuWiSSWtIIdKHIjaPagzm08xt5iK3aX1N4T5iJl84hX5dhM7bf08DEQM2nXu/vJn9PsRixffJRcTkwhv0iMYtznaPuKzXyUoVtIkcwu4/S5EGkL2lzUJKVTi3XekyLTaTe5+9hl2NhOn7LCFm6RtkUqIhJrPg2N67RQDcaXRZ0gSkQhQFNHu30SXctqZ+IxEauznUwrRtwiCjCT512Q+jlN1x7ninnzE9PzFMXBaEVUwIeGeLMpdPOkNN+p1ufPxR/jJNFff/hEHn/493Ycf0To3i2kYaKpOsrTEenaWJdch6O3zYLfJ/qBLq92hkqvE8TaifxG7JRwehNOK747Zu/l3HA4dctd+ypVsnkZ7h19+voXTqzD/k3XypsLu9hY7e0fYqTQX0jnhXYBYN67nMXEnyIp64gotPG09N1YTihxthmkgE8XZrYWnrViOopSIsBm9TseUfL2M2QqHNGoP+fkvbjGIEly0SkyGR6RyRdK2ykwhSS8zpn64w4BlAiWFZrix7SYQkdfCRTIIYgZUrmY5KOg06jVqjT6SFGBbEimFOCjuZYD/Q+rT9TrcufWAo5ZPvrLA+lKZdFIFt8XNm/fYPR6Rm1lidWmeUsb8RkNv17bpNA4xyyvkZspxwsqnWZFIcvnw9ufs1TvopXnOXzxHztJo1etxUkjhYBAaaSKnizzpIAn7USqDJbJxfyMopo2+CQYEAxKlEASDeFatJWfisbPfJTOX5opI7llKsnc4ojUMSGcgp8ixM4pQc1vJFAcHG/EGUlEjbmxuMZqMuLJW4sHd7Tj7xntvX2FhoRzbiDJJmd2DBrd+dZtGcZFKOcFlYU/UA8bNbVqhQWsc4AYSveN9mo0sUn6B+tYux/c/BSMiUb2AopcImw8JR0eERg7fyFHMWcymAnZ2m/zqTj0uoLh2YY0Ll6+RTz5pw/omWPr+2kwZ0EvBvY+wF5iFBfxJQOC06QQykWKSsOa5dPUS5bxOJzRxDFFLRoqLn80UciR1nUKxDH4Q78AWFmYJ377GQWNMsyt2ygGZdEg+XyRtKGcXT/RS8PD9djruHXNUf8j2/iFH9RGj0ThOZxKFCs7+TfZ2t3nYCDnujLEMlUJm+bHxWWD66xhB6/AhNz/5BGkl4rxZZDUjf2keup0WtZ0dDg4P6Q1cVLXJ3kGasUjT4kyQ+4c4gzZO9hxGFJLyREqeAKF6OX2mIJxP7tRFLRkROySLf08dz4P1qaZv5FcRhCrwKVRvT6rfBDJEdoxJkCBwFMwwJF/I0phEjDyFsS8Y0CnKIvqtYz75fItJ5FK5OMeNew1uN2vMWsvs7De4uTNk/aIXJ6sRrs6Ll95mFFl07nXY73vo8horyzPkpSO69W32ohQtz8S0kritPWrbYv41bm3scnDjAYvLecpFF89vs/1wF2ncpjqr0z0a0Dr0iBZNNg7G3Li/T0rukLA0kjOrGEaK1GviOjllQKfr6yw/ZZvqymX+KLuMH4QIv3xBWVQ9gWFYaLMpFtfXmQQiIuRE7aYQYApjuG6QvnItVvGIhSknEySuZ1h2fCYicyLCPRI0M4Fq6BhfpUdnOZLXuK+I+sN7HBzUyJcvkLMahO2HdHqz1Bshozs3Sc0u8tZilebdmwwbW3TXFkgoCt5whB9JmJoiUsfheBG6pmLFBmcHNxhx0BtxvHEAhQbzl0poTyjut+7d4sHGAyqrl/jg7QV8t8vDg2PGA5+LCxlUt0atecDQmEHNFTFTwvHAeOT269Lr9PB9SGeyKJrKaDBgNByiGUac1l+oC0W2ZUFUJ0EUu4onDeH9OF0M33bBClxaqowhS3GuOD86KV4Y853T3YDoNOgzaO1zNAywC3MsVpbwGkP2795h6/MWYWKN9XcukSmdumpLSKl5Fq8VyC2NcXrH7B82+NsP68xmPdbmVBRJJRKedZH4g3Dcxe/s0RU5C8uXWLu6xtJSkYHTYqtWQi2ssn6+xPGD2+wf7NIuLaDNLHP13SKL8i56UqXR6pNPJUhlv7BVflucfJftpwzopWBbJWFnmbe/xjdfuKwlU3xdYgtDyP5PHFZS5wk7+BNXpqdPY0CUHJ5MXDzXIVIMitVV8mtXaNz8GRufP0Ceu8QwTLB/MOBHK1lWzi2xWb+D4xyx9fABnaMR7qBDIqURSTrj3hgJj9m1debnyujjfYxMhvLV9+k8aDPZuYu0ngbhifjosDQwwjGtoyOIDFK2TCGXjHPLbW/vovQOiXSVUJIYdo5p+U2smSU6h23qtz8ickfY1UW09CyjQR+nsYumhGjZGZK5MmXbY9Rrc39vxKA7YqacY+XSefLZ9GMJ7hSW6edJhdvYFieo/FOHoYYxPiNpzNZhj927R/THI85dCmPvxUCEVcjQOdiNPeXEhqG0LjQYZRKLO+x+1uV//je7nP+tOf7kny1QfOSv4rsT9jY2GHuQn19lNqXQbjY4PDhC9hVWF4qxfccZD+m1m9jKEKIEkRfijiZEfkBSZExRQ9rtDsN2h3JWJ6VLdDSNIJRRIqENEUGzaWaDVpzQtjFyGE++Os6nhv3KfJ0yoDOeCmFAFCK/MGyLiPYnN1Fn/Khpd1/BQITrjGi3WnE+t1z1HMVcFt/pc7/RoBNmqVomeqSxI5sEroQtEddvcQadOEnpg/sDJL9HZUamNUnSrfcomQOMcgE5lSS6fxNfNclWFijfe4B62KY/voZhmY+rWy6trsf1Xm7d3+XWZzfIz85w/eoi4XDIxzdukwjbrF05H8eF9LZvMWzcIK0rbB4G3Prbz1kqJbhYLNJoHLC1UyfsNViq2vhek63dYyblMcJWeH8nYnxwgDTIkJqdJZFJk5wuuC+tCqFyi99D4WjyjEJQZkJnfqlMY6LG9rq9Rkg6ZZGzZDRCHB8Sqky/PWAw8FhaXmTp3Cy6AYVKFnt2gZ3b+yx4Mgv2F15dIq6oV9+j1hhQH8vMZA3URIrz51SKqSh2LDAjE9tw8RM6lp7CTFXQ7DIzSYfR4JB+Y5NAmWXvOMT2HdLDXVqHEQPJJF1dppLRcbSQuiwx9hQCVbj6a5jPLgH8Jby8Kl+mDOjMZiLC9x26nT69Xj9O3W5nC2TTNicRy7/Zg052biGKSPXxTK8r4R4a4Hpipyay5j5WWv9mD3yN7xLqDG/Ypdes057IpCuLhJ7D9qd/RWs0ZOYnf8Tc4hytre2YUGvCJiBS4QQynqA0FmQrM2S1DOW8g+LkSVo5Vs06mYxFq+1Q+/Q+7sRBqtSZ1G/TsovcO54gZ6D06G2SEnkKK9d4u7DEeqdBr9dm8/4dam0vDiRO2yJe6ERdJoIco0mfIGjiJnJ45TVy63Osnpuh2z6gO0wQVN5mcblAq7bH9san7I09iucuMHdhDiWrkpYHDL2QjkucKHXKg75YxILp5HK5eFMoGNHTh25lmL36AXKzzaQZsLh+nupMhlLSJHpUpkDE95nZCpUVhdR8heJpOalUlR998Dv8t8UBC7OVL7kUizQ48+evYRTaNIcurfaIVNLmreuLZCydhOmjuxLK/9/eezbZcWRpmk9oebVOLYCEIChqmlVT7K6e6bHtsVnrD/MH+pf1/5gPa7s709tjXbU9VWQVCRIkZGYitbpahxzzSIiEJEgmQIAIN7t2Q3p4vB43znU/57zvcpFRpUpWC8nkM8RCGfVjmXFLYxpJEOlcWVnhUq3GtNfEE8SgpTzLhSUqOYlppOM5857FAAAgAElEQVTYoAVXELSpsZYlLyJZ3pGSGqBz6aiIcNpmb/+Aje1ewiOWsVS6J8f0yzVmF+exftT0fMzO5ga94YS5lWXy4kl7psh0Bk2+udOhlM9z7UL1mSPemw2SYKFQcTMZJFtjenyXr7dv8sX1r4mKF/h0bgk76zCU1ikaE8ajNt+sH7J+r41hBpTmXEK7Sp4u9XwXLywxcaHGGK+3w/Yu3DmKyJs2V1yb2pXL7PXh8y/W0SWZyqVKAvXJwT4nrU6S5FqfaWCEXW5tH3D7wMfVssSmTzAaJPT2yT90EdGYGEMFNRYRTCERQZL0GPiBCLZN6IREYqyIRJhOJ0RIZEplMkoLbeTRj4TjPJnxS0fdZx54Ecgh2LCFn+V5QQhC2tosLlKxiqhWF9XMkS9kMOWAiS/+1Z3y+GUrDcx8GdN66KsTrAU5lpbER4Tln7mo2KVqFBvzZCozuAd7DIcj3Fyeaq2CmgSSRBiGEJaTCBM2BImEZyGOMUoWNAocNEfIuku1fErV0+9XaHd62I5DsZhPplvtWETFijNPj5ERUg2pAXqyN37pa3FIMDpi+/4dvr49YWF+gawWc7hxh8FwSK5eQ1bixOEoHkxdJBzGURIaKuaYVU3M9Yr4/5BpEtMfJ/PDYTjm1s1bNFs9nGKejKERRKfx/lIUJSqMcdxjfXubf/3qiA8vrHBttZz4QIJARE3JyIJIU1WSiCoxUhI/RJGMJ3wlYqpQPPaiLSJYIkLkq2gYQiTluaOtt7sjhdaJlS3RcAsJrcnB1/+d+3e+Yj9wKWg54s4+w/wSWsamPpujG4zZ2DjmsB1x9UKeWilL/1DGE+FPUZxQ4vuKitAjG3TuM+loaI2LLK1d5Hf/XkTMBfzpzze4/4ddOg0XHhigcXuPvVu3CXLzVMol7FChUq0zw5RpT9QtJS8hVZFQbQPNLaJrFdxQJTc6Zrx9wGZhSi/MMei1kYc3OJJPiMwSlYULlI19NAIGvT6GF2HqNqauIrotLU8iIIzO82QYnjwKbCuD2bCTP4+nj76aMF6IrJqkDsVAN40XG/cXvPPFb6/emEnywRIKn0dRjDKyKqM/MQR4WIlIWDao1vJP/A6FIbVt+/R3/eAGEv7DJwZ279ZD8MTtP90p6fqrIxBFHtPxmP5wwmA0YWgr9CYeWTVCGre48d1NDts+c5c+4NJKBa+9z/Uvb3PYj1i4eIEPL83Qa53wl+vfJQYkV6mh2hYH/TFq5EH/mLu9Hq2pzOW1RaJBm68+/zMTv8uRJzOcmNgmTLoHXP/qFus7LVTbxXU1VpfmaNQbSViwNx2ysrpEfyJx//4+tjwgmPbYOxrRmRrMzS/w6bUlLKEf8g4WQf4opiLFRGS2usz8lQhtaqKZGfTYwx8NcYoV7I9/y2F7gt9RKGc/YnXJpVLOESky4dTAtYVxdhKlSDe8gjPuIJclLihF5mZmsO1TldKV1VWGfZipOonREz//Ym2W5Vih68nEcYRs5bhYnWV+RUmCBhx5SrGUQ8k7hPoCFG20bB1Hl5n9u0+YjluoRo5abpZSrsi0tZcYFy2fo7K4iKss4AcRTuhgxfM4RkycySUkCg9fYe9g1/2sTRa4nQ17F41JRkxnWvVjsRX1Pl33mWpfsCghDNbT5YfX83QNb9d6aoDOrT9kDNMkn1WxbRNJTKvoBpqlMJp0uPHtbZpdmcLsEoOjAbv3vuWr2/ucdDwm/hjViAm9UcKI3W132D8+JtId4lETM/L5y3cbKG6VnGvR279Lu9lmv9VD1wNUzUmYlyPBsLB1RKfXZjDpM+0dc6fTZtBpEXwY89233zHoHmLrAX3K3Ns5oSLvIzFl5yTm+LBL7I9YWalTPTvVcG4YvdmKMjOXuFpe5sJ4xGQyJgQMRcJ1C4nOj17oURz5WLbIkNeQpZAFQ4ThlpIpMTc6DXuXlQpSHNOIhIyClGS6P7yTaqnI33xmoAjalgclX59HfAbdLr1+PyGnLRSFxouWjHLDWLiAlGSQGTomYVhL6lRzEvO1T+n1u0y9mFwhhy4rTMaNpB4Rhi30WSSqeEFESeQKyRKKqjxicvixL8mHbU+/UwTeJAKpAToPtEUcfxSjGwalcpGZuTkq2ojuzj0mfp+DsEALh1yxwELFYbzzb9y7cxMvt0bD9dAmR1y/s0G+WOLi8hJ+ucm9vSZbu/eQh0ccBTGHBxG/+d0Kv54vMFr/X5x0I+Z/9RkrdYOT5iEnXxxz95sbZJZtFq79FZccncNbX/Cvv9/l3uYmsqazvbvLsLXPt66BMfMJQozL8Q8wMjWW6/OUjT9iKSe0fQ8RTfqiIPLzgOxN1CFLYBp68nFDNxHWEglZgsVYFMfJYVvRmX+aapJj9bhtZ6czxKv97PrpUUIzSFCgiPKUGwA3m8UU/HJnpoHECO3sj0605cmgJaHgWcAJReDJ6fUSrRZdf+IfuS5OevLEx81Ol1IE3hEEnv1FvSMNf6uaKZLXwgBFN8jUZqjMLVAt5slrAXE4YkCEZzhYuTxZW4dxF38yJVed58KVayzNFdFo0Tw5YexnWF5e48JKhTgacNKfEqFTtkMsQ6LrK4xGgyRPXyvOUSw1cC2dQW/IwdZ9+t0mZrlKVfgcsgqz5Ry93oDP//w5XjBAMgz+vz/d4c7WETO1DBklQIpiMsUK5ZyBqUyYRiH+WwXwT2+M4NQ6JaN8PK0hplieN83xw68mjNNzJBOE4dGENMdZk/P9tYvaBJ/Y2SKmXp4XRnz2mHQ5ReBdQ+CH/TLetbt7U+2VpMT4CN/DaNznYG+XiDaerGMZGVTdpFx0MYXSpaLiVJaYmZU58D38sYGer7OqTtjd99jda5Kz8smUjp3PM4hyLM42uLpUwNMm3Lt/SCMzS14xaO6uc2s4pXXSTKZ0ZhcXyJdsTnZ3OPR8lOOQxZWr9Djgzr3bzM8to9sF/vn3twglibmihddSaPoecuQnSomqlMUQc9ZvCrv0OikCKQLvLQKpATqPrpdUDLeErbYZ7N7i640bFDIumlHhYn6JipVnPOcho6ObNsrir5jHpfnlXbZ2ArzVVS59cJmc3WHj65vcunuYZMrXKouU6y7zc7NcXKpyvL3P5LiJcXk5CRPtffs161sjJlaFCyvzfDD/EUWty62bd7m/P0jINz+8tkam1knCNtfW5snky0hqkUqtQcG2GBVnCEMDKWMS12eJvTyabjwxTXQeEKV1pAikCKQIPI1AaoCeRuTHrEsysl6gVJllbTGg2xtiCLGx8gy1SpWCrSAvqASRlAieyZJOdeEiq70pTntMtlqnlJ/BLuTQ/Cn7xx1i1aZYLGEI/fhcjnzeRUk4yXTc+ixaPEWaOcEee0TZBrXyDIuNPAh9k9aQWJ6QnVulXJ9hVq5QLBaSDG/hk8i4pWRqSHDUyfVVdFQkywZ9EUKRkGml+nY/5jlIz0kRSBH4QQikBugHwfWygw0KtUV+U54niqMkYVBEOsnyqW+gXDQeJMOd1mE6ea58+lsuCVkZWU34psBl6dLHzF8U7uxT6pAkFPRBaFOuXidTrSZM2xI22Y8/Y0lkJshC1vfBQbrNhU9+zYpogphKS1wJGo1G41HjS2eICo18jUfZDUb50THpQopAikCKwOtGIDVA54iwSIRUVPmF/hNhTM4W4Rh/0tUsjJHy4uCmp5zm4vznlaTeV3biPNmm59WXbksRSBFIEXgdCDz/DfY6rpTW+QIEPELPpz8RrAUaGVtIBr/g0Kc3xzHhdEgQxaDbST7Ij+3QKPbpDj3iWCLnWEl+ydOXS9dTBFIEUgTOE4Ef+746zza833UNTzg+OOTmkUa2WOejC+VEGfWVQIkDBkf3E8YFtX6RXNb9kcEDMUE45N7mAVNf5aO1BTLO2y7tK0Lfw0QGWUxYJkz7CfOxmM58elz5SmimB6UIpAi8YQRSA/QaAH/4QhSJkE+WU741sfnhrt7RATe//DP/tq2w+sGvuHZBCFo93Pvk2WItikKiWHogPhbRP7zPXneAk5vHzZ4qDAn6l1gERpw5XchECG64p8uptylGikfs3d+mO1BZna0+1wCJDH7Rsmfv6+laX/d6DMGA7bsb3F3fwY/BjwUTqcna2kVWV+d+pCF+3e1O608RSBE4i0BqgM6i8ZOWY8b9HkdHxwzGE3QnSz5fSni6vFGHw9YY2czQmKngCDLSpMTsdTw29wconkg37dPsD3HiMb4fIGj9TdknnnZpD8aJTLCQZLaUAM3JMxz7HB6c4EUT7NjnuN2l2zvB1HQiRWcS+AmlvJDXDJHxYpVMJke5mCP2h7SazUTEys4q9HtNNm+vM+kFHCzaqNIqqpkh4xpMR31arTZBLKOZNrZpYls6hpBm/VlKSOh32DvY5db6Po5ro5kakTTkzoZOrOiszJbRH7BzvorhFAZaJBNLipYEjrzothJpbARZ7MM+hMD3URMsXvzH4UX1pdtTBN5nBH6uN8gvEPMBxzt3+ePn39Gf9inOLJAprlC1hvi9e3x1P8KuX+I/lUu4iQESY48+WxONrlHno8aYYg5ubh5T8rbEWIeWvkQ+amEO7rLdDzieZDAVjarRo68V2RlncY9HrM2ZuJrE1voWrZvXma+XmCBxd2uHcNKjmMuiumUOezHlSp3f/foqvaMNvvhffyBUFNyZOt2Bz9bOEca4y+GGRnM4RS2s8OFakebeBn/5y7cYwvgUqmhmltXFBvO1Uwr4N96ZseDPGzHRbNyZq3xwocF83cHzW/z+83W+/OompewnVIpZBsNRIqktWIkNTUpC4QWrgGD8DnyPSFAo6TqT0ZDBYIhiWImcg67I+N6UIIoSKWwRQOKNRgwHA1RNJ1PIo0owGffo98botksm4z4x6nzjuKQXTBF4xxBIDdB5dFjk47W36bWPmJoFKvUZso7K/e1N2tERxUyAlp3FzRdJOLzENcMRo5N1Dnd32G31KGp9Dtc3acoyf72kkzN9DrY22WtvM5MJsGvLlCYwPNjiuN9kN5pyOJmy6E+RZJcYFcs00JWAg+Nddk463Lu/n8hAXPvoGnOlMvvNXTqHW3iTGsfdHnvtgNXVGebqS+TGQ26V22i+Q7ZW4sCD9vYRdbfD7uYG17/bIp/TcfNtIqWI7drM1AovjPg7D1hfVodQBB0FIZNYTnKlqtUCwShAk1WGoxH+sMnhdMDWXgs1npLPqPiKznZXIZuxWK1rbO336bSnXJoRU5cx2ydjojikmlVQpYhbu2MUK8PHl+sMW002726QyG1XF4l7EcrwED3oEioug6iL47gsz5xqxrys7em+FIEUgVMEUgN0Hk9CHBKNhwRxjFWeYXllDjfqsbH+ZcJM3SjPcmHtKsXqAu4D3754od38/Eu8wx6VbIYBBq29I3xBTnntM7JZD+nLf+Hudovgygf8zcIK8nTE+vCYydRCmygowRT8CRNvwiCcopgmbq5If9Ri6k3whJCN42I3Flm5cpVRe0D/ZJc4HDONVDCrNObXWFuepTM44v9vNFCVGWauLNHZiujd6zLsDxmPxow9mbKioEkBvYlYDxL5gccTUecB5CvWIfxbktDtGdA6arO7I1PkiHa7hWllKFVMwuE+d3a7fLvZo2xNqdVsWrHL7Z2Aubw4PsNhS2dnd4Q52ETRTe73DYJRm47aQtzdV/sWlbk1rq76dI52uXvjOrmsTU62GTChdfNLnHBAeWWVw66Pbljk8zZ161Fm1SveUHpYisD7iUBqgM6j32UVrVBD2R/QvX+fg7BLo5DBsrMocQ5bjoVeNorGoxHDwWGHL/5yn0xtlv/4n/8PJCng3pd/YndjB288YWKA7R0yiDV2fJ1RZwvJUxnJNRoFBUZw0pMQigGqKlQzu2zuDejvDFmdL7NaD2jtt+lLMpKiomgqQgBNklRiLDRpiOL1aJ5ssVsYc9RuMxiPqZTyqLqMRIBQi7TzWXIjj2qpw/JMkUKpyMFIJ+NYP/t0kyJ8MZHPZDxiY/OAvb19jKW/otAoM2x+wdbWNtsHEWFRYuqadCMJud+EwTFtu0Jp9lMUyaa7cZPOJKavz6ONWhx4W/R1DS13ldm5WSwzm8hg5DIm/YmP4fVQ1Cnb93cJ+kMuWRmGQzENl6Ef+AhN2p/FMJ/Hs5zWkSLwBhFIDdB5gC2pKE6dYmVKeW/ApHvC0NJYXlnElco46oSpImOEUaInk6iQ6hZOY42ltRUuLC0krSjgU3VMVMtA1VVWr1xjPOsgFeZwjDHTUMbKODi2ylxWwjd1Mr5Fec5Csxyy2oDA0LCsDO6CS6BkmSoKi9UylizTmGmQy2axnSKzdZXxpVmCaEqn00NWHC4v25SyFqZqUSsIiYEcpXIZ1zKZ+gpZQ8EtFMmbuYTt+2d7yYoovyhEUXWcrE2+WCFrqAwHLQ7abXZ1mXlViEoamHpExtYxnRKxkmU1bnN4q81/+/2E3/6fn/LJaoU7Rxr7gzGKKWNppxF1sm2SrxQpFXOoqoysadhZl2A8wo88esOQvhdgizY4dqIlJGvSWxAheB4PdFpHisCbQSA1QOeGs06pNsevPtZodzqJDky1MZP4ZbzJmCAS8ruRkDNL/A3V2Tqf/ee/x3XsRy3INpZYyVXx0TAMmXrt75n1hTq0gWtIiQNcd7sQWbimQ20pg66sYZoKiq7jrGp0XIVJKKM6BX69eg3DULEtDUM3sC6uImS5Lcsmn89QKFns7x+h6halap0LCyBFPhlHYWUmYrYsk7MtlMwslm7TbDaRDYN6o0r2gQbOo8a/4QVJ1sjmS8woOebnZ1iozjJTdPl/vtinuX/MlasNVldLhEqH2YKGW6siuRka8wH/0uly8/qElU5IKWsyWb3I2BrikccKJHTNoOq4DJU8KiI5N8CTVFQ7S93VGZkOx4HB3PIi81mVxcUF+uNhQr+U0/V09POGn4X0cu8uAqkBOse+E8JhM7Oz5EulRIQs457m5WhChiEMHwiKiVBdKXFYW07miYwfVTfI6gZhFCPJUjLFpZ/JB83m8himQRCCpukYhvbE+UaxTMZxGHkRshhh2eYT02RCT/5syWTKKIqQllYSFdfTfWI9Rncgdk5licX2UrmEbprEkoRr6E/Ue7bON7IsaZhWieX5DDXfolJ0UDWZ0swqn0wc/BDK9QJWdoKkHKMrMdm8IIctkpVcfvU3WdQFnwsLdTTDob50jdju0h/4qHKRbFZFszUGvo2hq2iKSrFUJ1iRCaYDYivH3FIe7eIsRjwiRMPOF7Adh6wtpPzSkiKQIvAqCKQG6FVQ+gHHKJpGRjtVyHx4WpL+eSZvRChrim3PpoWeniFklp9XhCCZZb3kBafoaLZO7kk787yqHm2zn/vClJKM0ydbIfHQoD46+WdbUFG1PI1KTCh8YA+B1Fwura0kBl6ETWvmBFXX8YMQy3bImjaCxHVtrcTa2uO7E9Nzsw2X4XBIrBg4joWhQSWKEmMvBOXyeQPDcJIIOzG1l82c/rkIgjHttpDdtpJEYF15XO/PBk964RSBdwSB1ACdW0fFRCKZUfCyPShxHCdCcU+rWz7c/9JvIfMtDpCeo7T50hPfh53iJX/K9P2UcCiCEPZhMUwTwzARSD5JBPuskdBN4XfTTlnMH+wWBl9/XB22bSUjUPkMWZ+qWhSLQi5bfmkC68M2pd8pAikCjxFIDdBjLH7CUkQ4Pubu3Q2+vbVPLCkJg0DkR4lfaGltjULOeHXfQNRnNJjS83RM4a9x0m760Z2TDOaeNTjPq+9VJK+fxzMnElvTkiKQIvDDEUjfbD8cs2fPiEP88TEH+xt8t97CdjMs4hBNJ3THIUMsPry6TNGKGXTbDD3QrQyFrJnU5Y37dLpDIlnBzbhYsoc39RiMJQwjIvRHtNs9YsUkk82hyzHRtM9k6uFJOqrh4JpqGoH1VM+EvmA36NHu+4KNKKHmiWUd17EQIdVBBH4AlqE9nsZ7qo50NUUgReD1IZAaoPPAVky9BT5WtsD8tWXmajWuzFoQ9fnim03urW8wU83hFGDj1jdsNSOKc6t8tDaLo0zY3bjN7Y1dJhjMLS6x0CiiqC4iAEGXxkkS5Fc3Ngi0Misrq+TUScK8cNTq0Y5cCvVFLi/XsIXjIi2PEJh0Nrlz8xu+uDtlGuoUbSXh01tenuU3v7rA0Ffp9EPmq1kyVvpTeARcupAi8IYQSH915wG08NMoKqHvM2gdcRz65JUMiiY85AY5OybsbHHoG7TiDJrVJ/SO+GpTYnBwhH+yg5U1GI9H3Lr+Jd5kifLMIsOeT29nl2jaJtYtJhOPO9c/R5U6xIrKaGoy7m4iTQcMZzKYRu6FgQ3ncZvvVB1xjNdr4w26aNkGhVKFUuhx9/o3dJUJwdV5UC2kOEAOhxzuHLOx08JTbFZWVpgr2XidQzZ3DhhLWSq1CjPl08CDdwqHtLEpAm8xAqkBOo/OESHTsoI36tPc3GdgZ/E7esIiXZj/gAurSyidr1k/jGnmrjFf09HDY77aGXLj+iGLrsV//ewTRifb/P5f/pXDTEScsTk5GNG8dZNqyeWD3/0av9vk+v/8b2x39tGXfkOtsUx2+AVqb4OB9zEuOUQQdVoeIBDLWGaG2eI81YUZssMRnY11TALkOCQIw4Rw1B8N6HeP2d7doz+ViMIJ0bBEv3nAxtYxkV5CtWwq5VO9pVfzKKW9kCKQIvB9CKQG6PsQepX9sRBHC7DdLCuXy9Rn5qhoTXZu/BEUD8lxmB6MOdraYt2UGect5rNDHCnAcGPCTAnVKZIbt8naGpoCQThlFEw4HPloroJrmuR1k/0srB97CNntYr2ANjAJB30GfswEUgP0sL8kCcVQGXsj7m19y+bmDkU1ZmcosVguEMkjdg9HrG900OZ1avUGH9slett32Vv/Pf/XTQk1f4F6YZ4ZBzJmxCgEW4F0ovMhyOl3isBPQyA1QD8Nv9Oz44gw8BLa/srcMisXL7DodChpPb7a97m9vsuK6pKxDfp3b3A3VtHXqmQXqlycUYj6J9z99jqj4wNa/YB6LAuWM2TFJF/KIjPk5lefowrNn7FGxsqQdwxMQyWUY/w4ZBzGeOdxL7+gOpIweElG0w0M28JSIlwtAHlMO5py0g9oHTU5MTXsnEgK1lHCMZ4I8JAKVJwsji4x6R/R7hiohQZWOsT8BT0h6a383AikBuhcekBCVgx03UQQF8RCIsHMUr/0CTe76+wenmBfm+dSPsdB52tGzQ6mauPm5lCDA/ond9hf77B+v0Wr2SG3PEdDdylnFRorPmF/i/ubdzgc6FhagYUZi1q1iBzLTFUby81hqWqqAnq2L+OYcBpgaiZLFy5SS6bgBmhHd5lOjhiEl1GEgZdjglGT2zdHbB1OmRyv41bKXLj876gYGse3b3B3+5D6FYPC/IuTh89eOl1OEUgReDUEUgP0aji9/ChJRc/M0lAq5ENBgSOyF2Vkq8GlNZVKbURjpoSpRPxHrcR0OMQqFDGLebaDkLAekstlGUzu0e2NyTgllqp1woKCTo5gUqPcHNCdCl43i5oLTi6Hr7oElz5Cijz0XIYfQIDw8vv5JewVyaIKTKY9jpt36LSa2IHHdjug7ObIiJB3wSEehijegPawyf2dId7JCTVZx+i2CUOP3Z0DjrtTyrGMqqYs17+ERyO9h7cHgdQAnUdfSAqqWaRgwpMaoTKzjRqzjccXWbmSf7xCwKCTxwtk8lmblUtg5YusLK1QyWYfHCeod8pUZ8+cdnYxs3h2LV0+g4Ceq5ApzeCMp4w6XcaqjD17kfpSnZpdgIKPvNSg6tjY4QTPmBJ0ajiuoOJRkBSTysIqxQWd5cWZRMspDUA4A3C6mCLwExFIDdBPBPCnna5SzRqE/Sntky5WrsCvL19hJv8SvrefdsH36mw7v8jqB3VmL4aEoWDZkRKWCtPQsQ2F+fmIeq2KJoeEccSFICIOBX2SCKsXfjiSdUGzI6h6jJTw4L16ftKbff0IpAbo9WP80iu4boZ6vY7RH6PnSlTK+TTK6qWIvfpO4ZczbfF5/jlJou8ZtvE0vuD5OKVbUwReFwKpAXpdyL5ivbLhkKuKzyuekB6WIpAikCLwC0HgDNfvL+SO0ttIEUgRSBFIEXgnEEgN0DvRTWkjUwRSBFIEfnkIpAbol9en6R2lCKQIpAi8EwikBuid6Ka0kSkCKQIpAr88BFID9Mvr0/SOUgRSBFIE3gkE0ii4d6Kb0kamCLxLCMSEQUAYhI9k5U/l5RWEeqympOm871Jvvs62pgbodaKb1p0i8B4iEIUjbn19g81798GwMGydSaAy1ooszs3wyUoZTU0nX97DR+OZW04N0DOQpBtSBFIEfjwCMWE45t7mJt9+t8nCygJFLctoOGJzb5to3OPi/G/JqxrDbotOf4QtuPmyWTzfT2TlDVXF96cgK6iaRjDq0+v1mcYGuXwe11IIJz0GYx9Zd8k4Bv50wEmzC4pBsVTGUGEy6NBpddHcApl8Fj21eT++W1/TmakBek3AptWmCLyfCMREhEwlE7M8x9WPPmG2XqLfaaG2/m/0yQ6jcII6nnD/znds7p1QmV1ONLTavT6FjE2tlOP4+JgImVK5SPdwhzt3NuhT4OLlSywUVfbXv0vkNAqzF9HQaB9s8tWtXSS7xgfXbOolnYPte9z5bgOnvsrK5atUCgbp7N/b9VSmBujt6o+0NSkC7zgCEpIQhp+MGJ8csLe9ReCPCSZTNCdPuVpGiSbc3W5ydDKmWC7hT/t8/sd/YzCe8tG1KxSyLruHHSajNqrUpz0JmWp5igZ4g13+bXvArev3KJUbFOs+e999w8HBHmZhBSNXpnW8R/uohzed4lRrxMMmx/dvI6sXyWVMjNQF9dY8Y6kBemu6Im3I+45AFIQMRx7dkU8sC4Z0C8dUxOv8HSrCAEnI/pRx+4S9rfuMpy0GA5+BXKdcWEEJh3zz7W1anYj/cmGJfosRKggAAAyySURBVLfJ4f4OGhHDVo4tReGwNUH2OnT2O+z5VSZGkZXihPH0gBvr+9zYHPLb4gVKOYvDvRFBEFOtlIlkie1b33JwsEV16RILiysM1m/QPNhErS1hCQP0DqH5S29qaoB+6T2c3t87g4A3mnD31j7/7/VDfNPh7z9b5ZOVTCJy+M7cBDFiEi52chSWr/DRX31IvRZz7859/rApcdAPWfBHHB5sc+NWm5mSTq5YoD63Qt2cMGzucWdzHy2/zFK1yHR0j+3NY44mBaRZk0LRw3HALejIuozlOsxe+RRt7x7bd75lv9nluHnCsN1mOpYY9Qb4/TZ2oU45FqYxLW8TAu/Wn6u3Cbm0Ld+LQBSDH0RM/JBpEBFGMUImOy3PR0BSIhRpyn53wkbTxw/jF74wjzsj/vTtPnf2ugTPr+7R1m5vxPVvDri90WPgRQxHI46bHY46I8Ze+Oi481mIieKQqaKh5MrMLq8yv3CZ1cV5jPZN2ptfM/JUSo6ONdnn3q3vWN8+xswVWb64mgQifHPjDpEEy8urFEt1GHY4uvk1d65/y0mnj110KRVy2JqOeJxkCQbdDut3bnNnfZtpoDBbKWMEI+7e+Ia76zv0JwGKKqVM8+fTyedWSzoCOjco04qeRkCVZSxDwVRkFCRUWUKW0/88pzgJQ/zk/3HdlllacrhwUKPpudRz+rMvzBjCMGBrt8Mfb51wYaXE4kzuaejPrEecnHT401/2scolfp0xyEoTjg57DEKNxZkCVukFehVnajm7KEkS4vOiIssqOdchDCKiOAIscrk6l3JDJKmNohb46PJl3OmAkZZlKoGqKZiFCtnaAuXyhFo5S12oAjshF5YnTHrrOIaEZToYxRrzNYlGoUgchPQOt2keHGEWqtSLGWrFHJdqOr1eh+DOHsP+mJxl4hoS6oub/aLbSbe/RgRSA/QawX3fq3ZsjZVGliv1LIqmUnQNdD1VdYsiIZAXEcYQifczMoauoMgSpjDYloYpaejPyZURyZ3He00GvTHlepFqJffASD1r0CDGm4ySkGbdVRhGAce9KYWyiRSPODkckUuizmyhXv7S8tDoJN/CdL7wRS6hKhk+uXqZqRdTyJyqLDm5Mp/+3X8hUnQyuQKVy9eYrdcYhTJTdLLZDI6T4dLVj8iXFyjXa8iShOzWufar3zAzfxEhEWiUXCTLxS+Ca9johkqmOstFzWFJNogU4TfTKboK0+mU4nwPzwvI5vIUHf177/OlIKQ7zx2B1ACdO6RphQ8RyDo6v75cJQrj5GW7NpdDUdIRUBxFjCZTWgOf3sBHUzVmqy45R0qmKcXIITFQYg7zqRKEIXsHbSbTiMtX5lipGIzHU3aPeli6RKVo0/ZVZFkjr8cc7/fo96asLBfYa/u0DjpQqSWGR98b4AchXgym9PR47MkLm6aJ+Ii8HFXTMc3H8n1RFJ0Z2YpRrslso/5EBYpuUL/4yeNtloGbLz5ef7BUqVQRn8dFpVhrJJ/H24Azgz63PIP4PF0MF7JiCi8tby0CqQF6a7vm3W+YqatcXiqy1MgllCyWyA5MixD6Tl78nf6Uw+YEy1Qp5M3EAIl//Q9HF88bZAib1A8jpkRkjBhXhu3ekP95fZ/5XMSnV0vc7WeQ9QxXcxFbOwP22xMuXMpS7E1pH3do9/OYKuRtCU0mMUAiNPnp6wl/ne/7id9O5OUcHBxwdHTEVnabXC5Ho1HHcRw0TXtprwo/zcN7eumB6c73DoH0jfDedfmbu2Hx0tFUJfm8uau+/VeSZQXbNKkVFRzTSGhpHGERCJBlCUmWkSTxec69iI2Gha7EOIacGA3PDznpTSlqAVLsMw1jYj9m4gXsdSfcb3nUxhEZNWYkR+x1Qmw5QlNIPi8KQxAG6PDoiD/8/g/88z//D9bX1+n1++SyOfL5PIuLC/zjP/4jH3744XMaerppNOwznsYoQvnXEZ7AtKQIPEYgNUCPsUiXUgTeCAKSMECW+DyZkRL4U05OJnRbQ4aRzGAqOAV4wm8hfDC2oibGSZFOPTfCsW7FMJlI7LdDWu0BEROOghg1a1DQDHRDo+xkUC2T3WHA4WBIWQpxpZc75oMg5Is/f8E//dM/PYPNp59+yj/8wz+cmX57cEgMwaRLr9fjsD1kNA7RdYN+oUAunyNjnbb/mQrPZUNI6Pv4kYKsKM/1o53LZdJKzgWB1ACdC4xpJSkCPx2B6TBib3/KuDUAW6YzCfFjnqCPEY54RwrxvIhOPyBvKklklxnFtDsyd/ZC9pptCD0qksXiQpmrmSw1S8WQY7Jjn95ml+P+gEiXqEpS4v95nmdORCzWa1UWFhaSaTYxHfewzMzM8NlnnyG+ny5xHHC8fZutnV3acQmFED2acNJuUJtTuDifT0ZeT593LuvjJt12m92BhZMpslRzSQMvzwXZ11JJaoBeC6xppSkCPxwBRdPJl4r8+2sGWCa1jPYMC4KqyNQqDiebXf58Y4/oQpasqVCsZpN//fVKlozrIUUejbJJo54nZz4eaemmxtJwQqenMwhlJFl9NtT7TNMty+Lqlcv89re/5S9/+QuDwSDZe+nyZf72P/wH6vVnnfxRPGFj/4StvT5za8uUsyaSP6bj2eiqTxh0OTqaJNFpxbxMLAti0inRsMXYl4jtPKWCwbDX4+B4RH1xkUrO5Gj9FofNEVZ5huX5GpY04mjvPietASNsNDtLVT2gebzPn3ZdGgtrzFQcTJEolJa3EoHUAL2V3ZI26n1EwHRMVi42WLn4IPpNBCQ8BYSsKpTqeZyOT+f2Cc2OQnm5yNyFCoaqcG0+x9no7afzdUR9jbLNIIw5GcVkTO2Zazx1SWbn5vnbv/1bdnf3Hhmg+bk5LqyuIgzUkyXAm3bY6ca0oxJ/PTvL/Ew5OWQw9ND1EWHY4db9Y4bDKdcumPixzv07J8Qnm8RGFmtuFSmO2N895OZOzFXNQhpL3Pzma7Z2WxSXLglvGW54zPHdzzkYxqcjLUlhtTxk6k84bsc4xTFRkvj8NIpPtjhd+/kQSA3Qz4d9euUUgWcQOA08+J4Xpqyx0MgnPo5i3sLQDRYrp/6OVxF7U1WF+YpLNVZwXyEvq1Kp8MEH1yhXRCDCPQxdZnFhjsXFxWcj4KIpfr/DeDTFw0VRtUfBFBlXB3xGY5/j3pDhKMALFPrjgO2DFkq7y9JandmZAsroLlHs49aXkCZdmpt7tD3I5wyytPju/h5xb5/atEd5+UP0OM/o7nWmY5Ar8yyQY64sjPH3YPlMD6Qb3iQCqQF6k2in10oROCcEynmbQtYESU7ip8uOnFDSJPHuL3nnnjIhKWSTQIDneX6ebWAmk+Hy5Uvkc6fJN+VKmcWFhSQS7pmjJdEOG3M6Rpt6+CSZtnjjDnePphhmSMEO8NAZC5dSGDEJoOXF2B5YGZdiOcvofoCKRDZfQBneod/cZ2IvsDjXYNYKaLWh2RlQNyMac3MUcdnd+BNxpCI5RXJygbzjpMwHz3TQ27UhNUBvV3+krUkReCUExEhJ+IMeFfX7uAxOjxRTcsorHvuwbk1Vk9FOvV7DtCyuffgJc4tLz0a/iRMkEyPbYLZgo5606PWb9J2Ao71dvtqOqdQcMvMarqYx8AYMOxM8zUXPZzECN2EB9yJQZBOdANUfn46y3CzRGLq+Qi2TYalRIu8fYwjJBmF1lRjNMFENPUni7XW6dDWNMM4/40d7eF/p98+PQGqAfv4+SFuQIvDWI2DbNleuXOE//d3f8de/+x1z8/MvaLOEalhc/tUV8pv3uH/3O259HWMaNjP1Rear5YSTbcY6YhIdsX+gotayLM1X0XMKdr6IKmvomSKVooauWVTzF/HaDltf3uT++j28hSUu/rsZlteWmOyHSKqVGKlCtYGbzTI0bHZ7mwwMj0k0g6akr7kXdNbPvjntmZ+9C9IGpAi8GwhcvnwFYYg+/PAj6rVno98e3oUYnZXnVzBtnfbX9+j2ToXnPl5tkM+5CArrxXoBPagyjA3cQoVcPgteGdt2sEXeUq5OVcsnU2nZgotvW6wdtmAaYFg2uYxFxc4yMkwUt4CkKFgra7hiWxAxbnQwRPTdS6YjH7Y3/f75EJDilB//50M/vXKKwDuCgOd5fPPNjYQJYXV1lUa9hqp+z//XOGAwGDH1oyQR1XWEQTi1CKE/xfc9wlhOAhUEG7aYSRP7EzaIOEoogGLkZKpPvKamwwGTqQ+ahu3YaIqMIGcViT5JrVGIYJmIopjpdIKkyBiGmZCaviMwv3fNTA3Qe9fl6Q2nCPxwBAThaKfTJYxCctksui4i2tKSIvDTEEgN0E/DLz07RSBFIEUgReBHIvC/AbdfAofb8b67AAAAAElFTkSuQmCC" } }, "cell_type": "markdown", "id": "legitimate-definition", "metadata": {}, "source": [ "![diode-quora.png](attachment:diode-quora.png)" ] }, { "cell_type": "markdown", "id": "trained-masters", "metadata": {}, "source": [ "Out of curiousity I plot the inline resistance with the diode against the voltage acrosss the diode." ] }, { "cell_type": "code", "execution_count": 37, "id": "hairy-ensemble", "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEWCAYAAABi5jCmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAkNUlEQVR4nO3df5xcVX3/8dd7kmUT2Cgx0VR3kaBJRWzXiBH0m6qrSIutBjGo+AMrFjFW1Npqgq2tVqto8NuKgk1Ti6hFKWUFok1F/LGgFCUiYTX8sDEi2SCCy/JjcbNsMp/+ce7i3GE22cnu3tnsvJ+Pxzwy95xz7/nMmc185p57515FBGZmZqNKjQ7AzMymFycGMzPLcWIwM7McJwYzM8txYjAzsxwnBjMzy3FisAmRdLuklzQ6jskgab2kv92P9Z4saVDSrEmO5yRJO7JtP2sytz3dSApJS7Ln+/U+ZOv2SDp9cqNrPk4MM0T2AT2UfYjcJelCSW012r02a6uq8tmS7pb0suKinjyT8YEQEasj4sPj6CuXDCPijohoi4g9E+m/hk8AZ2bbvrFGHJUfph/Mll9VUT87K1tctd5Bkm6V1FdVvljSdyT9Jqt/SVX96yT9QtJDki6X9LiKuldL+p9s3Z6JvOjxvg82dZwYZpaXR0QbsAx4FvC+Gm0uAw4FXlhVfgIQwNenML4xKWnY3+Nkf9ufJIcDW+tofy/woXG8lvcCd9co/zJwI7AA+BvgUkmPB5D0DOBfgFOBRcBvgM9U9f1J4GN1xGvTlBPDDBQRdwFXkhJEdd0u4BLgjVVVbwQuiojdtbYp6S2SbpH0oKSbJR1dUb1MUq+k+yX9h6Q52TrzJX1N0j2SBrLnHRXb7JH0EUnXkj5oniLptIp+tkt6a1UcJ0raIukBST+TdIKkjwDPB87L9pjOy9oeKekqSfdKuk3Sqyu2c6Gkf5a0SdJDwIuysn/I6hdm8d6Xrf9dSSVJXwSeDHw162tN9k07JM3O1n2cpM9JujN73ZePMaYlSe/PvoXfLekLkh4rqVXSIDALuEnSz2qtX8PXgYeBN4zVQNIRWf3ZVeW/CxwNfCAihiKiG/gxsCpr8nrgqxFxTUQMAn8LvFLSPICI+GZEXALcOZ5AJb1X0i+zMXpzVd0j70O2/BZJ27L3YaOkJ1XUHZ/t3dyfve/Ve8Jvzv6eBiRdKenw8cTX9CLCjxnwAG4HXpI97yD9pz53jLYrgAeAudnyY4EhYNkY7V8F7ASeQ/qPtwQ4vKLf64EnAY8DbgFWZ3ULSB8sBwPzgP8ELq/Ybg9wB/AMYDbQAvwJ8NSsnxeSEsbRWftjgPuB40lfatqBIyu2dXrFtg8BdgCnZds+Gvg18Iys/sJsWyuybc3Jyv4hqz8bWJ/F1EJKPKoe62x5MWlva3a2/F/AfwDzs3VfOMa4vhnYBjwFaAO+Anyxoj6AJXt5zx+pBz4I/DuwEtie9Ts7a7O4Yp2vAScBXUBfRflJwC1V2z8P+HT2/ApgbVX9IPDsqrLTgZ59/K2eAPwK+L3sffpS1WupfB9enL1vRwOtwKeBa7K6haS/45Oz1/tuYPfo3wHwimx8n56NxfuB/2n0/9UD4eE9hpnlckkPkj4Q7wY+UKtRRFxL+o95Ulb0auCnEbFljO2eDqyLiM2RbIuIX1TUfyoi7oyIe4Gvku2pRER/RHRHxG8i4kHgIzx6CuvCiNgaEbsjYiQi/isifpb1czXwDdKHMsCfARdExFURUY6InRFx6xgxvwy4PSI+l237R0A36UNk1BURcW22rV1V648ATyQlwJGI+G5knzZ7I+mJwEtJyXEgW/fqMZq/HvjHiNge6Vv4+4BTRvc89kdEbATuIb1n1bGdREpel9VYtY2UKCvdT0ro46mvx6uBz0XETyLiIVJSG8vrSe/5jyJimDRGz1M6bvLHwM0RcWlEjJCmsu6qWPetwNkRcUukPeGPkvZuvdewD04MM8srImIe6dvgkaRvVKNneQxmj7/O2n6B304nnQp8fi/bPQzY23RG5X/G35A+RJB0sKR/yaZKHgCuAQ6tmgPfUbkhSS+V9P1s2uA+0n/+heOMo9LhwLHZVNB92bZeD/zOWH1XOYf0bfMb2ZTWWePs9zDg3ogYGEfbJwGVCfYXpG+2i8bZ11jeTzpGMGe0QNIhwDrgHWOsMwg8pqrsMcCD46yvx5PIj/0vxmpI1RhlCbSftLeY206WuCu3ezhwbsX7fy9pT7R9P2JuKk4MM1D2DfVC0lktRDrLoy17fDRr9gXgOEnPA55L2p0fyw7S9E69/gp4GnBsRDwGeEFWXjkP/Mi3cEmtpG/1nwAWRcShwKaK9nuLo/rb/A7g6og4tOLRFhFv28s6v62IeDAi/ioingK8HPhLScfta72s38dJOnQvbUbdSfrwGvVk0lTIr8ax7pgi4ipSUvvziuKlpCmv70q6izRt9USlM9gWkw5yP2X0mEHmmfz24PfWbBkASU8hTe38dD9C/CUpgY568l7a5sYoS3ALSFObue1IUtV2dwBvrfobmBsR/7MfMTcVJ4aZ65PA8ZKW1arMpoK+RzoT5apIB6zH8lngPZKerWTJOHfH55GOXdyndGpjzamtCgeRPmzuAXZLeinwhxX1/wacJum47MBtu6Qjs7pfkebqR30N+F1Jp0pqyR7PkfT0ccSNpJdlr1Okeew92aNWX4+IiF8C/w18Runge4ukF9RqSxr7d0s6QunU4o8C/xFjnABQp78B1lQs/4T0obkse5yevY5lwI6I+CmwBfiApDnZtFMnKVEDXAS8XNLzsw/nDwFfyaYIkTRL6aSD2UAp20bLGLFdArxJ0lGSDmbvfxdfIr3ny7IvDh8FfhARt5OO5TxD0iuz6bd3kt8jXA+8T+mMKrID+6/C9smJYYaKiHtIewV7+6HQ50nfxr6wj239J+n4wJdIUweXkw4078sngbmkg4ffZx+nwmYfMu8kfXAMAK8DNlbUX086mPxPpPntq/ntt8lzgZOzs08+lW3rD4FTSN867wI+Tko847EU+CZpCuU64DMR0ZPVnQ28P5uieE+NdU8lHaO4lXSs5y/G6OMC4IukKbafA7sYe6qnLtlxpOsrlndHxF2jD9K0SjlbHk14pwDLSWP/MeDk7O+IiNgKrCYliLtJSb9yj+RU0peAfyYdExoC/nWM2P6b9LfxbdKezbf38jq+Rfob7ibtITw1i5OI+DXpxIiPkaaXlgLXVqx7Gek9vzibyvwJ6fiP7cPoWRZmZmaA9xjMzKyKE4OZmeU4MZiZWY4Tg5mZ5ez3Lyyni4ULF8bixYtr1j300EMccsghxQY0TXksEo9D4nFImnkcbrjhhl9HxONr1R3wiWHx4sX88Ic/rFnX09NDV1dXsQFNUx6LxOOQeBySZh4HSWP+4txTSWZmluPEYGZmOU4MZmaW48RgZmY5TgxmZpbTtImhf3CYm3bcR//gcKNDMTObVg7401X3xxVbdrK2u5eWUomRcpl1qzpZucz37jAzgybcY+gfHGZtdy+7Rso8OLybXSNl1nT3es/BzCzTdImhb2CIllL+ZbeUSvQNDDUoIjOz6aXpEkPH/LmMlMu5spFymY75cxsUkZnZ9NJ0iWFBWyvrVnUyp6XEvNbZzGkpsW5VJwvaxntjLzOzma0pDz6vXNbOiiUL6RsYomP+XCcFM7MKTZkYIO05OCGYmT1a000lmZnZ3jkxmJlZjhODmZnlODGYmVmOE4OZmeU4MZiZWY4Tg5mZ5TgxmJlZjhODmZnlODGYmVlOoYlB0gmSbpO0TdJZNernS7pMUq+k6yX9XpHxmZlZgYlB0izgfOClwFHAayUdVdXsr4EtEdEJvBE4t6j4zMwsKXKP4RhgW0Rsj4iHgYuBE6vaHAV8CyAibgUWS1pUYIxmZk2vyKurtgM7Kpb7gGOr2twEvBL4nqRjgMOBDuBXlY0knQGcAbBo0SJ6enpqdjg4ODhmXbPxWCQeh8TjkHgcaisyMahGWVQtfww4V9IW4MfAjcDuR60UsQHYALB8+fLo6uqq2WFPTw9j1TUbj0XicUg8DonHobYiE0MfcFjFcgdwZ2WDiHgAOA1AkoCfZ4+G6h8c9k19zKxpFJkYNgNLJR0B7AROAV5X2UDSocBvsmMQpwPXZMmiYa7YspO13b20lEqMlMusW9XJymXtjQzJzGxKFXbwOSJ2A2cCVwK3AJdExFZJqyWtzpo9Hdgq6VbS2UvvKiq+WvoHh1nb3cuukTIPDu9m10iZNd299A8ONzIsM7MpVeitPSNiE7Cpqmx9xfPrgKVFxrQ3fQNDtJRK7KL8SFlLqUTfwJCnlMxsxvIvn/eiY/5cRsrlXNlIuUzH/LkNisjMbOo5MezFgrZW1q3qZE5LiXmts5nTUmLdqk7vLZjZjFboVNKBaOWydlYsWeizksysaTgxjMOCtlYnBDNrGp5KMjOzHCcGMzPLcWIwM7McJwYzM8txYjAzsxwnBjMzy3FiMDOzHCcGMzPLcWIwM7McJwYzM8txYjAzsxwnBjMzy3FiMDOzHCcGMzPLcWIwM7McJwYzM8spNDFIOkHSbZK2STqrRv1jJX1V0k2Stko6rcj4zMyswMQgaRZwPvBS4CjgtZKOqmr2duDmiHgm0AX8f0kHFRWjmZkVu8dwDLAtIrZHxMPAxcCJVW0CmCdJQBtwL7C7wBjNzJpekfd8bgd2VCz3AcdWtTkP2AjcCcwDXhMR5eoNSToDOANg0aJF9PT01OxwcHBwzLpm47FIPA6JxyHxONRWZGJQjbKoWv4jYAvwYuCpwFWSvhsRD+RWitgAbABYvnx5dHV11eywp6eHseqajcci8TgkHofE41BbkVNJfcBhFcsdpD2DSqcBX4lkG/Bz4MiC4jMzM4pNDJuBpZKOyA4on0KaNqp0B3AcgKRFwNOA7QXGaGbW9AqbSoqI3ZLOBK4EZgEXRMRWSauz+vXAh4ELJf2YNPW0NiJ+XVSMZmZW7DEGImITsKmqbH3F8zuBPywyJjMzy/Mvn83MLMeJwczMcpwYzMwsx4nBzMxynBjMzCzHicHMzHKcGMzMLMeJwczMcpwYzMwsx4nBzMxynBjMzCzHicHMzHKcGMzMLMeJwczMcpwYmlT/4DA37biP/sHhRodiZtNMofdjsOnhii07WdvdS0upxEi5zLpVnaxc1t7osMxsmvAeQ5PpHxxmbXcvu0bKPDi8m10jZdZ093rPwcwe4cTQZPoGhmgp5d/2llKJvoGhBkVkZtONE0OT6Zg/l5FyOVc2Ui7TMX9ugyIys+nGiaHJLGhrZd2qTua0lJjXOps5LSXWrepkQVtro0Mzs2mi0IPPkk4AzgVmAZ+NiI9V1b8XeH1FbE8HHh8R9xYZ50y3clk7K5YspG9giI75c50UzCxnvxKDJEVE1LnOLOB84HigD9gsaWNE3DzaJiLOAc7J2r8ceLeTwtRY0NbqhGBmNdU9lSTpTcA3JW2UdJ6kQ8a56jHAtojYHhEPAxcDJ+6l/WuBL9cbn5mZTYzq/OKPpAsj4k3Z807gDRGxZhzrnQycEBGnZ8unAsdGxJk12h5M2qtYUmuPQdIZwBkAixYtevbFF19cs8/BwUHa2trG+9JmNI9F4nFIPA5JM4/Di170ohsiYnmtuv2ZSnpg9ElE9Eoa7zZUo2ysrPRy4NqxppEiYgOwAWD58uXR1dVVcyM9PT2MVddsPBaJxyHxOCQeh9r2JzE8V9KngBuyx0HjXK8POKxiuQO4c4y2p+BpJDOzhtjnMQZJR1YuR8QxwDrgPuDVwOJx9rUZWCrpCEkHkT78N9bo77HAC4ErxrldMzObROPZY9gkqQf4YETcARARfaQ9gHF/eEfEbklnAleSTle9ICK2Slqd1a/Pmp4EfCMiHhr/yzAzs8kynsRwJPBW4GpJVwAfiYh79qeziNgEbKoqW1+1fCFw4f5s38zMJm6fU0kR8XBEfJr0Y7M+4AeSPiRp3pRHZ2ZmhRv37xgiYldEfAL4fWAX8CNJ75myyMzMrCHGnRgkLc4uaXE68GTgQeCjUxWYmZk1xj6PMUjqJZ1aegdwK3AL8G3S5S1um9LozMyscOM5+HwSsL3eayOZmdmBaZ+JISJ+VkQgZmY2Pfh+DGZmluPEYGZmOfWclSRJb5D0d9nykyUdM3WhmU1c/+AwN+24j/7B4RnTfz3bnGj/E1m/yDgnarz9NzrOotRzEb3PAGXgxcCHSKerdgPPmYK4zCbsii07WdvdS0upxEi5zLpVnTymwf2vXNZe2DYn2v9E1i8yzokab/+NjrNI9UwlHRsRbyf9uI2IGGD8V1Y1K1T/4DBru3vZNVLmweHd7Bops6a7lz3lYk6uG6v/iXzTrGebE+1/IusXGedE7SnHuPpvdJxFqycxjGS35wwASY8n7UGYTTt9A0O0lPJ/3i2lEg/vKeZPdqz++waGCtnmRPufyPpFxjlRD+8pj6v/RsdZtHoSw6eAy4AnSPoI8D38y2ebpjrmz2WknE8CI+UyB80q5nyLsfrvmD+3kG1OtP+JrF9knBN10KzSuPpvdJxFq+daSRcBa4CzgV8Cr4iI/5yqwMwmYkFbK+tWdTKnpcS81tnMaSmxblUns0q1biRYXP8L2loL2eZE+5/I+kXGOVGzShpX/42Os2h13cEtIm4lXRbDbNpbuaydFUsW0jcwRMf8uSxoa6Wn538b2n+R25xo/xNZv8g4J2q8/Tc6ziKNOzFI+ssaxfcDN0TElkmLyGwSLWhrbeh/4Knov55tTrT/iaxfZJwTNd7+Gx1nUeqZcF0OrAbas8cZQBfwr5LWTH5oZmbWCPVMJS0Ajo6IQQBJHwAuBV4A3EC6D7SZmR3g6tljeDLwcMXyCHB4RAwBM/NkXjOzJlTPHsOXgO9n930GeDnwZUmHADdPemRmZtYQ9Zyu+mHgLcB9pIPOqyPiQxHxUES8fjzbkHSCpNskbZN01hhtuiRtkbRV0tXjjc/MzCZHXaerAtuBWcAc4GBJL4iIa8azYvar6fOB44E+YLOkjRFxc0WbQ0nXZDohIu6Q9IQ64zMzswmq53TV04F3kW7zuQV4LnAd6aJ643EMsC0itmfbuxg4kfw01OuAr0TEHQARcfd44zMzs8lRzx7Du0hXUv1+RLxI0pHA39exfjuwo2K5Dzi2qs3vAi2SeoB5wLkR8YXqDUk6g3S6LIsWLaKnp6dmh4ODg2PWNRuPReJxSDwOicehtnoSw66I2CUJSa0Rcaukp9Wxfq1rEVRf6nI28GzgOGAucJ2k70fET3MrRWwANgAsX748urq6anbY09PDWHXNxmOReBwSj0PicaitnsTQlx0DuBy4StIAcGc96wOHVSx31Fi/D/h1RDwEPCTpGuCZwE8xM7NCjDsxRMRJ2dMPSvoO8Fjgv+voazOwVNIRwE7gFNIxhUpXAOdJmk2618OxwD/V0YeZmU1QPbf2/Pjo84i4OiI2Av8w3vUjYjdwJnAlcAtwSURslbRa0uqszS3A14Fe4HrgsxHxk/H2YWZmE1fPVNLxwNqqspfWKBtTRGwCNlWVra9aPgc4p464zMxsEu0zMUh6G/DnwFMl9fLbg8jzgGunMDYzM2uA8ewxXET6ln82cBYpMQTwYHbfZzMzm0HGkxh2khKBgJdVlEtSRMRjpiQyMzNriH0mhoiYV0QgZmb7q39w+FF3VqtVNtFtNot6r5VkZjatXLFlJ2u7e2kplRgpl1m3qpOAR5WtXNY+oW3Ws/6Brq7EIOmZwPOzxe9GxE2TH5KZ2fj0Dw6ztruXXSNldlEG4L2X9gLB8O54pGxNdy8rliwc1zf/WtusZ/2ZoJ7fMbyLdCD6Cdnj3yW9Y6oCMzPbl76BIVpK+Y+xWSUxS/myllKJvoGh/d5mPevPBPXsMfwZcGx2uYrRH7xdB3x6KgIzM9uXjvlzGSmXc2V7ykH1ZdhGymU65s/d723Ws/5MUM+tPQXsqVjeQ+0L45mZFWJBWyvrVnUyp6XEvNbZzGkpcc7JnZxz8jNzZetWdY57GqjWNutZfyaoZ4/hAuAHki4jJYQTgX+bkqjMzMZp5bJ2VixZ+KgziGqVTXSbzaLes5LOBJ5FSgynRcSNkx+SmVl9FrS1PurDu1bZRLfZLOqZSnoMsB54FbCb+i65bWZmB4hxJ4aI+PuIeAbwduBJwNWSvjllkZmZWUPUs8cw6m7gLqCfdNqqmZnNIPX8juFt2b2YvwUsBN4SEZ1TFZiZmTVGPQefDwf+IiK2TFEsZmY2DdRza8+zpjIQMzObHvbnGIOZmc1gTgxmZpbjxGBmZjmFJgZJJ0i6TdI2SY86ZiGpS9L9krZkj78rMj4zMyvwRj2SZgHnA8cDfcBmSRsj4uaqpt+NiJc9agNmZlaIIvcYjgG2RcT2iHgYuJh0IT4zM5tGiry1Zzuwo2K5Dzi2RrvnSbqJdC2m90TE1uoGks4AzgBYtGgRPT09NTscHBwcs67ZeCwSj0PicUg8DrUVmRhq3bshqpZ/BBweEYOS/hi4HFj6qJUiNgAbAJYvXx5dXV01O+zp6WGsumbjsUg8DonHIfE41FbkVFIfcFjFcgdVV2iNiAciYjB7vglokbSwuBDNzKzIxLAZWCrpCEkHAacAGysbSPodScqeH5PF119gjGZmhesfHOamHffRPzjc6FCAAqeSImK3pDOBK4FZwAURsVXS6qx+PXAy8DZJu4Eh4JSIqJ5uMjObMa7YspO13b20lEqMlMusW9XJymXtDY2pyGMMo9NDm6rK1lc8Pw84r8iYzMwapX9wmLXdvewaKbOLMgBruntZsWRhQ+8e518+m5k1SN/AEC2l/MdwS6lE38BQgyJKnBjMzBqkY/5cRsrlXNlIuUzH/LkNiihxYjAza5AFba2sW9XJnJYS81pnM6elxLpVnQ2dRoKCjzGYmVneymXtrFiykL6BITrmz214UgAnBjOzhlvQ1jotEsIoTyWZmVmOE4OZmeU4MZiZWY4Tg5mZ5TgxmJlZjhODmZnlODGYmVmOE4OZmeU4MZiZWY4Tg5mZ5TgxmJlZjhODmZnlODGYmVmOE4OZmeU4MZiZWU6hiUHSCZJuk7RN0ll7afccSXsknVxkfGZm00X/4DA37biP/sHhwvsu7EY9kmYB5wPHA33AZkkbI+LmGu0+DlxZVGxmZtPJFVt2sra7l5ZSiZFymXWrOlm5rL2w/ovcYzgG2BYR2yPiYeBi4MQa7d4BdAN3Fxibmdm00D84zNruXnaNlHlweDe7Rsqs6e4tdM+hyFt7tgM7Kpb7gGMrG0hqB04CXgw8Z6wNSToDOANg0aJF9PT01Gw3ODg4Zl2z8VgkHofE45BMx3EYGtnDO58+wp6IR8pmSVx/3feY2zKrkBiKTAyqURZVy58E1kbEHqlW82yliA3ABoDly5dHV1dXzXY9PT2MVddsPBaJxyHxOCTTcRz6B4d598e/za6R8iNlc1pKXLvyDwq7L3SRU0l9wGEVyx3AnVVtlgMXS7odOBn4jKRXFBKdmdk0sKCtlXWrOpnTUmJe62zmtJRYt6qzsKQAxe4xbAaWSjoC2AmcAryuskFEHDH6XNKFwNci4vICYzQza7iVy9pZsWQhfQNDdMyfW2hSgAITQ0TslnQm6WyjWcAFEbFV0uqsfn1RsZiZTXcL2loLTwijitxjICI2AZuqymomhIh4UxExmZlZnn/5bGZmOU4MZmaW48RgZmY5TgxmZpbjxGBmZjlODGZmluPEYGZmOU4MZmaW48RgZmY5TgxmZpbjxGBmZjlODGZmluPEYGZmOU4MZmaW48RgZmY5TgxmZpbjxGBmZjlODGZmluPEYGZmOU4MZmaWU2hikHSCpNskbZN0Vo36EyX1Stoi6YeS/qDI+MzMDGYX1ZGkWcD5wPFAH7BZ0saIuLmi2beAjRERkjqBS4Aji4rRzMyK3WM4BtgWEdsj4mHgYuDEygYRMRgRkS0eAgRmZlaowvYYgHZgR8VyH3BsdSNJJwFnA08A/qTWhiSdAZwBsGjRInp6emp2ODg4OGZds/FYJB6HxOOQeBxqKzIxqEbZo/YIIuIy4DJJLwA+DLykRpsNwAaA5cuXR1dXV80Oe3p6GKuu2XgsEo9D4nFIPA61FTmV1AccVrHcAdw5VuOIuAZ4qqSFUx2YmZn9VpGJYTOwVNIRkg4CTgE2VjaQtESSsudHAwcB/QXGaGZ2QOgfHOamHffRPzg86dsubCopInZLOhO4EpgFXBARWyWtzurXA6uAN0oaAYaA11QcjDYzM+CKLTtZ291LS6nESLnMulWdrFzWPmnbL/IYAxGxCdhUVba+4vnHgY8XGZOZ2YGkf3CYtd297Bops4syAGu6e1mxZCEL2lonpQ//8tnM7ADSNzBESyn/0d1SKtE3MDRpfTgxmJkdQDrmz2WkXM6VjZTLdMyfO2l9ODGYmR1AFrS1sm5VJ3NaSsxrnc2clhLrVnVO2jQSFHyMwczMJm7lsnZWLFlI38AQHfPnTmpSACcGM7MD0oK21klPCKM8lWRmZjlODGZmluPEYGZmOU4MZmaW48RgZmY5OtAvRSTpHuAXY1QvBH5dYDjTmcci8TgkHoekmcfh8Ih4fK2KAz4x7I2kH0bE8kbHMR14LBKPQ+JxSDwOtXkqyczMcpwYzMwsZ6Ynhg2NDmAa8VgkHofE45B4HGqY0ccYzMysfjN9j8HMzOrkxGBmZjkzNjFIOkHSbZK2STqr0fFMJUmHSfqOpFskbZX0rqz8cZKukvS/2b/zK9Z5XzY2t0n6o8ZFP/kkzZJ0o6SvZctNNw6SDpV0qaRbs7+L5zXpOLw7+z/xE0lfljSnGcehXjMyMUiaBZwPvBQ4CnitpKMaG9WU2g38VUQ8HXgu8Pbs9Z4FfCsilgLfypbJ6k4BngGcAHwmG7OZ4l3ALRXLzTgO5wJfj4gjgWeSxqOpxkFSO/BOYHlE/B4wi/Q6m2oc9seMTAzAMcC2iNgeEQ8DFwMnNjimKRMRv4yIH2XPHyR9CLSTXvPns2afB16RPT8RuDgihiPi58A20pgd8CR1AH8CfLaiuKnGQdJjgBcA/wYQEQ9HxH002ThkZgNzJc0GDgbupDnHoS4zNTG0AzsqlvuyshlP0mLgWcAPgEUR8UtIyQN4QtZsJo/PJ4E1QOVNcZttHJ4C3AN8LptS+6ykQ2iycYiIncAngDuAXwL3R8Q3aLJx2B8zNTGoRtmMPy9XUhvQDfxFRDywt6Y1yg748ZH0MuDuiLhhvKvUKDvgx4H0Lflo4J8j4lnAQ2TTJWOYkeOQHTs4ETgCeBJwiKQ37G2VGmUH/Djsj5maGPqAwyqWO0i7kDOWpBZSUrgoIr6SFf9K0hOz+icCd2flM3V8VgArJd1Omj58saR/p/nGoQ/oi4gfZMuXkhJFs43DS4CfR8Q9ETECfAX4fzTfONRtpiaGzcBSSUdIOoh0QGljg2OaMpJEmk++JSL+saJqI/Cn2fM/Ba6oKD9FUqukI4ClwPVFxTtVIuJ9EdEREYtJ7/m3I+INNN843AXskPS0rOg44GaabBxIU0jPlXRw9n/kONLxt2Ybh7rNbnQAUyEidks6E7iSdCbCBRGxtcFhTaUVwKnAjyVtycr+GvgYcImkPyP9J3kVQERslXQJ6cNiN/D2iNhTeNTFacZxeAdwUfbFaDtwGumLYNOMQ0T8QNKlwI9Ir+tG0iUw2miicdgfviSGmZnlzNSpJDMz209ODGZmluPEYGZmOU4MZmaW48RgZmY5TgxmgKQ9krZkV+H8qqRDx2g3V9LVe7u4mqSu0Su7TnKM36y8EqjZVHFiMEuGImJZdhXOe4G3j9HuzcBXGnR++xeBP29Av9ZknBjMHu06xr542uvJfimr5JxsL+PHkl5T0a6t4n4IF2W/vEXS7ZI+Kuk6ST+UdLSkKyX9TNLqrM0TJV1TsQfz/GybG4HXTs1LNvutGfnLZ7P9lU0RHUd2yeqquoOAp0TE7VnRK4FlpPsdLAQ2S7omq3sW6br+dwLXkn6d/r2sbkdEPE/SPwEXZnVzgK3AeuB1wJUR8ZEsnoMBImIgu1zDgojon8zXbVbJewxmydzsciL9wOOAq2q0WQjcV7H8B8CXI2JPRPwKuBp4TlZ3fUT0RUQZ2AIsrlhv9LpdPwZ+EBEPRsQ9wK7s2MZm4DRJHwR+P7vHxqi7SVcKNZsyTgxmyVBELAMOBw6i9jGGIdI3+1G1LtM8arji+R7ye+ejdeWqdmVgdkRcQ7rRzk7gi5LeWNFmThaH2ZRxYjCrEBH3k24H+Z7sUuaVdQPALEmjyeEa4DVK95h+POnDfMJX45R0OOm+Ev9KmtI6OisX8DvA7RPtw2xvnBjMqkTEjcBNpEt3V/sGaQoJ4DKgN2v7bWBNdsnrieoCtki6EVhFun8zwLOB70fE7know2xMvrqqWR0kPQv4y4g4tQF9nwtsjIhvFd23NRfvMZjVIdub+M7efuA2hX7ipGBF8B6DmZnleI/BzMxynBjMzCzHicHMzHKcGMzMLMeJwczMcv4PsVlchvvQMoIAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "ax.set_title('R-V characteristic of IN4001 diode')\n", "dfax = df1.plot('R1', 'VD', kind='scatter', ax=ax)\n", "dfax.set_xlabel('R (ohms)')\n", "dfax.set_ylabel('voltage $V_D$')\n", "dfax.grid()\n" ] }, { "cell_type": "code", "execution_count": null, "id": "deadly-auditor", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }