{
"cells": [
{
"cell_type": "markdown",
"id": "617fe864-a317-42a2-926e-544e96026286",
"metadata": {},
"source": [
"# Filter Networks #\n",
"\n",
"### Approach ###\n",
"\n",
"Analysing simple RC networks for the purpose of producing phase shifts of sine waves which in turn might be useful later for producing oscillatory networks."
]
},
{
"cell_type": "code",
"execution_count": 152,
"id": "693e7655",
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import Image\n",
"from sympy import Matrix, symbols, Symbol, init_printing, Function, dsolve, checkodesol, sin, cos,exp, pi, Eq, \\\n",
" solveset, collect, cancel, simplify, lambdify, acos, atan, sqrt, I, integrate, factor, factor_list, Matrix, expand, \\\n",
" conjugate, Rational, sympify\n",
"import sympy\n",
"import matplotlib.pyplot as plt\n",
"from scipy.signal import find_peaks\n",
"from scipy.integrate import solve_ivp\n",
"import numpy as np\n",
"from sympy.abc import phi\n",
"from functools import reduce\n",
"init_printing()"
]
},
{
"cell_type": "code",
"execution_count": 153,
"id": "a16c4a3f",
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import display\n",
"from sympy import Function, Equality, Mul, Add"
]
},
{
"cell_type": "code",
"execution_count": 154,
"id": "d8541032",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'1.13.1'"
]
},
"execution_count": 154,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from system_eqns import systemEqns\n",
"import sympy \n",
"sympy.__version__"
]
},
{
"cell_type": "markdown",
"id": "0a699a5b",
"metadata": {},
"source": [
"## The simplest RC network\n",
"\n",
"A network containing only one capacitor and resistor"
]
},
{
"cell_type": "code",
"execution_count": 155,
"id": "effe33dd",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
""
],
"text/plain": [
""
]
},
"execution_count": 155,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Image(url='https://images.kiwiheretic.xyz/RC-filter0.jpg', width=600)"
]
},
{
"cell_type": "markdown",
"id": "6057575f",
"metadata": {},
"source": [
"This is the simplest RC filter I can think of. It only contains one current path for $ \\textit{i} $.\n",
"\n",
"Therefore:\n",
"\n",
"$$ V_{in} = V_c + R \\textit{i} $$\n",
"\n",
"However $ \\textit{i} = C \\frac{d V_c}{dt} $ and we want to think about the case where $ V_{in} = A \\sin( 2 \\pi f t) $ and so we have:\n",
"\n",
"$$ A \\sin (2 \\pi f t ) = V_c(t) + R C \\frac{d V_c}{dt} $$\n"
]
},
{
"cell_type": "code",
"execution_count": 156,
"id": "ec4b6463",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATIAAAAVCAYAAADFGGL/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAKK0lEQVR4nO2ce5RVVR3HP4OY4gNQ6KFSpCIiCTMM6DLxHVn4hFjJQtMQLY3UcDCNtbSvP5UiRDHNMJaW9FAsySg1H8s0Vz4mxBgRAbVSKTVISXxEPJz++O0znDlz7r3DvefMMHW/a83ac87eZ39/955zfvv32remubmZKqqoooqujO5pJ81sHjAa2FvSux0rUhX/qzCzBuAa4DRJt3W2PFsLM+sJXAWcBOwJbA9MkzSjUwX7P4KZDQeeAr4k6ebofBtFZmYHAacDF0VKzMwmALcBcyRNLkE0BzgXmCXp69l9hPajK8lrZvsBk4BjgY8BvYF/AU3AL4FbJb2XId8DwKcTp9cAzwPflfSLrLhSMCK0T2U5qZldCFxL/gryZ8AJwL3AT4FNwK+zJjGzXYAVwF7AQkljsuboqpC02Mx+BVxpZvMlvQPpFtl0YB0wJ3auKbQHFiMxs2HAl4G/A1ap0BVgm5fXzGqAK4BL8JX9ceBO4C2gP67YPgVMAA7PkHo40AxcGdruwCBgDDDSzBokzc6QL45v4J/5hYznHR7axRnP2wIzG4QrsfslHZ8XT4BwJdYM1OfM1RXxbaARuAD4FiQUmZkNBEYBN0v6d6xrJbAeGFKC4AagGzA10pSdhK4g7w+BicBzwKmSmuKdZtYDaAAGZEVoZvsAuwMrJSnRdy6+eH0NyEWRSXolj3lxRfYOblXmhWNCuyBHDsxsMH4P7gP2AGrNrK+kf+bJ25Ug6Y9mtgI4x8xmSHo/aZFNAmqAOxIXbjazZcBwM+sn6W/Jyc3sC8BI4CFJdyT7OxLburwhVjQRWA4cIunt5JiwkEwPCi0rRK5dmuVyX2g/lCFfC8zsaOB3ZOjCm9kM3KKN8L5Zi2F9hqSfZMAxDreUI8w1s7nh/8GSllfKkcD38HewAZgG1ALDgAezJDGzvsDqwFUMG4BektZnyH0OcBNwraSpRcb9GdgH+IikfyS65wOX42GS+5OKbBSwGXgyZd4mfOUbArRSDMGn/w6wETivnZ8nb2yT8prZHrj7vgk4JU2JxZGwjCtFMUUWWX5Zv5gRIhfp6QznfBqYB3wRd83jL/sjGXG8hocdJgO74fcO3O3L1AIMsd2jgeslLTezpaGrnowVGbAL7uZH+Dj+PS4G7o6dX5OxEvswMBN4HXehi2ExrsgOBe5K9D0W2taKzMx2BuqA5QUylZHrMwT4baLvMjyLM1PSihLCdRS2VXmnADviQfxnO5g7NdgeVudZ4TCvDFzmikzSz82sN/4CzpM0t8Ql5XA8bmaNwMX4u3F51hwAZrYrfg/ewC0NgGdCm3mcTNJLMR7M7Gz8e5wvaVaBy7LAN4GewKXtCOe8FNpBKX2LQnsEtI6R7QVsh69AaUgNoIe42hTc6rkicQ1mdiOwp6SxJYTOGmXJ2wEYE9ofdyRpSC5EL8RJZnYMfr/74+UE3YDJOWYt68knjpWHpZfEYKBHzhyX44vreZLWhnNxiyxv1IV2SV4EYcE8C08m3tKOSyKDardkh6S3zGw9numnW6yvT2jXJi8KiFaHZAD9OuADQEMBS+5SvJyjo1GuvLkhuLQDcbeksSO5gf2AXuH/qbhZH92b7ribO6fAtRUhWPsDgSWSsq7ArsdDBEtLDayQA3JSZGb2CTwDtwyPHQEg6VXcQts3WGx5oja0TUVHVYZTgB3wkpKWkiIzO9jM5pvZoYnxO4X2PwXmexPoC60VWRSL2THtirBKrAIOMLPuQYAT8cLZBwut5JLWdkYGs1x5c8YHQ7suy9qwdiJyK38kqUZSDb54NQA7A7cHNy0P1OLPWqaKINzXIcBzkgo97FkgUmR/ymn+G/HF5EJJmxN9S/GA/LCcuCNrfSjwqqQ1efEAR4X294nzJwDjaauworhtoXKdHgS9FXctV4e2T5vhW9AUSPczs7/gafoNwPlpg82sH0GZSFoROx4DfAWvj3odOFvSw0V4y8VWyRtk3guv3h6NF6e+iFtvD2QgT2QB9jCz7VIe2jzRJj4m6U1gtpl9Evg8bp3dkAN3XopgML7w5unygcvfTA5ul5mdBhwZDh+IZV3TZHg0a/6AvfG41WOlBlaI/UObjEt/JrQt5Tlm1g04LBwmFV/U3xv4K7S2yF7DK7z3T14UQzyAfhGwL55CXVlgfC3wHlviIpH52oAHNmuBZ/Gq7DywVfIGRduI++Sfw+NrV+M+fcWQtBp4GXdtjyo2NtyoLFEsYxlt9ZiQMWeEvFyzutDmZSlF1kot8EKpDHMZc/fEn6+NeF3hLSl/D4XhuVlkbAmm5518ikIbLR6amR0AHBwO4xbZKLwUqFHSyylz7Y9bqksgZpFJajazR4FxZjZA0ospF0eKYTTu767CK8QLoQ5YKun92PE6YLyk18MHuROv1G2Bmd2KZ1DOlHRrkflLYWvl/UG4ZmwsltPqe8hAttl4nO77ZnZyMmsaXpzPAmcGmSvmDkpxGF7ykRYDeRjfFnWIme0ZYjMV88ZQjxcoP5ciWyVzR95DwYUmA9kHArvi25Kynt/woteZki5JHWA2As/Q1SfOV8KbRM/QFl2wM+BcgyeXhgJN4VmfiS9w9bhyWmRmO4XzkNANMRwS2oeh7RalBcA43NQrpsgmhvaMErGeWlqb47XAPZESCxiQwhVZI5uKzN0etFteM+sPHAccVCIgXals1+M3chKwNOx9fB5flT+Km9P98L2iWXEPwuuGmtJqgiRtNLN7gVOBsXjMJgtezGwH3AVcIint+kq+z8i6nG5mB+Ku+7JE/LPS+1XKmixrfjMbgtcwvkLx7PkyvLZzkJntGLt/Wb0jsMVjmmJmuwOLJN2eMq5Szrtwz+A6M6vDF9cReC3YI8A8M/sNcDKu1OZKWlhgrmPx72VhXLAIC/BY2RkFLn4RdxXB95yV2q5RR2tFVgc8kRgzjLaxhyHA28A9JeYvha2Rtw6/QaX261Ukm6RmSWcBx+OFh3XAV4GzcQX3BK54L8iQu5hbGSEqOByXIS+4e749hRVB2XNLehSPd74bWrHF3ax4/oBSiqzc+aMA/5Ri2fNQEP1CGFsb68rqHUHS03gGeyNemjSiwNBKOa/GvZHN+A81dAeOldQYjnfGt2dtwAuQz02bxMx64XH2uyWtAqhJ/h6ZmU3DN2LWSyo79hBS7uuAkZKejB0fKekPsXGrgMsiUzVkzt4ArpF0cbn8Zch7HH6DeklKNbE7S7bO5M6TN+/P1NXn35Z4O/PZT5HlfNyzOTzSJWm/fjEb14RXACdWwDc0tM8kjpfEBOqDu1Et5/BM5kbySwAUQiNeQ3eTmU3HV43DcDM7clE7S7bO5M6TN+/P1NXn35Z4O/PZb0HYezwNWBA3iNpYZGHwEfier1nlFo2GX1OYImlQ2nE4NwoPou4iaUM5PFnCzEbiQcahuCJbBJyeiOlVUUUVnYSQ5RyPb/F7KTqfqsiqqKKKKroSsq5VqqKKKqrocPwX/BgXzsWw33IAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle \\left( V_{in}, \\ V_{c}, \\ C, \\ R, \\ i, \\ t, \\ f, \\ A, \\ \\tau, \\ \\omega\\right)$"
],
"text/plain": [
"(V_{in}, V_c, C, R, i, t, f, A, τ, ω)"
]
},
"execution_count": 156,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Vin, Vc, C, R, i, t, f, A, tau, w = symbols(\"V_{in} V_c C R i t f A tau omega\", real=True, positive=True)\n",
"Vin, Vc, C, R, i, t, f, A, tau, w"
]
},
{
"cell_type": "code",
"execution_count": 157,
"id": "cd33a7be",
"metadata": {},
"outputs": [],
"source": [
"def multiplyIt(x, y):\n",
" return sympify(x)*sympify(y)"
]
},
{
"cell_type": "code",
"execution_count": 158,
"id": "aa2552f8-b13f-44dc-b39c-ceaaa24040b6",
"metadata": {},
"outputs": [],
"source": [
"def getSym(expr, symbolName):\n",
" for sym in expr.free_symbols:\n",
" if sym.name == symbolName:\n",
" return sym\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": 159,
"id": "0fb16257",
"metadata": {},
"outputs": [],
"source": [
"# Define the voltage across the capacitor as a function of time\n",
"VC = Function(\"V_c\")"
]
},
{
"cell_type": "code",
"execution_count": 160,
"id": "2ff1f3dd",
"metadata": {},
"outputs": [],
"source": [
"# Define \"driving term\" of the differential equation\n",
"dt =A*cos(2*pi*f*t)"
]
},
{
"cell_type": "code",
"execution_count": 161,
"id": "ba8ccfa4",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAASMAAAAcCAYAAAAqe9nhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAANDUlEQVR4nO2cfZhdVXXGf/mgQhWJolggFBACMRoyDIJYTEtUghFFFKGNaIixqKSIMVEwFZ43rxpKkRL8AkQUgo+gURpQSAlqg4g0CEhizIchrUgQEAQJAqJMSP9Y+zhnzpx77p1kJnPveN/nmWff2V9nnb3XXmftd69zhm3ZsoU22mh22P4gMEfSmMGWpY2BwfDBFqCNNhpEB7BikGVoYwDRNkZttAo6gLsHW4g2Bg4jB1uANtoownYHsAA4HNgAvA8YD3xyEMVqY4Ax5I2R7YXAFGBfSU8NkgwvBD4NHAvsAewAzJV0bo36hwB3AqdIumy7CdoEsD0G+CFwMXAKcCCwCPhrBnmb1ldd+kuZx/4al2H1CGzbLwDWAXsC10k6bhvk3q6wfShwO/BRSRfk8ncF3g4cQzxx9wT+BKwCLgcul/RcP8rxXeAtwBJiq9FFLLCjgQuAkyRdVWizmPAMxkh6sr9k2RokAzEDmAz8LTAKeBxYCfwncIWkp3P1bwKOKnTzCLAe+Kykb1VcaynwqKR35fK+DBwr6WUV7aYCVwEXS5pZ534uBj4InC/pY1V1c21KdSmVfYQmncdWGpdGPCMRi3UL0NmIgE2E+cATxFM2jxNS3oPAMuA+4GXAO4DLgCm2T5C0zUeNtscShmippGMKZf+aft5V0vTfiEk+HThnW+XYGtgeRmyNziS8uduAbwObgL0J4/QGYCowMdf0EEJfPpXSkcBY4DjgCNuzJS0oud5eqc/DCkXPUt8rWpnSV9W5p4OB9wO/Blynzzxq6RLE/UJzzmPLjEslgW17HPBh4EbgZ8Betl/SB0EHDbYPAN4ILJL0h0LxemLLNFrSSZLmSppBLJiNwPGEYeoPvD6l15SUHQI8meTpAUk/ITzSD9gerIOGrwJnAfcAHZKOkHSqpI9LmgqMTuUbsga2Xw68GFivwDxJZ0l6J3BaqvbhGtc7GNhM9wLK0El9Y/QL4BnC063C5wm9n9Oop1JHl2CA59H2dNtbbB+5Fc1bZlzqeUZfAIYBs4G5wARCYb5XIthhwBzgdcBLgMeIbc9lkhYV6p5IKOYE4K8IZb4KuEDSHwt1jyWUdxyh5I8Si+Obki6qkH1Gkv2bxQJJ/13WQNJDti8hrP2R5AyI7WOA6yuul0cn8HLCi8hwqe1L0+9FwIm5sufsPz+Mpkn6Wvr9DWAeseVZ2uC1+wW2ZwPTgbXA4ZJ+X6yTFHC+7Z1y2a9OadnT8MaU7lbjsluAEcDziG0zticCrwEurJJX0mbbq4FDbI+WdH/JPb0bOAL4gaReelGBUl2yfS7hNWZounlspXGpaYzSXnMS8DlJa22vSkWdFIyR7VMIN20z8B3CWOxGKOZMYvFldc8hDNtvCQP0JEF+nQMcbXuypEwR3w98CXgI+G5qsxtwEPBeoMoYvTHJs7yiThmeTWlXIX9TusdTgdX0NDRjgX8EbiXGZiWwE+HuzgReRBg4iAW3DvgDcDKx9cmP58253z9O6XZVYtu7E/J2ASeWGaI8Ck/FKmO0f0rX1ujqTuCPwPm2zyPGNZvjFfUlZyXxNB4P9Fh0ifv8d2J+T+vdtBK1dOmnwEKadB5zaIlxKTVGtncGzie8kHkp+2cp7SzUHUcozBPAREmrC+Wjc79fSxiijcBhkh5K+XOBxQS38lG699YfIJ6QEyQ9XOi35nbR9vOJuJS1fTlBsz0SmJb+vTFfJunWdM1TgWslzcu1O4MwRldI+krKvs327cAZSY55+f5s70JM1kJJl1KOO1L693XknkWQyo1ihaRrK8pnATsS9/PzPvQL3cboznxmGrvz07+lp4iSHrT93lQ+jSD7ryB0operX4Jsezce+K9C2dnESeZ5ktY10Fcmd01dkrTI9ij6aR4HEC0xLrU8o3lJwNMk/S7l5T2jPE5N/XyqaIiSYHlLPCOln84MUarTZXsO8Gbgn+lJ9HXR7a3k+/1tDdkhCPcRBEHdF5xLEH1LJJU9wTpSuqKQ31kjfxzhIf20pK+sTVkZAJI22X6GOMGqwiyCUG4UC4FrK8qPS+mVfegzI7yz+zrW9uuJedib4OiGAzOrTtMkXQ1cXcxuUIRSsjZxG7MIr6CvsUr1dKk/53Gg0BLj0ssY2X4lwXCvBi7JNXzA9qPAfrZ3zrnuh6e0aHGrBOzF2Uhab/t+YF/bu0jaBHwd+A9gje1vEPEnP5b0SJ3r7JrS31XWysH26QTntQ54T41qHSktI1i7gKIXUTUhnYSRXVVSlsdjxElfTUjap04fDSO57QcQ28nb+9h8DLBL+j2nUPYU8E5JNzJwyLz3Ill7IcFNzt6KWLN6utRv8whg+15qP1iW5biXDAslTa/TbUuMSxm7/0XCSH1E0uZC2SqCsDo4lzcqpb+uc1HoVtRa1jTLHwWQ4hZOBn5FGMjFwG9sL7P96tIeAhmHsWMDMmH7NOCzwBpgkqTHalTtIDiu/OnRzgQXsq5IvtNtjHq8xpC2g+OBNSVtitiJ7vvZHnhpSp/Ixw41iGxOLpc0TNIwQmlnA88Hrk7u+4AgefEbgVekMcb2WwlO8ntVHlkFaurSAM3jhQTXmP+7LpUtLCm7tl6HrTIuPTwj2ycB/5D+vanECmfoBG5Jvx9P6Z6EV1GFTSn9G+B/S8p3L9RD0pXAlUmJ/44IVpwBLLU9toaXlPFLu5aU9UDiWxYQXs0bitxUrt4o4ol1WyH+qIMw0CtKmnUSHkaxbBwxiTVd2HTN4YRh/mUD9zCqqk4BVZxR9oTcyfaIkgdSFXrxRcmwL0h84QmE1/n5rNz2NsVyJYOXx0qCexxj+/+Iuf0T8KGy9rb3JKLjpxBjuIHwFG5KVap0qV/nEUDShSXtpwNvIzi8m+v1UQNNPy4jcwUvBD5DuFZfIxZREfsQQW55z2g5oYRTqG+M7iYW6JEUjJHt/Ym4lV9KerzYMOUtAZakm5hBEF9l8TsPEhG/B1YJY/tMgidaARxVh4fqSGnZFg0KBifxJxOAe0pOo7K+6r34eSC1DV0es+gnzkjSw7Z/lfo7EvhBrU5sD1fPSPWqk7TLCGM0lZwxKjEm24ps0Y0nYsX2A86V9ItixXS4spwwnu8gFtgRxGFMhipd6khpf83jQKLpxyXvGZnwTM6TdGbvdpC2RnfQk8TOQsjPtr1U0prijeVI7K8SLz2eZfs7mVdjewRx0jIc+Equ7STgZvWOhM7iVEq3EZK22L4FON72/pI2FOvYPpsg7e4CJldszTJ0pHRFIT8jBYt74wOAnQkDWkT2NHmipCyPjI9bVlWpPzmjhAXEduEi228rnrIkQ/smIrzixJQ3nHhIddHbYEPcw+PA4bb3kPRAPSG8dd8wyq49Jcm2kYgEL8OXUv2353Ssh67U0aV+nccBRtOPS7Z/HE/EGNxHNau+mogrGGt7R0nPSFpjeyZBdt9t+zoizmhX4NAk0KR0A7el+JEzgJ/b/jaxLZhCLOpbCe8sw2LgSdvLgXsJKzox9XsX8P0KWa8hIqmPpjCQtk9O97kZ+BFwesmW9F5JV+T+70hpcaG9OKWvtL0mZ3iryOvMc5hv+1XEGKwu2btPTjJex/bF54hYrhnAKse7ZusJr3kvIrB1NBEnlmEs8AJgpaRnih1Ketb2EuBdxFb7iw3I0UHO+Nv+DHCQpKMr2mTzMz2l08q4L9t7E6e3h5Y87IqopUvNPo95NP24ZAR2RlrPqmLVU3DbPanuhFz+lwkFvZ5w7T9GHOU+QkHpktc1NfUzjSCmhxOvFRyVBTwmfJxuT2wm8STegYjunCSp15F/DtcQ7uW0krJ9UzqC2OKo5G96oU0H8By9PaBFRDzWfOCfcvk1jZGkW4i9+lMpFd3GDvhzHNJxwPWSNpbcw4BB0hZJ7yNeJL4+yfYvRNjFQcD/EONzeq5Z1RYtw+KUHt+gKB30dPUPA35Sp80Guj3mpZLKtvFZ311Uy5uhVJeafR4LaPpxqfvWfisjBVOeA3RKaqkPc9n+EOGhTJR062DLM9Bw+TeMlhE80/eJU8wdck3WShq3Ddd7M3ADsIuketuJrdalVpvHwRyXof49owUEn/VJ4K2DLEvDcLzrNRe4phUUeFvh+t8w6gJeSxCqryHohHpHxvVwOxEjc4nt+cR24XXAHZLKOK8+61KLzuOgjcuQ/uxs4i7eA9yZwtdbBfsAlxKvQfwl4AvADYqvAWyQdAPxPtPDkh5IJ3a7A78nFsVD6n4zYKsg6VFi8exNnBwtJ17p+U2N+lujS/vQYvM4mOMypLdpbTQ/HN8wuo94V/GOXP5FwH4ZWZ1OPydLmljeUxutjiHtGbXREmj0G0YdtD/IP6TRNkZtDDby3zACenzDKG98JtD9jlUbQxBDncBuo/nR6DeMRhLxbXsAT5dF6bfR2mh7Rm0MKiQ9SMSPvYl4P/ATxDeMnqbnN4w+QcRx3U98P7mNIYY2gd1GG200Bf4fDTEySWnzjSEAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle A \\cos{\\left(2 \\pi f t \\right)} = C R \\frac{d}{d t} V_{c}{\\left(t \\right)} + V_{c}{\\left(t \\right)}$"
],
"text/plain": [
" d \n",
"A⋅cos(2⋅π⋅f⋅t) = C⋅R⋅──(V_c(t)) + V_c(t)\n",
" dt "
]
},
"execution_count": 161,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Present the differential equation of the circuit\n",
"eqn1 = Eq(dt , VC(t) + R * C * VC(t).diff(t))\n",
"eqn1"
]
},
{
"cell_type": "code",
"execution_count": 162,
"id": "d0b3ec67",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAAhCAYAAAAiYOugAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAQAUlEQVR4nO2debxdVXXHvwkgBGihDPWjUoQyh+mRMGgR1KoUKS0BhYoKBIqKKBgi4AcVf/yKTEFMkA8CKpoERSqNBQVkKJWmDEKYQoSADWGSQWQMM4Skf6x9Xs677w7n3ntecl9yfp/P+9xz9tlnnfXu756191577b1GLF68mAqtYXsr4C7gfkl9Der0AccBHwTWA54EbgcmSZqV6lwP/H26ZSHwcLr+wyHSey1ghKQXOrz/TGA9SYd2ocOZwHaS/iGdbwv8D7CxpBc7lbu0UIT7paBD6TyksmHFRYXiGLmsFRhG+B7wXWC07XfUXrQ9njDkbwD/AmwOHJLOj8hVHQN8HXgXsClwCXCB7R2GQmlJL3Zh2FcHDgcu7FKNnYHbcjrNAeYDn+1S7tJCU+6HGkPFAwxLLioUxMrLWoHhANv7EQ3hJOAEYDRwd+76+4EfAcdJmpy79VFgpu11Ur1NgLWBqyU9lcouAL4JbE30DjOZk4HdgJ0lLarR53bgRkkTbO+e9NoGeBt4ADhM0u9T3alEj29v2zcA9wEvAJ8HFgHTgeNrn5GwF7AYuKnm+UV1ewfwMrAKsLvtbwJzJY0GfgUcCJxb57k9g2bc2x4BTCQa7w2BPwMXSTohXV8VOIP4P9dK9x0r6cac/Kb8JdTlId3fkgvgeBrzAMOEi+GMeqOmVH4+8LqkCbmyPkrwAFQ99xawPQr4DvFSvgA8AdT2ss8Cbq0x7P2Q9Fw6HAssAGYn2e9KshcBd+aeuQVwFNFY1DO6c4EdbK8MXE68wNsDuwBTCCPRCJ8hfgx/B3wZmECMNOphN+AOSf2+u6K6peOFwPvT8S7EaGXXdH4bsHP6fnsSBbg/FTgROI1onPcHHstdn0R8t4el++YAVyfeaYO/QTyk+4ty0YwHGAZcLAcYNGpKnYN/Bi7LlY2nJA9A1XNvja8RPdGsV30v0JddtL0Z8eIcWEDWWGBNYIHtkcAo4E3gq5Luy9U7Fpgt6bcN5DxHvKR/SYwEfi3pwXTt/hY63CfpW+n4D7Y/B3wE+Hmduu8lDFoeRXVD0qJkyF4CZtUYpyeInuS7gQcHSekNNOTe9prAMcAEST9O1+cBt6TrawBfBA6XdGUqO4LobX2JGK0V5a8eD1CQixY8wPDgYliixeh1J2BVonEv3QOw1HrutqfZfjr96IveM9b2YtuHD6VuTZ6/EXA08I1c8e8Z2Hsbkz5vLyByDEFeH/AB4Brgh5Km5J45Evgk8B+5ssm2j8rJ+QvglTQimApcY/tK2xNtb9hCh3tqzp8A/rpB3VHA653oljvfgTBAtQbltdwzeg4FuB9NvJjXNxCxCfFC97tSJL1NGP/R6bwofwN4SPq1y0UjHqDHuRjmaDZqGgdcKWlhOi/VA9Dfc7d9IHAxcJ6kI5tpa/s8YojwHUnHtfrvbO8EHEQMb1+pc/0YYsLqM5Iuzv0zd9i+DDjZ9iWSXm71rJIxGfgr4CHbWdkI4CXbI9KLsnoqL6LbGOCnkuZBf09uvu0L0sQWwMZEqzwnd98BwLdy59sTvnMkHWp7CrAnMcQ7xfY4Sdc00OGtmvPFNG7knyH+/wxt6ZbQR24uIYd10uefGzx7WaMp913K7jewBfmr5QHa56KP+jxA73PRjzRSPgzYg5jnWJuYQ5oN/BKYKunVZaVfLVqMmvYh3HpD4gHIu2Vmp89tmklNPp3PA48DblY3h1OIlua8JsoC3FHn2mnArUQv6tSCz+satvcgJjTGEl9chi2BS4mXaz7RmyPV/fc6claX9KrtjYmXqP9llPSw7buIhu/4VJy9xC+n+z9EDJffTOebES/qaTk5swn+zrD9G8JH18i4t4O7gPG587Z1IwzMb+rI3gZ4XNKfStCzVBTkfi7hB/0I8H91xDyY7t01HWN7JeIFvjhfsQB/tTxA+1w04gF6mIsMqUH9N8JVtgpwMzFqeZFwW+1BcHEgMUcxlLp8m4Ejunr4sKQb0vGgUZPtTYG/ZQnPnXgAziRce6cC8/IeABho3B8ghn7bthB8DtHT+2qRnrTtzYGPAj+S9FqDamOJH+kfai9Ius32/cAXbJ/eYOKoVNheBTgbOEvSnTXXHk2HOwDzJc1KL+Q5aULqJqJnNgb4HNEA3kj8j4sY2KsFuA7YjyXG/dFU79O2XyDC8H4N7G17NvB9wrXyn6nB+AIR7fA48WPZjsaNaLu4hjA460p6th3dcjJWBra0/W7g1VxY5m502QClyaefMPBF6gpFuZc0w/bZwGm23wBmAusCYyWdJ+mVNMI9w/YzwEOEj/6dxPdEG/zV8gDtc9GIByiBi1YogasfEw3cfcCnU4OYlz+KiFzatCtFi2EK8NMWdR7NHfcxeNQ0Drg+58ko2wOwxLhLetv2vcBY2xtI+mOtRNufJXoi10sa1EttgMOI4Wy9Xu3pREucYVFuCHywpIvS8SXAScDHGOIfYcJXgPWJF2YAJC2w/RRB2IxUvG+6ZyIRTvYm0au/kiUt8VjgQUkDfKeEcf+a7a0l3SvpadsnEGF344jG4TrgCuB36Xj/xNerxGz6pUTI1J+AnxHhd11D0hzbtwGfAs5tR7ecmG8kfSYCFwBftL0a8Z0NCAvrEbTD/QnA88TQegPi+5+euyX7bf+EcB/cBewp6clUXoi/Wh5SWbtcDOIBoMe5AMD2RMKwzwXeJ+ml2jqp43iKu4j4sf0JYj3BTkSP+BGCuzPyv2lJzxCusqKoN2raB5iWOy/bA8CI/ApV2xcSxngvSQOUSdEBDxA//O0ktYrKyO67nXgZ1qr1t9s+gIjhPYQYZl2Xu3yhpMdSvY+ma2dJOrbIcyuUA9t7Ej3Z0TVGuxuZXwL2kbRHl3LGU3LPvVcxFDwkuaVwUeA54+mAq+Svnk90RHeoif8vS7eViJ74p4iIp/8iXG4fJxrf6ZIO6UL+w4QL6btEg74KEciwQd4VZvsqYEfCQA/yAEi60fYnCeO/Rr6jmDrK+0naPCurDYXMhjrbMrilOZHw6U1qw7CvQRj2ufUmUiX9wvbahHGfJukHDUTNSp+7F3jmBKKXVBR3S7qsjforFCRdbftcomf6SEli3yLisysUxBDxAL3PxQRgNWKitHTDnnA2YdhPB07MoldsHwfcABxs+4yacOV2UDtqmkVMrtbOcZTmAYDGxn3ApGrym08A/khMahTFe4CViBVWjZBNJNzZqIKkF22/TsyOt8IEYoKlKKaRW0RQYTAkDXJRdCmvUSNeoQnK5iHJ7HUuxqXP6c0qdQrbuwBHApcrrSzOIOkt29OIBX+7MHi+rBAk/Yxwt2XPvJw6NkfSG8TCt0lNZGWuuNry6wn3dz9qjXsWA107qToFeAcwsV4PvAnWTZ/PN6kzhug9zGlSB2JBxjtbPVDSRoU0qzCskIa2jRrt3+bmajJMkzR+KHWqUB9lcZVcwZsT7olb29Rhd2KR11jC43CopKl1qh5FGMVXbZ9U53rW0S1zTdBN1F80WCoGGHdJz9t+DNjK9sqSFtr+J8L3dJ2kS9uUn0XHrFbvomP59bbEqsk3WsgalZNXYcXDFAa72/pYMjH1cM21u4dYnwqNMYVyuFo/fS7oIHZ9TWKScjrNe/3ZXEOr+PLSXGGSGvbMy0S97QdmA3sDm9meTyzmeJMGfjnb7wG+TTQAaxMTEhMlXQs8naqtW+9eYqXeajRxyaRnjEyyH2pWL9WdQAk+d9vVXsjLAJLqLhCqjeGF/km6fQh/7A1Fn1Fx2z0a8ZSuTakt65CrzEswyvZK7UwkS7oKuCo9e2q9OilSaH1gpqQPFpU9XNDMuG9LxF9vApwu6YHairY3IMKubk91nyZCJRekKk8Sq962aPD8vvTZaOVchi2IodPdLepBST73Zj/eCsMbFbfDAync8xHiff4Qjbd6wPbIDtbAZL+D9TrTsLfRyLhD9MQPIHa5O7nB/Rek+vvmVl/Nyy5KWmx7JvAJ25tmQfc5ZD36BTTH+9Jnow2S+tFLPnfbfwNcROzdshA4uV3XVhkyhkLWioCyvq+Kw64wmXDzfN/2PrWRemnl6p7AoYS9KgxJr9m+B9jO9n6Sfllbx/YHgFvKDD9dWqg3SZAZ9/HEqqlj6vm7bL+XiFGX6m9GlCFb6FNvkUS23cApts+0fZLt/evU24PYBvXyJs/pRSwkdg0cTfwPU9zGxmklyhgKWSsCyvq+Kg47x/eI1ambA3McG6xNtj3J9s+JlaBXMXjPpKI4jvhOZ9i+zvZZSf4vbD8IXDwcDTvUN+7ziEB7gGskzahTB8KlspD6+8HkMYNw1xxce0HSTMKX/0r6FLntdAEcaeLGAVdki5qGCyQ9KenudPwUsaptnaY3DYGMoZC1IqCs76visHNIWizpX4F/JFbf9hFbJh9ObNVwC9ERPbpD+dcSoY4zCFf00cRKz62IxUwdpzVc1hjRaQ5V23sRwfVrSWrqVknLpE8FxmjJ3thFn3MU0XrvplwGm16AC2RMydUdS4R81a4hKJxTtZGMDnUvTVaN3KIhaD2BohyWwV8zOR3qXjqHw42/IrD9MvDl4f5/tItuYjdvJeLXz7e9te0tbR9ue/s6dScTw6d2FkBlmwGdAMzoQcM+nmIZU3Bssj+d2E2zFoVyqraQ0a7ubcuyPbVBHHAtshC0r9DjoatFOSyDvwJy2tW9LVnLI3/NYHtN232p8R4JbJjOiyyEXC7QcSYmSc+mGPhJRMTM28Sy2ivq1H3d9kHAh22v0cZCqI2AHxAJDXoGLpgxJdVdlYjGOV3SzTVyCmVUaSYjXS+U07SIrG5RJAStF1CUwzL4KyCnMH+tZHWL4cJfAezIwAAMp79pDN4+eblEV2n2JN3EwFyMzerOJLZFbUf+XGI3yF5DoYwpaSZ/KvDfWrLDZR4tM6q0kuEleTQ/1iAUrD+naQF9ViS05LAM/lJ5Qznt8NdKVoUlSLH0K3TIa5VDtU24vYwpuxLD/Xtsj0tlB2nJnstFMqq0klE4p2kBWSsE2uCwDP5ayWmHvyI6VagAVMa9ExTOmJLmCZrNa7TMqNJMhpfk0ZyUK5tMJBE5JxX159EsoE9e9tcJX3KGVYHFtvNbLn9c0v8WkddjKMRhGfw1k9MufwV1yuQsz/xVKIAyN8NZUdBOxpRWGAPcLGmeIuvPEcCRtltlw8rQKI9mfl1CbU7TojifCDvL/n5Vp6xISrBeRFkcVvxV6FlUPff2UShjSishbiOjShN0ktO0ENK8QZZtHdsvAc9p8Crj4YiuOaz4q9DrqIx7m1DxnKmtUDSnajN0ktN0SOHYpjXLY9kfgkYYlkcb3rgUURKHFX8VehqVW6Yz7EtERUwkNjObReTLvIXiQ91mGVU2s711KwGSnibWAewPXEvs9XMsEV3xO+BZImXi0lw+vSMRAngXMcHodNzWGoelgG45rPir0NPoeIVqhQoVKlToXVQ99woVKlRYDlEZ9woVKlRYDvH/AhJC9LhGnAEAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle V_{c}{\\left(t \\right)} = \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} + \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} + C_{1} e^{- \\frac{t}{C R}}$"
],
"text/plain": [
" -t \n",
" ───\n",
" A⋅C⋅R⋅ω⋅sin(ω⋅t) A⋅cos(ω⋅t) C⋅R\n",
"V_c(t) = ──────────────── + ──────────── + C₁⋅ℯ \n",
" 2 2 2 2 2 2 \n",
" C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 "
]
},
"execution_count": 162,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Solve for the voltage across the capacitor wrt time\n",
"dsoln = dsolve(eqn1, VC(t)).subs(2*pi*f, w)\n",
"dsoln"
]
},
{
"cell_type": "code",
"execution_count": 163,
"id": "b6f3dac6-c950-48b4-bae6-c95b000191fa",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATYAAAAhCAYAAABTGIc+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAN4klEQVR4nO2de7RdVXWHv4TEGIiSCtTioLRUoBJel4RHKQasthGUNpGKLSACESzUAmkEM0Dqrz/aCkQgAQZghlYiILRStEB5mVKVAlGghiRCxCbhYeUlIgQIqCG3f8x1bvbdd59z9rnnkZu4vzHuuGevtfbc66y511pzveYZ1d/fTyNsfxy4XdJTDRNWjChs7wYsAX4oqW8j5eHzwLaSTmhTxl6S3p8J2xP4DrCTpJfaz+nwKVPOtvuAM4FDgG2Bp4EHgbmSHkhp7gLem25ZBzye4r/YpXxvDYyS9OIw7++4bpvp1fbbgOmSrmome3STB58IrKkatU2SS4GLgUm239Trh9veEjgR+Oc2Re0P3J8NkLQcWA18tE3ZnaBhOds+nmjEfgH8BbArcFy6PjmTdDJwNrA9sDPwL8AC2/t0I9OSXmqjUeuKbpvpVdILwBa2j2wmeEy9CNv7AYdIOrbl7I5wiqyAFP4F4HVJszJhfTTobXvd05bB9hFEpzUXOAuYBDyU4kYBs4lKtSPwU+AaSWel+HHABcBRwNbpvjMk3ZPiD05y9wDeAB4FZkr6QS4bHwD6gXtzeZsHTAX2l7Q+F/cgcI+kWamReAUYCxxs+xxghaRJKfnNKY+XD6uQOkCjck7xBwJfAs6UNC9z65PA3ckCwfY7gYnAHZKeSWELgHOA3QmLsHTZpeuGerK9kLC4Drf9beAR4EXgE8B64Grg0/nnJLqp24Z6lfQl2zfZXibp0aI0UMdis70FcAWgejdu4gyxAlKF/zPg3zNhx9O8t+1pT9sM2+OBC4nG6EXgKSCbl88BfwecR1SaI4EfZ+LnEt91ZrpvOXCH7e1tjwFuAu4B9gYOAOYTFSfPVOB/JA3Mddj+feBUoqIXVZgVmbyuAw5Mnw8gyvegTNr7gf3T9+05JcoZ4CLge7lGbYBkgQBMAdYAS5Ps7ZPs9cD3U1jpsmtRTzWOIcr8D4G/AWYR70ER3dRtGb2eAyxoEF/XYjsB+JGk1Y1u3tRo0lPsB4wjXoZSvW3ZnrbHzCF6xtqzHwb6Ut4mAH8LzJL05RS/Elic4rcCTgFOlHRrCjuZsEg/SQy5JgK3SFqV7v9hnXz8DlHZs5wBLJX0rTr3vEC86Ehanyr4y8AD2UqUeIrQ4zuAVfSeuuUMYHsXovIeVULWFGACsMb2aGA88EvgU5IeSWlKlx3wVsrrqcYjkj6bPv/I9knA+4DrC9J2U7dN9Sppue01to+WdF1RmiEWW7LW5gAbbSjVRRr1FDOAWyWtS9dletumPW0vsf27wGnAZzLBP2BDTzmJaLzvqiPincRLNTDEkPQG0fBNSt95IXCn7Vttz7a9Yx1Z44HXM3kbDXwY+LdM2Dzbp2bueQvwauZ6H6KyFK1wvZZ5Tk8pUc4QljyExd+MyUQn2ge8G7gT+KKk+el5LZVdi3qqsSx3/RTwm3XSdlO3ZfV6BXBOevYQiiy2P06Z+E4TwbVeaSYwjZivmUiM05cCXwcWSlrbTE6vaNJTTCeGaK30tmV62l4yD/gN4DHbtbBRwMtpqN0O/QCSTrA9HziUGLr/k+0Zku7MpX8+5aXGTsT7sTwT9hHgs5nrvYm5nhp91Ld635b+/7T0N+gcDcs5vVdbpvBXSsibDFwraSUMWMmrbS9IE+otl10Leqrxq9x1P/UXF7up27J6XQRsAxwG3JqPLGrYjiGGVnX3gaRKci5h2Y0F7iNa65cIM3UaYcYeRYzHu4btf2Rwz1nEH0n6dvo8pKewvTPwe0RPCeV721pP+3nC/P8csLLW0/YS29OIBY4pRONa413ADcTLt4KYH3wf8L8FYlalew9Kn2sW/IHAgMkvaSnReV1g+3Zi3jFfYZYAx2euaxXhlST3PcRw45fpehfiZT8vc8/ewO11vvIewE8kPVsnviuULOfVhAVHSvuvBXK2lLTW9k5EZR5oFCQ9bnsJcCzwaYZXdmX1NBy6qdtSepX0hu1FwMdo1rClButwYoWnEV8mvtgjwNGpALNyxhMrbzs3kdMJ5gPXNknzZOZzH0N7ihnAXZJqpnLZ3rZZT9sTbI8FLgEukvT9XFztu+8j6UbblwDn2f4FcDfR602RdKWkV21fSVSE54HHiDm5twNXpEr4V8TK1U+IzmAv4MqCbN2Z5Gwj6WeEDtYDR9t+kdgmcQtwuO2lxNBiGfCNjIwxwLtsvwNYm9ueMJXOVNLSlC1nYHVaMb8duCzVh3sJK2gycBJgYj53ClEueQt/EXAE0bC1VHYt6mk4dFO3rej1W8CltsdKGmRx5i22PYnW96F6kmzPJhq1FcAfSHo5n0bSa4TpO+z5D9t/TuyV2Y+whp4ArgIuSPM+tWc9T5jGZSnqKaYDX8lcN+1ticrerKftFacD2xEv1CAkrbH9DNGg30h0Wj8nht07AM8SS/s15qT/VxHDiyXAoZKetv12YmX4BmLry7PAV4ntIfnnLrd9P/CXwOWSnrN9Vnr+DKJiLwL+A/hu+nxkVreEJX4B0UkuIBY2sP1m4EPAoO06PaCVcobI4+lE/i8nLJjVhIVRGw1MAVZJep3BLALm2N5d0sMtlt1aSuppOHRLt8PQ60OEEbIfMWocYFT25IHtmcSmu20yS9HZ+O0JxYwhLID83qW2SUOfa4lCWwn8JzF8OoxQ1tWSjmtD/uPEsPli4gUYS0yU7pA1f23fBuxLNFBFve1vEY3eVtmX0vb5wBGSdh1uHjcXbB9KWDiTci91u3I/SexAn9YpmRWt0Q3dtqrXZDitBWbnF/nyk4M7ExtUhzRqiVnAm4nhV8cbtcQlRKN2PrCbpFPSpsM9iFb5Y7YnNbi/GZ9J8v+PGPP/KbGQkB/Tf4hY4ZxN9AwPENbMYqK3bdTT7mJ79zbyuFkg6Q7CUtmhw6J/ReyZqthIdEm3Lek1jQxfoGDKK2+xfRWYKqlwadj2o4TV9N4G+1WGje0DiIbjZkkzCuI/QZitM1XivFjJZ94E3CtpbifkVVRU9A7bDwOPSTo8G56fY3sLG/aR5AVMIBq1fuB7LT78YGID3xRiteQESQsLkp5KLJuvtf33BfF7pP8Nz7i2yL0Ub0KsqKgY+bxKtFuDyDdsWxLzWUVsl/6vGcbetAnEhPzVDJ6ozlMbWzfbP/ZEi8+vS2WpVVRs0rwObJUPzDds6wrCatS2Qoy3vUUrE4aSbgNug4HDt0NIKyLbAXdLOqSs7F8XbDf2L1XRFEntblKu9LCRaKC7sQzeTwgMbcReJRYHigQ/Z/sJYgPue6h/LAfbo+schG1ELePbtnjfrwWdqJQV7VPpYcQxnoJTCvmG7Vk2HGkoYh6xIfYK29MlDTpYmzb4Hkocov9IK7mT9JrtZcBeto+Q9PV8GtvvBhZ3cutAL0nW6nHUn2PsxDN+G7iGOOe3DvgHSTf0WkY3ZHWSXuiiwbMrHXWOtzL4KBcwdBJ+FbB12oBaxKXEqYNdgeXpgO0823NtX0/sQL6NoefOynImUbA32l5k+6Ik/2u2VwHXbaqNWqJW3usapmqPdYT3jknEnOV8h9eOXsvohqxO0gtd1KPSUeco9AKSb9hqLV/hUShJ/ZI+DnyQ2FXcR7izOZE4srGYOJVw2nByKOmbhD+oG4lTEKcRu/h3IzbqDtsN8QhhT+IA/pCzbZ1C0tOSHkqfnyFOZTSywrsioxuyOkzXdVGPSkedIZ2EGcfQ42hDhqKLCWd0ezHUjckA2cWATqPwAf/hbsjemNieSJTrRZJ+3qasPpr40E/ppgBbSPpx7v7SXn/ryRhmvjsmKye37HaiWvqJdEgXdeT3UUI/KW2lo+Gzd/r/3/mIQRZbOvd5H2E1dQzbE2z3JYWPBnZM1818RG1OTCWG6Be3I8Qlfeg73E5fTbh6zlPK628TGa3mu2VZthfW2c+Yp7ad6HTq7MPM0RFdFFFWPyltpaP22JdwkPl0PqJoa8d1wKc69OBsBrInFZz+vsJg9yebLZJuoc6Kc1lc3of+OMLF+fmS7svJKOtfv66MFN+K//2GstqlzHaiXPq2dVFEWf2ktJWO2mca0eAPoahhu55wSdJXG3e3i8IXWrVM3j5NvfqmlemFwH9JuqYgWRn/+g1leIN/+z+ps60n63+/WX42J0r9xkGlo/axvQ3hBbtw3n1IwybpJduXpRtO7272Ksri8l59DyKGQMtsz0hhx2qDf7gyXn+byWjF/34zWZsFLegHKh11go8C35D0WFFkvVMGFwIP2rbqe/qo6C2lvPoqfiav0Vnapl5/G8nwBv/2czNh8wjnipeloKz//Wb5yco+m5hXqjEO6Ld9RibsMElDJotHAKV/46DSUXs4XJudRPzCWiGFX0bhzfJsYkxfMTJoxYd+IyYD90laqfACezLw145f4S5DPf/22fPDef/2ZfkCsYWo9ndzQViZH0fZGHRKP1DpqBnHEB6AVtRLUPcHkyV9zfbBnZxrq2iLUj70GwlwOf/6zRiW//0ypNHBwAjB9svAC0qu10c4besnpat01IC0ADOdJkP+ug1bYjZwoe2ztOH3ACo2AirvQ78RZfzrN2M4/u27isOlVm1T+cB2IqLCPVn3xg7SIf1ApaNGMsYQLu1PkTTk4HuWhuPqdPMc4E1lHlzRdZp59W1G215/JT1H+LY/Evgm4fjzDGKF7bvAz4APqLdH3/YltkAsISbanT6f28M8QPv6gUpHjRgPnJu+X0MGedCtqKio2BzopCfaioqKihFB1bBVVFRsdvw/gnRub9xECbMAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle \\left( C_{1} e^{- \\frac{t}{C R}}, \\ \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}, \\ \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}\\right)$"
],
"text/plain": [
"⎛ -t ⎞\n",
"⎜ ─── ⎟\n",
"⎜ C⋅R A⋅cos(ω⋅t) A⋅C⋅R⋅ω⋅sin(ω⋅t)⎟\n",
"⎜C₁⋅ℯ , ────────────, ────────────────⎟\n",
"⎜ 2 2 2 2 2 2 ⎟\n",
"⎝ C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 ⎠"
]
},
"execution_count": 163,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"terms = dsoln.args[1].args\n",
"terms"
]
},
{
"cell_type": "code",
"execution_count": 164,
"id": "b5b073b5-e7db-4e75-aded-d8fa32a51d87",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMkAAAAhCAYAAABz0Y/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAI4UlEQVR4nO2cfbBVVRnGf1wxgihNrQbHKFKsrsXXbWDMQMsJzWGynEytnNDRsswkQhxMe3prRgIzMCeJsY+rTFOOOZaOBjUWGWoBCYiBOqAMJloqg4iUitz+eNe57LvvOWevfc4+lyPnPDN37t5rrf2sd6/nrK9373cP6unpIQ0zez+wBnhE0rh+BbzMOOAy4ETgCOBpYDUwX9KqUOYe4GPhkj3AlpB/YznOemBmhwCDJO2o8fprgCMknVenHdcAYySdEs4/CPwFGCXphXq4BwIx2g+ADXVrkdYhpNWkRUeF9B8BPwQ6zewNZQyYjneIl4GzgGOBL4bzixJFJwBXACOAY4BfA4vNbHysgbGQ9EIdHWQYcAHwswJMmQisTNi1Hngc+EIB3AOBqto3GgVq0UcHqF2LwekEMzsD7zzzgTlAJ7A2kX888FPgMkkLEpduBe41s8NCuaOBQ4Glkp4JaYuBK4Hj8NEKM1sATAYmStqbsmU1sELSjHA+Jdj1AeA14FHgfEkPm1k3PvpMC2WXAxuAHcCXgL3AzcDsdD3AaUAPcF+Z9oiyL/ygdgEHA1PM7Epgo6RO4A7gHODHaf5mQjXtzWwQMBMfBEcCzwJLJM0J+UOAefh9HhKumyVpRcivqF3KjLJaFKQD1KBFn5nEzIYCPwg3twPYBqRH/WuBv6c6SC8kbQ+HXcBOYF3gHhG49wIPhrT3ApfgHS79wwXYWKrfzAYDvwNWAGOBScBCvMEr4fP4Mu/DwNeAGfjMl8Zk4B+S+qw989gX6jk+HE/CZ88TwvlKYGJo36ZEhPZXA1cBc/FB7kzgyUT+fLxtzw/XrQeWmtmInNr106JAHaAGLdIzyeV4j1wTzv8JjEsYOzoYcE4EdxcwHNhpZh3AUOAV4JuSNoQys4B1kv5cgWM7fqMAb8FnpjslbQ5pj2TYsEHSt8PxY2Z2IXAy8KtUuXfhP4o0ou2TtDcMBC8Cq1Idbhs+sh0JbO7H0hyoqL2ZDQe+AcyQ9POQvwl4IOS/CfgKcIGku0LaRfh+9GJ8+XYocdqV06IoHaAGLXpnEjN7N/B14FuJ/IfpO5pMCP9XR3BPwJdl44CPAMuAGyUtDPV1AJ8BfpOwYYGZXZLgeDPwEvTOUN3AMjO7y8xmmtnIDBseSp1vA95eptxQ4H/JhLz2BYzHxUwL899EPU2HCO07gSHAPRUojsZ/eL1LJEmv4Z2oM6d2fbQoWAeoQYvkcmsB8FbgCTPbY2Z7gEuBMWE9CjAs/N8VwT0BuF/SJkkP4mvZrwYPA8AofHRZn7jms8DuxPlYfF8BQPB2TALuBT4JPGpmp1AZr6bOeyjvrHgOv/ckctuHDwhr6I/Dwv9nq9i6PxGjfa3ogVzapbUoUgeoQYsOADObirtyu0IFpb+z8E3YqFC+tMk6sRxZ8ExgZqOCMb03JmlLMPzckFRqiF3hmpPwKfCVcD462HB7sg5J6yTNk3QSsBz3qtWLNfhomUQt9o2l/+wFvll9StK/C7C1UERqvxH3XJ5cgWYz3i69a38zOwhfmicHuRjt0loUqQPUoMVgMzsYuA64Noz4vTCzreFwPPC4pFVm9nvg+rDxuQ8fKSYAFwKGb8668A16sncD/BE4A5iNe8P2Ap8zsx246/FOYJqZrQNuCDd6e7BlFPBl3DvxFPAeYAywKPZmq2AZMM/MDpf0fEjLZV/AYOB9ZnYksDvhkp4c6qgZwe3+C+CjkpbXw5XgjNJe0m1mdh0w18xexmeDw4EuSYskvWRmi/A2fA54At/DvAO4Iad2aS2K1AFq0KIDn1bfFirvA0k7gWdIbN6BT+NekJm4m28Vvul7gH17lS5gs6Q+63y8k4w2s+Mk/Qd3M54J/AFYjG/QxgN/A54HTgtrW/Dp9VjgVuAx4Cbgl7jbsS4E//lK4OxEWl77wNf0ZwP/wr1AmNkb8TYr/AFqAcij/Ry8ra/CZ5bbgKMSl1wO3IJ35LV4JzhV0tPk0C6tRVE6QO1aDCr3xL0VYWan4qNqZ6rB6+W9GDhd0tQ6eaZT8EzSrGg2LSo9cW85SFqKP2A6KqtsTryK+/jbiESzadGeSV4naKWZpNnQ7iRNCDPbgj9Ui8VNkqY3xpo2+r271UZTYCH+bCCJccDp+KZ3SypvbYPtaWkM6unpwcza08l+gKToB3W1Lrfa2taPwZBPrDZeX2hrWz8KW26Z2TuBJfi7UXuA70m6daA5GsHVCiiqvQ5EDYt0Ae/B3xLtBKYCC8PboQPN0QiuVkBR7XXAadgw71Z4ZWCapCczCzeQoxFc+wMD7QIuqr0OBA2jl1sWEdOeKNsFHJS+GcsR816JoxYUyZXinYK/ItGFv3R3nqTuIusoIfDWxR2rYRH6VeOp0fbCNYzVL2q5ZfEx7ZiH796Mh8ymERXznsGRC7VwmVm3mX0nouhw/M3oS9kXp9CUiNWwCP0iePLanouraP0yZxKLjGkPZYcAvwW+L+n+FE9szHtFjpCfJya+Kle9kHQ3cHeoq7to/qIQq2ER+kXwROuXxVUvYvWLWW5FxbSH4Jxu4E+SlpQpGhPzXpXD9sU6fzwr1jnCnlZCpoZF6BfSK/Lk0S+LayBRtZNYvpj2E/Bp/CEz+1RIOze8+gxxMe9ZHHli4rO4WgI5NCxCvyyePPrF2DQgyJpJomPa5Z+OqbbHKcW8X4N/1OFqYFMp5j2Lw/bFOs9PpC3Ag8GuD0nJmPgse5LcV+Br7RKGAD1mNiuR9glJf43hazJEaViEftV48uoXaVOJp6H6ZRmQJ6Y9C1kx71moJdY5Fj+hb+jqHWXSYj5+0YwoSsOW1S9rJknGtN+SzjSzYZJ2p9PLlCsb825mpZj32RG2xsY6z+1/aXWEfVXpe2GY2YvAdkmb8nI1IerWsNX1q9pJFB/TnoWYmPcs1BLr3FCYf4/qmHDaAYwMzyK2S9pa8cIBREEatrR+MWv2mJj2LGTGvGcR1Bjr3Gh8CHd9rsE3shaOvzuANsSgXg1bWr920FUbbWSgHePeRhsZaHeSNtrIwP8BUfADoJh+JnwAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} + \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
"A⋅C⋅R⋅ω⋅sin(ω⋅t) A⋅cos(ω⋅t) \n",
"──────────────── + ────────────\n",
" 2 2 2 2 2 2 \n",
" C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1"
]
},
"execution_count": 164,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nonTransient = sum(terms[1:])\n",
"nonTransient"
]
},
{
"cell_type": "markdown",
"id": "4a3c5e39",
"metadata": {
"jp-MarkdownHeadingCollapsed": true
},
"source": [
"### Find value for $ C_1 $\n",
"At this point we want to find $ C_1 $ by setting $ V_c(0) = 0 $. This seems reasonable that the capacitor starts off with no charge on it."
]
},
{
"cell_type": "code",
"execution_count": 165,
"id": "a93838da",
"metadata": {},
"outputs": [],
"source": [
"c1 = Symbol('C1')"
]
},
{
"cell_type": "code",
"execution_count": 166,
"id": "e7608c5e",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 166,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c1 in dsoln.free_symbols"
]
},
{
"cell_type": "code",
"execution_count": 167,
"id": "804836bb",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAK8AAAAfCAYAAACRWJ0AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAII0lEQVR4nO2bfZCVVR3HP5AvARqovaGlMrwlRAJrhcP4mlAwNiGWjY0UNlkMpaBApdZ8/UqFEraoU0j5x5JTYzVMVGYJgzQkigLykgnUggyUOhYL4ktki9sf5zz47LPP3Xt3ediF5X5nds695/ye7/Pbe3/3nN/5nt/TrampiSqqOBpxXGc7cLhh+xxgPbBF0vBOdqeKAtG9sx3oANwD/AAYYvuEznamiuLQpYPX9kTC/zgXOB4Y0rkeVVEkumzaYLsHMA+4UtJe288DI4ANnerYMQLbi4BxQD9Jr7WTowZYC1wn6f7seJcNXuAbwGOS1sf3fwWGd547Rw5sXw38HFggaWoZ2wXAFGCepFkV8n8YmATMzAtc2+8Dbgc+AZwGvAAsASxpT2InaZ3tJcBs2w9KejXN0yXTBttnAzcAt6a6nyHMvFXAxth+sDUj2yOALwP/BNwG/u8C+4AFOZz9gXXAtcBTQC2wHZgGPGH7tMwlc4D3Er7PZuiSwUv4QE4BnrPdaLuR8OF8yHa3znWtGNiebLvJ9sXtuHwrsB8YVsbuXkKMzMjOeq34NQi4DPilpP/kmPwIeDdwg6QJkr4p6VLCdzaYEPgHIekpYAvwFdvN4rXLBa/tscBFQA0hTUj+Pgv0Bvp1kmtHDCQdIKRRfeIS3gK2rwFGA8sl/aIN9F8EugEtromz7lhgB/DDrFvAa8Ak270yYw8CZwJj0p1dKue1fTxwN3CXpKczYzvjyxGEZepYx0bCD3wY8I/0gO2TgDuB/wFfayPvZcABYHXO2CWxXSrpzfSApFdsryIE9yhgeWp4VWzHAI8knV1t5p0GvIug7TaDpH3Ai1Q3bQmSvDcvdfg2cDpQK2lLpYRxxhwObC6hMAyO7d9KUPw9toMy/Wtie2G6s0vNvJLmEeSxUuN9O9CdIx25m7aYs04nzMa3t5HzDOBtBPUgD71j+3KJ8aS/T7pT0su29xNSh4NoFry2dwBnVe4rP5N0TRvsq2gHynwvK+wWQsAiSZPL0G6KbXbmnQ+cANzUDn02UQr2tGrVPjQA70l3ZGfebYRdaKV4/lA9qqIizCczGxGW508BiwgboDQ2lCOUtMf2LuAc28dJarT9ScLBwjJJv2qHn4m68PYS48nM2rvEeNK/N2esR4ofyASvpI+V968lbFdL0wqApFwZT9L8bJ/tyYTgrZP0p3beciNwOTDQ9naCXPUGcH2pC2yfAXyHEOR9gHrCLL0UeCmaZbXaBFtjm81pEwyMbbOcOEpkfYDn0v2F5LylPvQqjngkwTsMmAj0B+6QtDXPOMpqqwlHthMJwTqacCABIdf9F29tzLJYEduxtrunFQfbJ0eu12mpVAwmyG8b0p0dvmGz/X7gAYJQ3QjMbusSVQTH4eA6CpFs2sYBVwG7gNmt2C+M11whKVlt65NBSU22VwJX2h4gqT59saRttpcS5LCvEg5BEhjoBSzMybVHxXZFurMzpLJGYLqkIYR/Yn6OKN0RHIeD62hDEryTgZ7AjZJezzO0fRYwHlAqcPOwOLYfLzE+lTBj32N7ie05th8FbiSkC7fmXDOWoB3/Jt3Z4cEr6QVJG+LrF4F/A6d2NMfh4DoKUU9YpgEekbS4FdvhhB/6ujKciwnB+fm8QUnbgPOAOuCjwAxCunI3MErS7rS97d7ABOAhSbvSY92KfgzI9nBgFuGI9p2EPGgtMFfSmoxtDUHWyWqNy4FL49tGwm56rqSf5Nwvl6OdvhfGleG9EJhJONE6HbhWUl2R9zjcsD0e+D3QOx74tGZ7M/A9YGSqqq+9972ecOh0gaTH0mOFzrxxB7wW+C+hlmAQ8IX4fkrG9lTgp4SqpSxGArcAfYEBhLPthbHKqVKOtvreZi7bdbZvq8D0JEJV2zQycs9RhCcJ+u19tofa/oDtL9k+N8e2FthJ2w85miHWZN8MLM4GLhS4YbN9PnA/MEtSbWpoJ7AyBkdieyKhfvMOSY9nePoTZJE/xmUc2wuBbwFDCc+jtcoRx2uBC4CPZM/Rba8l1PpOr4TrUCHpYeDheK+6ovk7ApJ2Rx14LkENOEA4tn0ox3a/7UnAJbZ7tbcYHTgb+DEhxWiBItWGu4AnM4F7EJIaAGJJYh3wqKQHckxrCNLLxmjfl3Dk+ybwdCUctgcTtMox2cCN2Eys7a3AnyoiJK0iyFmV2K4EVh7i/TYDt5UaLyR4bQ8EzgeursB8NCGl2GR7QuybJOkv8XUNYZndF8XpHgThfIakZyvkmAlslNRMWkmhgbBZqISriiMURc28I2O7tpxhzF1ay7VHEtKP7wPvICT+9elTptY4YsB/mrC8JX21wHZJia54MqF2tBJ/0ty3EHLxBCcCTbZnpvrGSfpzJXxVHBqK2rD1jG1F1fZlMBJ4XFJ9rMmdAky1Xa7qP0E/Qs6cnjmv4i1JCOBc4FnajvtoXuD+25y+sj/gKopBUTPvM7G9iPwK+p6lxO+MXT+Cxnow8CTtsL2e8EDf1yvw5ZTYvho5LybIU2/E9wMJQTanAq5miHl7Q8rfV4CG7ElSFR2Domob1tj+A3BvlDdWAU2EWfQ6wtFfC6kjBzWEjVl2VlxGOEuvJHh3Ro7P2d5L0Ah/B1xueyPhGapNwK8r4CoE8cmEAfFtd+DMqIc3SNpZ8sIqWkWROu8VBFXgJkIBxRrC4+dPUPlSWgNsk5Qty1xGqHwaWo5A0ksEbfAzwFLCefxMgrqwGtgNjI/PcXUUziNIfOsJG1DH14ekgx7rKPyErYoqOgpd7Rm2Ko4h/B+pLRgp25XKIQAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle - \\frac{A}{C^{2} R^{2} \\omega^{2} + 1} + V_{c}{\\left(0 \\right)}$"
],
"text/plain": [
" A \n",
"- ──────────── + V_c(0)\n",
" 2 2 2 \n",
" C ⋅R ⋅ω + 1 "
]
},
"execution_count": 167,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Solve for C1\n",
"c1eq = solveset(dsoln.subs([(t,0)]), c1).args[0]; c1eq"
]
},
{
"cell_type": "code",
"execution_count": 168,
"id": "bc4fa20e",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAAfCAYAAAARB2hWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAERUlEQVR4nO2ab2hWVRzHP7NMNIuUCgz6M2r9mYT7I4VEGUFC4QuT/lAk1YtCglJqFknw7VtQYdksIRr1YiRB4QujwCKxoJYVG66ZWS+mjAUmQUOmWcl0vThncHd5tuc+erc7n/aFh3vPOb/7fb73/s75/c4959YMDw8zjamDs4sWMNGwfR3QDfwqqaFgOWUxo2gBk4C3gDeAetvnFC2mHKraIbZXEu5xAzATqC9WUXlUrUNszwZeB1okHQYOAo2FisqAqnUI8CzQIak7ln8GGoqTkw1VmdRtXwE8CSxKVO8FFhciqALUVOO01/Y2YAVwIlFdAxwB5kmasjdddSPE9jJgKdAMHE80XQtsBWqBAwVIy4SqcojtmcCbwEZJu1Nt/fG0kSnskGpL6muAiwjvHqMgaRA4xBRP7FWZQ85kjApZtvuAyyu4/gNJD+aq6H+OdA7ZD/xTwfUHc9QyDXIKWban414OkFQznUOmGCZ92mv7UmALcDEwBLwkaetkc0wEVx4oYto7BKyVVA8sAzbZPrcAjongOm0UHrJs9wDLJf1WJMdEcJ0Kcg9ZthuAdYTliwuB34EuYIOkzpRtM3BW+uZt7wRui8UhoC9e/26J/yvJcYrac+NK8d4CtBCWcy4BHpHUXso215Bl+2HCw/8XuA+4GngollenbOcD7wOPlaBqAtYDC4CrgA+BNtuj9jPKcFSqvWIu2+22X8hgOpew2rwG+Hs8w9xGiO0lwHvAOkmtiaZ+4Ot4wyO2s4CPgVcl7UrxXAlcAHwu6VCsawOeBxYS9sfH5YjtrcDNwA2STqbaugh7JWuzcJ0uJG0Htsf/ah/PNs+QtRH4IeWMpKiBKKgGaAe+lLSlhGkzMAj0RPsFhJ2/k8DuLBy2rwGeAG5POyPiF+LuYQY9k4pcHGK7DlgC3J/B/CZCONtje0WsWyXpp3jeTBjig7ZnALMJy+hPS9qXkaMF6JH01RgaBoAbM3JNKvIaIU3x2FXOUFIH4+euJkLoew04H3gZ6JW0KQtHdOLdhA8bRupagQOSNseq84C/MupJcq8n5LYRzAKGbbck6u6Q9E0WvlLIK6nPicejOXA1Absk9cY9jdXA47avz3h9LSEHJXv4vcCxRHkRsI/K8Q5h+X7k90mJurKdcjzkNUL2xuNS4KN0o+05ko6l60vY1QLzSTxMSX22u4FVwDMZtMyLx6OR81bCVPN4LNcRHtwrGbhGIebBgYTeI8CApN5KucZCLg6R1Gn7M2Bz/PzmW2CY0NsfBQx0ZKBqJiTvdO/dAawkm0P6I8cDtg8TNqs+BZbHl763gT3AtgxcucD2XML0HUJUuiy+rw1I6k/a5vkechdhNvQU8CPQSfgU5zuyD+NmYL+k9BbADqDO9sJyBJL+AJ4D7gG+ANoISb4R+B74E7hT0okxSfLHYsJ0vZswSXE8fzFtWPjSyTRGo9r21M94/AeLy6s/4wQ9ywAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle - \\frac{A}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" -A \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 168,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# We will assume VC = 0 at t = 0. No charge on capacitor at start. \n",
"c1eq.args[0]"
]
},
{
"cell_type": "code",
"execution_count": 169,
"id": "e61d4d03",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAAAhCAYAAACxxJxHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAMOUlEQVR4nO2df7QVVRXHPyCEIKX5c+kyjVTSJ+qT54/MX6UrQrNA0lLLBFLD/EWEulBz97VSwRTUlcqyFNG0Miw1VDTTDETFRERBCxApf/8IAUERef2xz+XNm3d/zL133uNe3nzXeuvOnDmzZ898z5yz9z5n9uvS3NxMHJJ2A2YDL5hZY5sKXqcROAc4FNgSeA14ChhnZrNCnYeAw8Ipa4DF4fgN+WRWA0mbAl3MbGmF518ObGlmw6rU43JgTzP7atjfA/g70MfM3qtGdkcgCfcdoEPVXMR5CGV1xUWGZOhaoPxq4EqgQdIn4gclDcU7rA+BbwN9gZPC/ohI1f7A+cC2wM7A74CJkvZOSf91MLP3qujAegEnA79JQZX9gCcjes0FFgHfTUF2R6Ao9+2NFLloxQPUJRcZEqBbvEDSELxzGweMARqAZyLHDwB+DZxjZuMjpy4BHpW0eai3E7AZcL+ZvR7KJgIXArvjoz2SxgMHA/uZ2dqYLk8B081sZNg/JOjVD/gYeBEYbmbPSZqEj95HhbqPAPOApcCpwFpgMnBu/DrAkUAzMCPP80ikX3jhVwDdgUMkXQjMN7MG4G7geOBXcfm1hGLcS+oCjMIHqR2At4BbzGxMON4DGIvf56bhvNFmNj0cL8hdTI28XKTEA9QJF/WMfFZwKL8e+CD3PoeyRqr06FpZYpJ6Ar/EG99S4FUgbjVdATwR68DWwczeDZtNwDJgTpC9bZC9Fng6lH0eOBPvEOMdC8D83PUldQPuAqYDewH7AxPwF6IQvhNu+ovAGcBI3HKM42Dgn2bWyrcuR79wnQPC9v649Xlg2H8S2C8835pEAu4vAX4CXIoPQscC/4kcH4c/2+HhvLnA/ZK2LZO7NlykyAPUARcbANpYwWEQ/Abw50jZUFLw6OKW2Hn4iDY77D8PNEYuugveQI5PcCNNQG9gmaSuQE9gNfBjM5sX6owG5pjZwwVkvIs3RIBP4ZbdPWa2MJS9UEKHeWZ2Udj+l6RTgMOB22P1dsRf2jgS62dma0NHvRyYFesQX8Utg+2AhW2k1AYKci+pN/AjYKSZ3RiOLwBmhuObAKcBJ5vZ1FA2Ah89T8fd081Ixl0+LtLiAeqDi7pECSt4X6AHPpCl6tGts8QkfRY4C7ggIvA5Wo/G/cPvUwnuqX9QshE4CJgG3GBmE8L1ugLHAH+M6DBe0pkRGZ8E3od1Ft4kYJqkqZJGSdqhhA7PxvZfBbbOU68n8EG0oFz9AvbGX7b4i7Mqcp2aQwLuG/AG+FABETvhDXedC2hmH+OdXEOZ3LXiImUeoMa5qHMUs4IHA1PNbE3YT82ji1pi44FPAy9JypV1AZZL6hIaRK9QviLBDfUHbjWzBeHiI4BFkiaGAGsfvIedGznnW8BFkf298LhW7saGSZoADMRN019IGmxm0wro8FFsv5n8kxlv4/ceRdn64R32bNpi8/D7VgE91zeKcl+l7GYoi7s4F2nyALXPxToEz2c4MACPQ26Gx3jnAHcCk8xs5frSL44SVvAgPByRukfXLQgdgAfWmkKFHHYF7sAb0iJ8dCbU/X38apJ6mdlKSX3wxrKu4ZnZYkmzgROBc2lpqCvCuV/CTfzVkRttxGMwROTMwUkcK+k+3Icu1IklxWxgaKysEv32Au7LI78f8IqZvVGlnqkjIffz8TjF4cC/84hZGM49MGwjaSO8od6Wq5SQuzgXafIANcxFDmHguBh38bsDj+GW6Hu4uz0A5+J4PIbYnrr8nNYWej582cweCdttrGBJOwOfo4XrSjy6y/GQ0iXAgpxHB9BNUnfgKuAKM3s6dgNLIootMrNZofFdEwKjM/CRtj9wCiDc523Czb3o6AjwIDAE78SWhDonSFqKT+3fAxwlaQ5wLe4O/ino0gf4AT679Ep4KHsC1yV4EKUwDX+xtjCzd0JZWfoFdAN2lbQdsDKy5ONgquxoQxD0Jlo3mKqQlHszmyLpKuBSSR8CjwJbAE1mdp2ZvS/pOvwZvg28hMfQtgGuLZO7OBdp8gApcFEKKXB1I96RzwNOCJ1/VH5PfKZ456oUTYYJwK0l6iyJbDfS1goeDDxkZjmXP02Pjm7A2cBWeONoBTNbJun1oNiUUHx0OGcUPk29GrfSptLSszYBC82sVZwJ78TOk7S7mT0vaQw+lT8Y7wAfBP4CPB62jw2xFYCV+OzFHfhU7BvAb/Fp/apgZnMlPQkcF+4JM3uzTP3AR6yx+LOZCJwmaWP8mbWabq4RlMP9GOB/uEuwPf78J0dOOS/83oS7PbOBgWb2mqRtSMhdnIu0eACocS4AkDQK78DmA18ws+XxOma2CnfHK47rSfomvh5vX9zCeRnnbmz0WZrZ27iLnxT5rOBBwM2R/TQ9OrrkW7HfGSFpIG6VNMReiGrlng4MMrMBVcoZSsqWWK2i1rlIcJ2hVMBViCctwo2LvfOsoUtDt41wy+o4fIb5r3io4Ah8oJlsZidVIX8x7vpeiRse3fEJte2jLryke4F98I6ojUdnZtMlHYN3cptEDSJJlwFDzKwvFF6x3+lgZvfjVtj2KYv+CF/jlCEhOjEXI4GNcfcp9Q4s4Cq8A7sM2M3MTguLT/vhsbfvSWoocn4pXBDk/xePU34dD/LHY5BH47OMo/CF0bNwa34myTy6XSTtDpklVjfoTJZYvaMKS+xF3Bo6rMiauGr02h/vJO42s8F5jp+Ku9/DzeymlK55FzDDzMalIS8f2nx2lGH9I5jkOxY4/HBkGUQON5vZ0PbUKUN+pMWVfEFxX9yteqJMHQ7BFwQ34TO3w8xsUp6qZ+JLZ1ZK+mme4/3Cb5oe2gzaLi5PFVknVpuYgAfHo2ikJUC6OHbsmXbWJ0NhTCAdrrYKv8sqWPvVGw+WT6b1ZEscuVhgqfVZL5d5/YJoTwsshy7Nzc1IynzK9QAzS7yQtAoXJeO2SpTDE1TGlaSt8Vnb1UCvSic0JK0AzohbYmFmdhXwqJkdWonsWkU3KJ+kDPWDjNv6QFhK8jLumn6Jwp94IalrgQ/hiyHXDrasTMPaRWrupKTPALfg3yauAX5mZnd0tIz2kNUZkNbzyjisCuNx9/RaSYPMrNVH8mEl/0BgGP7pVWKY2SpJzwJ7ShpiZnfG60g6CJiZ5rKWjkCaAbw1eJaDBtz3niDPbtDRMtpDVmdAWs8r47ByXI2v1u8LzJV/LD9e0jhJt+Mr4++l7TfBSXEO/kynSHpQ0hVB/h8kLQRuq7cODFLsxMzsNTN7Jmy/jq/y3bzoSe0goz1kdQak9bwyDiuHmTWb2feBr+FfJDTiqYxOxj/Tmomv5j+rQvkP4Ln1pgB7BDknArvhi16rSs2+vpB4nZgSZGCM1G3Cp5L7xcoT59wvJKMSpCkrJjfp1HZNICmHafBXTE6FuqfOYb3xlwSFAvsbMhJZYkqegRF5MrPJeEroOBLl3C8hoyxUIkvSpALraOLITW2fTUueqppEUg7T4C+BnHJ1L0vWhshfMUjqLakxDFJdgR3Cfql8exsESgb2lTADY6jbA08/e5mZPRaTkzTnfkEZ4Xg5OfmLyqoWZnYvHqNAnuO/JpGUwzT4SyAnMX+lZFWLeuEvAfYBoiv8Ff5upm2KqQ0OSWYnE2VgDDMnk4C/mdkteaomyblfVIZacq1/pcAUczQnfyl9OhNKcpgGf6G8oJxy+CslK0MLwlq0TruUpmgnpvIyMB6IuynPShocyk60kPOHZDn3S8koJyd/KVmdAmVwmAZ/peSUw18SnTJkKGmJJc7AaP6vuYrF2EpmaCwmQy251sdFysbjyRqvCUXRnPyl9InKPh+P9eTQA2iWNDpSdoSZ/SOJvBpDIg7T4K+YnHL5S6hTTs6GzF+GEijVQMrJwFgK/YHHzGyBeRbREcAP5f+VOQkK5VqPfmcWz7WeFNfj09m5v7vzlCVJpVuLSIvDjL8MNYlSlliiDIylLqKEGRpLoKKc/EkQ4nq5/66CpOXAuxZS4tY5quYw4y9DLaNoJ2bJc+qXQpKc+6VQSa71doU8fUouz/m6qW38BVpS8MQOREocZvxlqFkkiRklycBYCokyNBaDmb2J51k/FngAT942Gp/Nehx4Bziygz+b2AdfWjAbD3QrbF/cgTokQbUcZvxlqFlkmV0zZMhQ18hy7GfIkKGukXViGTJkqGv8H4FY3YgzSNNBAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} + \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} + C_{1} e^{- \\frac{t}{C R}}$"
],
"text/plain": [
" -t \n",
" ───\n",
"A⋅C⋅R⋅ω⋅sin(ω⋅t) A⋅cos(ω⋅t) C⋅R\n",
"──────────────── + ──────────── + C₁⋅ℯ \n",
" 2 2 2 2 2 2 \n",
" C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 "
]
},
"execution_count": 169,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eqn1 = dsoln.rhs; eqn1"
]
},
{
"cell_type": "markdown",
"id": "2aa9fc95",
"metadata": {},
"source": [
"At this point I am going to try and ignore the transient part of the solution"
]
},
{
"cell_type": "code",
"execution_count": 170,
"id": "8e6be21a-fffe-43c0-8f72-b8802214579a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMkAAAAhCAYAAABz0Y/qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAI4UlEQVR4nO2cfbBVVRnGf1wxgihNrQbHKFKsrsXXbWDMQMsJzWGynEytnNDRsswkQhxMe3prRgIzMCeJsY+rTFOOOZaOBjUWGWoBCYiBOqAMJloqg4iUitz+eNe57LvvOWevfc4+lyPnPDN37t5rrf2sd6/nrK9373cP6unpIQ0zez+wBnhE0rh+BbzMOOAy4ETgCOBpYDUwX9KqUOYe4GPhkj3AlpB/YznOemBmhwCDJO2o8fprgCMknVenHdcAYySdEs4/CPwFGCXphXq4BwIx2g+ADXVrkdYhpNWkRUeF9B8BPwQ6zewNZQyYjneIl4GzgGOBL4bzixJFJwBXACOAY4BfA4vNbHysgbGQ9EIdHWQYcAHwswJMmQisTNi1Hngc+EIB3AOBqto3GgVq0UcHqF2LwekEMzsD7zzzgTlAJ7A2kX888FPgMkkLEpduBe41s8NCuaOBQ4Glkp4JaYuBK4Hj8NEKM1sATAYmStqbsmU1sELSjHA+Jdj1AeA14FHgfEkPm1k3PvpMC2WXAxuAHcCXgL3AzcDsdD3AaUAPcF+Z9oiyL/ygdgEHA1PM7Epgo6RO4A7gHODHaf5mQjXtzWwQMBMfBEcCzwJLJM0J+UOAefh9HhKumyVpRcivqF3KjLJaFKQD1KBFn5nEzIYCPwg3twPYBqRH/WuBv6c6SC8kbQ+HXcBOYF3gHhG49wIPhrT3ApfgHS79wwXYWKrfzAYDvwNWAGOBScBCvMEr4fP4Mu/DwNeAGfjMl8Zk4B+S+qw989gX6jk+HE/CZ88TwvlKYGJo36ZEhPZXA1cBc/FB7kzgyUT+fLxtzw/XrQeWmtmInNr106JAHaAGLdIzyeV4j1wTzv8JjEsYOzoYcE4EdxcwHNhpZh3AUOAV4JuSNoQys4B1kv5cgWM7fqMAb8FnpjslbQ5pj2TYsEHSt8PxY2Z2IXAy8KtUuXfhP4o0ou2TtDcMBC8Cq1Idbhs+sh0JbO7H0hyoqL2ZDQe+AcyQ9POQvwl4IOS/CfgKcIGku0LaRfh+9GJ8+XYocdqV06IoHaAGLXpnEjN7N/B14FuJ/IfpO5pMCP9XR3BPwJdl44CPAMuAGyUtDPV1AJ8BfpOwYYGZXZLgeDPwEvTOUN3AMjO7y8xmmtnIDBseSp1vA95eptxQ4H/JhLz2BYzHxUwL899EPU2HCO07gSHAPRUojsZ/eL1LJEmv4Z2oM6d2fbQoWAeoQYvkcmsB8FbgCTPbY2Z7gEuBMWE9CjAs/N8VwT0BuF/SJkkP4mvZrwYPA8AofHRZn7jms8DuxPlYfF8BQPB2TALuBT4JPGpmp1AZr6bOeyjvrHgOv/ckctuHDwhr6I/Dwv9nq9i6PxGjfa3ogVzapbUoUgeoQYsOADObirtyu0IFpb+z8E3YqFC+tMk6sRxZ8ExgZqOCMb03JmlLMPzckFRqiF3hmpPwKfCVcD462HB7sg5J6yTNk3QSsBz3qtWLNfhomUQt9o2l/+wFvll9StK/C7C1UERqvxH3XJ5cgWYz3i69a38zOwhfmicHuRjt0loUqQPUoMVgMzsYuA64Noz4vTCzreFwPPC4pFVm9nvg+rDxuQ8fKSYAFwKGb8668A16sncD/BE4A5iNe8P2Ap8zsx246/FOYJqZrQNuCDd6e7BlFPBl3DvxFPAeYAywKPZmq2AZMM/MDpf0fEjLZV/AYOB9ZnYksDvhkp4c6qgZwe3+C+CjkpbXw5XgjNJe0m1mdh0w18xexmeDw4EuSYskvWRmi/A2fA54At/DvAO4Iad2aS2K1AFq0KIDn1bfFirvA0k7gWdIbN6BT+NekJm4m28Vvul7gH17lS5gs6Q+63y8k4w2s+Mk/Qd3M54J/AFYjG/QxgN/A54HTgtrW/Dp9VjgVuAx4Cbgl7jbsS4E//lK4OxEWl77wNf0ZwP/wr1AmNkb8TYr/AFqAcij/Ry8ra/CZ5bbgKMSl1wO3IJ35LV4JzhV0tPk0C6tRVE6QO1aDCr3xL0VYWan4qNqZ6rB6+W9GDhd0tQ6eaZT8EzSrGg2LSo9cW85SFqKP2A6KqtsTryK+/jbiESzadGeSV4naKWZpNnQ7iRNCDPbgj9Ui8VNkqY3xpo2+r271UZTYCH+bCCJccDp+KZ3SypvbYPtaWkM6unpwcza08l+gKToB3W1Lrfa2taPwZBPrDZeX2hrWz8KW26Z2TuBJfi7UXuA70m6daA5GsHVCiiqvQ5EDYt0Ae/B3xLtBKYCC8PboQPN0QiuVkBR7XXAadgw71Z4ZWCapCczCzeQoxFc+wMD7QIuqr0OBA2jl1sWEdOeKNsFHJS+GcsR816JoxYUyZXinYK/ItGFv3R3nqTuIusoIfDWxR2rYRH6VeOp0fbCNYzVL2q5ZfEx7ZiH796Mh8ymERXznsGRC7VwmVm3mX0nouhw/M3oS9kXp9CUiNWwCP0iePLanouraP0yZxKLjGkPZYcAvwW+L+n+FE9szHtFjpCfJya+Kle9kHQ3cHeoq7to/qIQq2ER+kXwROuXxVUvYvWLWW5FxbSH4Jxu4E+SlpQpGhPzXpXD9sU6fzwr1jnCnlZCpoZF6BfSK/Lk0S+LayBRtZNYvpj2E/Bp/CEz+1RIOze8+gxxMe9ZHHli4rO4WgI5NCxCvyyePPrF2DQgyJpJomPa5Z+OqbbHKcW8X4N/1OFqYFMp5j2Lw/bFOs9PpC3Ag8GuD0nJmPgse5LcV+Br7RKGAD1mNiuR9glJf43hazJEaViEftV48uoXaVOJp6H6ZRmQJ6Y9C1kx71moJdY5Fj+hb+jqHWXSYj5+0YwoSsOW1S9rJknGtN+SzjSzYZJ2p9PLlCsb825mpZj32RG2xsY6z+1/aXWEfVXpe2GY2YvAdkmb8nI1IerWsNX1q9pJFB/TnoWYmPcs1BLr3FCYf4/qmHDaAYwMzyK2S9pa8cIBREEatrR+MWv2mJj2LGTGvGcR1Bjr3Gh8CHd9rsE3shaOvzuANsSgXg1bWr920FUbbWSgHePeRhsZaHeSNtrIwP8BUfADoJh+JnwAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} + \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
"A⋅C⋅R⋅ω⋅sin(ω⋅t) A⋅cos(ω⋅t) \n",
"──────────────── + ────────────\n",
" 2 2 2 2 2 2 \n",
" C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1"
]
},
"execution_count": 170,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nonTransient"
]
},
{
"cell_type": "markdown",
"id": "544e0b9c-be81-4713-a933-18b10137b76f",
"metadata": {
"jp-MarkdownHeadingCollapsed": true
},
"source": [
"### Computation of phase and magnitude \n",
"\n",
"We might like to find out the amplitude and phase of the above formula given that it has both a sin and cosine term in it. The result will be a superposition which will have a different amplitude and phase of any of them separately. \n",
"\n",
"If we remember that for $ C_1 \\sin( \\theta ) + C_2 \\cos (\\theta) = C_3 * \\cos ( \\theta + \\alpha ) $. The constants $ C_1, C_2 \\mathrm{and} C_3 $ have nothing to do with the constant of integration $ C_1 $ mentioned above. It is simply because I am running out of meaningful variable names.\n",
"\n",
"Then:\n",
"\n",
"$$ C_3^2 = C_1^2 + C_2^2 $$\n",
"\n",
"and\n",
"\n",
"we can try to reduce this formula:\n",
"\n",
"$$ C_1 \\sin( \\theta ) + C_2 \\cos (\\theta) = C_3 * \\cos ( \\theta + \\alpha ) $$\n",
"$$ \\Rightarrow C_1 \\sin( \\theta ) + C_2 \\cos (\\theta) = C_3 * \\cos ( \\theta ) \\cos (\\alpha ) - C_3 * \\sin ( \\theta ) \\sin (\\alpha ) $$\n",
"$$ \\Rightarrow C_1 = C_3 * \\sin (\\alpha ) \\textrm{ and } C_2 = C_3 * \\cos (\\alpha ) $$\n",
"$$ \\Rightarrow \\tan( \\alpha ) = C_1 / C_2 $$\n",
"$$ \\Rightarrow \\tan^2( \\alpha ) = C_1^2 / C_2^2 $$\n",
"$$ \\Rightarrow \\tan^2( \\alpha ) + 1 = C_1^2 / C_2^2 + C_2^2/C_2^2 =\\frac{C_1^2 + C_2^2}{C_2^2} $$\n",
"$$ \\Rightarrow \\cos^2( \\alpha ) = \\frac{C_2^2}{C_1^2 + C_2^2} $$\n",
"$$ \\Rightarrow \\alpha = \\cos^{-1} \\left( \\sqrt {\\frac{ C_2^2 } { C_1^2 + C_2^2 }} \\right) $$"
]
},
{
"cell_type": "markdown",
"id": "5750b889-b0d4-4def-b879-7de0b4f15a12",
"metadata": {},
"source": [
"### Compute V_out "
]
},
{
"cell_type": "code",
"execution_count": 171,
"id": "9d2e8ec0",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAVoAAAAjCAYAAADVC8LLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAKfklEQVR4nO2de9AWZRXAfyCElOW1EMcwVEw/EZDPwVEHrCgyh+niZGbmeBlNyi5kqOOljscaSZTALIjJimK6DTWWTFxyKDMQAxQRAiRQhxJvhMjN1E++/niefb9l3913d9/dfT/Q85th5nufffbs2XPOPvvcltOjs7OTZlDVo4BXROSlpgQY+z2q2h/oJyKPqeqRwCPACSKyq5UyqpBlGHlR1d7AQBFZHz3Wo5mG1gu8SkR+UIJ++wyqOhM4QkTGNnn+ocA64EwR2ViiXrOBh0VkclkyI/JL0VtVVwJjReTf3SmjClk5r5vLX0XjzssoPfaqjrtW0UrbqOolwBwR2Rou75Ug5CRgBbBORIbFVPkCsKAEZYcB1wJnA0cAzwLLgUkiskxVFwIf8tU7gKf9sR8XvXYCXwN6FDj/RmBuwcbqDmCIiHw0VHwr8DdVvUdEXi6gXxKxeqf5J1K3HTgg3Kjl9V+cjGYpU1ZE7ihgAtAOHAVcJiIzI9Xy+qto3EE1sVd13LWKVtrmXuAa4Jbw+T0T5H4f+B7Qpqpvizk+WkT+1azSXvFLcQ/tq8AFwAnAJf73OF9tOM5I/YHjgd8AM1T11CLXTkJEXhaRbc2cq6pvB64AflJQjRHA0oheq4Angc9n1GWmqt6SsW6s3hn9E9Q9DPgF7gUcJrP/GsjITV5ZeewFHASsxjWOr8RVyOuvInEH1cVe3vvYF2m1bURkO3Csv26Nuh6tqp6Ha4AnATcAbcBjoeODgf8W0VhVzwDuAa4VkSmhQ5uAB1X1MFU9DjgEmC8iz/nzZgA3AyfjetyBvCnASGCEiOyJXGs5sEhExvvfo/y9DQbeAJ4ALheR1dEhnKo+AKwBtuEe2j24B/i66HWAc4FOYHHM/abqB1wH7AR6A6NU9WZgrYi0+ar3ARcCP6wzaDHq9M7in1DdPsAfgO+KyEOh8jz+i5UROp7Hvw1lFUVE5gJz/bVmNqi6l78qjDtIiL2sdvOdqaTYqyTuVLUHruc3DhgAvAjMEpEb/PE+wO3+2gfj2qAJIrLIH0+0Z+RS3WGbtcCH/XEg0qNV1b7Anf6GtgGbgWjv41RcS16EycA/Ig9xDT+/0Q5sB1Z63fp73fYAj4Z0fj/wFVyjEBeEa4N7UNVewB9xDdtQ4HRgKs5RSVyEG/aeCXwZGI/r4UUZCTwiIntNeufQrwM4w5edjusFnhWqtxQY4X1UJnF6Z/FP8LDMBP4iIrMi1bL6r5GMvP5tKKvF1PxVcdxBjA/z2I3GsVdV3N0GfBOYiHvxng+Ep3km4e73cq/nKmC+qvbPac/usM1G3GiuRrRHez2uJQ96G/8EhkXq9MM9QE2hqoO84hemVG3HDdO2q2pPoC/wGvANEVkTqjcBWCkif02QsxVnIIB34XpZc0LzNetS9FgjIt/yf69X1SuB0cCvI/WOwb2YomTST0T2+MZoB7As2mB72b1x84KlLbQR0TuHf8AF3AXA46r6SV92sR9WZfVfIxmQz79pslpJ2F8vUV3cQXzsZbZbSuyVHneqehDwdWC8iPzUF28Alvjj7wC+CFwhIn/yZeNw8/1X46Y1DyGbPbvDNttx7WSNWkOrqu8Dvop7QwSsBk6LKNED1xWvoarfAW5KUDrggyLyAF0t/fKU+sNxw9c7cA3kbcAGEZkaum5P4NO4t19QNgV4UkTu9kXvBHaB64n5YdoCv1CzEPidiGxqoMfjkd+bgffE1OsLPB8uyKsf7i26MqaRha75wLqehareiJsLDegDdKrqhFDZx0Tk7xn0zuof/DAuaZ4/1X9pMprwbyN9wnKL2CsrNX+JyMYK4w4iPmwi7iA59hrFXZ7nPkwbzuYLE845DteA1Yb7IvKGqi4B2nI+x91hmz1EFjfDQTkFOBR4SlU7VLUDN+E/xA/JAl7APThhpgInpfwLJpKDSeKdNGY48JCIbBCRR3FzOV9S1VNCdQbi3mzhHstngN2h30Nx810AiMhluLfVg8DHgSdUNbzCH+X1yO9O4h/mLTj7hcmr3zBCc5cRgnnRF2OO/cifG/y7L6YsqeGM6p3VP2lk8V8auf2bkSL2yspe/qow7qDeh83YbRjxsdco7qaS/bkvi07IZc/usM3BRDpdvQBUdQxuC087bngXcCIw2ysXzMuuomuoBoCIbPE3lIVgsvps4LfRg361rp+/iZoxRORpVV0BXIxbOIIuA+70534A141/zf8ehDPSxIi+K3Fzh7er6jzcanrR7WorgEsjZXn1GwrMS5A/GHhGRJ6PHvBzprV9e6q6A9gqIhua0DvVPyKyO1oeqTOQbP5Loyn/plHQXlmp81dFcQf1PmzGbkmx1yju8jz3Ydbidq+MBuJ2L230up7l/0ZVD8BNaf0qdP0s9uwO2xxDZETSS93HB3cBk33Po4aqBl3x8ALYCq9YU4jbHzsPuNtPIi/GvaWGA1cCChyJ635Heyr3A+fR9aBu8vU+p6rbcNvS5gBj1W1Wn+Zv+F5/PwOBq3A9mGeAY4EhwPRm7yfEApzDDxeRYFdGLv1wL74T1X11tzuy5Wck5TyUDfXO6J9FKTLbyea/NPLar3L8/OLx/mdPYIC6/cZbI0PXmr8qjjuoj71m7JYUe6XHnYjsUNW7gImq+iquV3o40C4i00Vkl6pO9/e0BXgKN6fbD5iW057dYZtTgBnhgp646YF3+wtGDbIdeI7Qgpifp1isqgNiLpCVT+FWoK/BbdtYhluIW4IbsrUDG0Xkf5Hz7gcGqerJXpcXcFvQzgf+7G9uAu7F8DBuG9q5IhKsRu7G7QedDawHfg78EreNpBB+wWUp8NlQWV79bvLn/4fQG1VVD8TZrPQPNeL0Jt0/aWTyXwbd8tqvFZyG62yswM3Nqf/71qBCjL8qizuo92GTdquLvSrjzut3O27nwVrg98DRoePX40ZUP8PF4BDgHBF5lhz2bLVt/Ih8s4jsCJc3+wnugbg9a9Nyn/wmRlXPwY0O2sp8+FX1auATIjKmLJkR+ZXo/Valan8lXLN0H3bHfVRBK22jqhcBC8XvHQ9IXaGNw/dU5qv7htjwiMh83Oblo9Pq5uR13L6/SqhQ77cqlforjop82PL7qIJW2cZPw66KNrLQZI/WMAzDyE5TPVrDMAwjO9bQGoZhVIw1tIZhGBUTfLBgE7WGYRgVYYthRiFU9b3ALNx3+B3At0VkdqtlVCHLMMrCpg6MonTg/hemNmAMMNX/70utllGFLMMoBevRGqWiljfMMOqIzRlmGAFaMG+YL8+cOyxJRpO6d2feMMOoYVMHRiJaTt4wyJg7LEVGXt1zy9LsucNS84YZRhjr0RqxaAl5w/yxTLnDGsnwx/fHvGGGAVhDayRTRt4wyJA7LE2GduV4+ki0kfXsq3nDDAOwhtaIQcvLGwbZcoe9WfOGGQZgDa0RT1l5wwJZDXOHdUfeMC+nFbnDDMMWw4xYysobBsVzh1WVNwxakzvMMKxHa8RSOG+Yr1dG7rBK8oZ5XVqRO8wwrKE16ikpbxiUkztsf84bZhiATR0YyRTNGwYl5A7bX/OGGUYY+wTXMAyjYqxHaxiGUTHW0BqGYVTM/wFDM3V2vjoBQwAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\frac{A \\left(- C R \\omega \\sin{\\left(\\omega t \\right)} + \\left(C^{2} R^{2} \\omega^{2} + 1\\right) \\sin{\\left(\\omega t \\right)} - \\cos{\\left(\\omega t \\right)}\\right)}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" ⎛ ⎛ 2 2 2 ⎞ ⎞\n",
"A⋅⎝-C⋅R⋅ω⋅sin(ω⋅t) + ⎝C ⋅R ⋅ω + 1⎠⋅sin(ω⋅t) - cos(ω⋅t)⎠\n",
"────────────────────────────────────────────────────────\n",
" 2 2 2 \n",
" C ⋅R ⋅ω + 1 "
]
},
"execution_count": 171,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Find the voltage at the output\n",
"vout = simplify(A * sin(w*t) - nonTransient)\n",
"vout"
]
},
{
"cell_type": "code",
"execution_count": 172,
"id": "96b9d83f-50e8-4974-b9bd-be0e4e0e6b17",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcAAAAAjCAYAAAADgtrrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAM1klEQVR4nO2de7Bd0x3HP4moSkPr0Sqj2pTQRknca2IwHmWKmkw9xqO0xmPQlLYUYSj99qczHtE0wZRmqm0wpjpqKFPP8agiSIiggknIRL3JRIQWkfSP37rXyc55rH3OPvfsc+/6zNw59+y99m//zv7+1lp77bX2WsNWrVpFOzCzTYFNJD1pZl8GHge2lvT+QNpoh61EIpFIdD/D2lUBZjGzecBESS930kYztsxsJrCxpIlNnmsD4DlgF0kLm7FRxeYNwCOSphZhbyhSRl2D3SGjbdJgaFE2vUbUMPZNYC7wnKTxNdKMByYDewAbA68Bc4ApkmZn0vYCa1VWNmZ2D7BX+LoCWBSO/UON861ho1masHUKMKyFU54D3NaK4GZ2CbC9pH3DpvOBf5rZVZLebcG3QmgUMzHxkjcmCqCMukLJtI0hpsyoQdJggGhBoyJpWS8orjwcXmP7ZcBvgbFm9pkqJz8GL7w+BA4HtgaODt8nZdJuCFwDnJgx04NfjE2BrYDrgRlmtkOV89WykZtmbEl6V9LSJs83Ejge+GMzx1cwAXiswqengReBH7ZotyhqxkyOeImOiSIoo67Br7JpG0PdMqMWSYMBpSmNiqJAvaCg8nCNFqCZHYxXjFOAs4GxwJMV+3cGrgImS5pWcehi4IFQwfSlXQe4GbhI0sMV27cEvgDcIen1sG0GcC6wLX6XUtdG2DcN2A2YIGllZt8c4EFJp0b4s3v4vd8CPgGeB46T9EzYP5OKxzRmdj/wLLAUr0hX4pXqmVk/gP2BVcBDzfgeAnU5sDawu5mdC8yXNBa4BTgC+B0dpF7MxMZLzpiI1r2etu3QNdY/4Exq6wol0TaGiDIjadBhIjQaBpyG35BuAbwFXCvp7FBuXoxfi8+H486Q9GDF8XXL0EBLerWjPFytBWhm6wK/CT9uKfAqkL37ngo8minM+pG0JNgaBswE7pV0bSZZL7AMmBfSbhrOuxJ4osKfmjbMbBvgp3jBms0YAPMrfa9ly8xGAH/HM8Q4YCdgOi5iPX6AP6bbBfgJcCreusmyG/C4pP7O1py+rwB2Dv/vhLeOdg3fHwMmBN06QkTMRMUL8TERfe2a1LZpXXP6V09XKIG2MTTSP2nQeSLL9QuA84AL8RvOQ4G+LqIp+PU/Lhz3NHBHyKN5NG5VLyi4PMy2AM/Ca9q+u+1/A+MrHB0TTn5EhO1d8Yv2lJkdGLYdFZqqvcAoYJmZDQfWBT4CTpf0bKSNM4B5ku6rcf4l+AWqawt4BW953FrxXPq5iN/3rKRfhv9fMLMTgL2Bv2TSfRUPuEqifZe0MgTae8DsTPC8it8JbQYU1qGck5oxkzNeYmMij+7rk1/bVnSN9q+BrlAObWOoW2aQNCgDjcr1UcDPgVMl/SlsXgDMMrPPAT8Gjpf0j5B+Et5XfzL+hCZW45b0guLLw/4K0My+BvwMr8H7eAbYseJ7T/ic08hwaB7X6mPswR+LXYJfvAuABZKmx9gIBeQh+J1J37ZpwIuSLg+b1gP6X3Go5094DHNnGIRxD/A3SYsb/MSnMt9fBb5UJd26wBut+I7f/cyrkkH/W3GOASciZqLjhYiYyHvtJC1pQtumdG3GP2rrCh3WNoaYMiNp0Fkiy/WxwDq4Nlm2xCuV/seWkj4xs1nhuDwaF6EXFFgeVlYI04ANgJfMbIWZrcBHaG0fHh8CjAyfy2NPUIMe4GFJCyQ9gT93PsnMtos8fjR+x/F0xbbDgA8qvo/D+xIaIulY/A7jAeB7wPNmtm/9o/g4830V1SvYt/Hr2kczvo+nog+sgr7+1rca+NouGsVMnniJiYnc164JbZvVtRn/xlNdV+i8tjHElBlJg84SpVGT9FdAkRoXoRcUWB4OBzCzffDh6b3BeN/f4Xin5+iQvq9Dc49qxsxH+dTFzEYHR/t/sKRF+A86KtLvvou4PNjcE2/2fhS+jwn+3xRpD0nzJF0saU/gfnyUYhHMJdwpBZrxfRxr3hWDdzi/IumNKvvaSmTMRMVLjphoSvc2aZvVtRn/aukKHdQ2hhxlBpA06AQ5NJqPj8jeu4qZhfi16+8bNbO18K6N1RoYERoXoRcUWB6OMLO1gUuBqeHOux8z62vC7oA3SWeb2e3A5aGj8SH8LqAHOAEwvCO0Hr34wIZs6+xu4GB8ZFYjFgcbR5rZUnx4763ARPMX3K/AL1DDCjAUvj/CRxC9Anwd2B64MsKPGO4ELjazjSS906TvI4BvmNlmwAf6dNj4bsH+gBIbM5JujIyX2JjIde3arG1W19z+UVtXKEBb89dP/gx8W9L9rdjK2I0uM4a6Bp0iZ7n+npldClxoZh/irbiNgF5JV5rZlfh1fht4Ce8v3AS/lnnyWRF6QYHl4XC8OfzFcOLVkLQMeJ3VO7UPwkcUnYYPh52Nd7LOIq6vpxdYKOl/me13A2PMbNtGBiS9iQ/lPRS4C5iBd6TuADwCvAPsL6nRSE7wpvbWwA3AC8DVwHX4sN+WCQN2HgO+34LvvwjH/wcfpYWZfRbXol0vidcjT8zExEtUTDRx7dqmbVbXJv1bQ1fouLYx5NE/adAZ8pbrZ+OanIe3CG8ENg/7zgL+it9MPYlXbvtJei3sj9K4IL2gwPJwwKZCG8qY2X743djYyEo5xubJwAGS9inCXiI/7dA12C1E23a1AMtE2TVIrE7Z9Ko1SjNRIJLuwF/O3LxR2hx8jL87k+gQbdIVkrbRJA26i7LplVqAicQgZSi0ABOJVkgV4BDCzBbhL6PGcp2kwTQX4qClCW2vlnRMe7xJ1CLlwXJRdTWIxKBlIZAdaFKParM2JMrJdPx9qkrGAwfggxIWZfY92WZ/EtVJebBEpBZgIjFISY9AE4n6jAAws1QLDiIktTrDQ0NSzAw8SdfuIWnVHXSkBWhmXwGuxef3WwH8WtINA22jHbYS8aQ4aC/tbgEm/bqHpFV1OvUaxAp85vGxwD7AdPNZxwfaRjtsJeJJcdDdJP26h6RVFUrRBximvJko6eWGidtoox22EvGkOCiWge4DTPp1D0krpy2jQM1sPDAZn4h1Y+A1fNqrKZJmZ9L2Amtlf7j5shp7ha8r8FFsUyStMdVNLRtN+l6YrYzd3fEpfnrxyV6PlTSzyHOUjVbjIE8M1LLRgu9dHwfBbtO2Uz6uareU+Tjltap2G2pV+CPQcNc5B59d/HB8jrijw/dJmbQbAtcAJ1Yx1QOcg6/4uxVwPTDDzFZbybiBjby+57ZlZjPN7FcRSUfhqyOcwqfrVg1aCoqDqBhoYKMZ33PZyhED0CVxkPJxTUqnX8prNWmoVaEtQDPbGV/UdLKkaRW7FgMPhB/bl3Yd4GbgIkkPZ+xsib/TdIek18O2Gfjqw9sS1oKqZyPsn4bPED5B0srMvjn4KsmnxthqFUm3AbeFc80s2n6ZKCIOYmOgno2wLzoGGtkqgm6Ig5SPa1M2/cqU18L+rtKq6EegU4FHM0JUOrQkODMMfzRzr6RrqyTtBZYB80L6TfEVBVYCT8TYMLNt8LnhvpMVIjAfn3E8xp9EPoqIg4Yx0MhGnhiI8GcokfJx91CKvBb2d51WhVWA5gsX7gwcEZF8V7yp/pSZHRi2HSVfLgNckFHAMjMbji9x/xFwuqRnI22cAcyTdF8NH5bgKxjH2EpEUmAcxMRAIxt5YqCRrSFBysfdQ8nyGnShVkW2AHvCZ8M1ASU9SP3+xx68WX8JsD5wAbBA0vQYG0HEQ4ApFdum4Ys/Xh42rQe8H+lPpe1z8GflfawDrDKzMyq2fVfSv2LsDUKKioOGMVDPRt4YiPCn0vZgjoGUjz+l7BqWIq9B+7Rqt05FDoIZGT6XF2CrB3hY0gL5asaTgJPMbLvI40fjz7Qr7yYOwxdu7GMca65AHsPv8TkW+/5uqbItZmHgwUpRcZBioDOkfNw9GpYlr0H7tGqrTkW2AJ8Jn3vgqwevhpmNlPRBdnuVdKOBDam4kJIWmdlc4CjgzAhfNgify4PNPfFhsB+F72PwC3fhmofWJzxTX1Lh73vAEkkL8toapLQcBykGOkrKx91DWfIatEmrdutUWAUoabaZ3Q5cbmbrAg8Bq/C7ixMAAx6MMNWLd75m7xTuBg4mTpDFwcaRZrYUuAy4FZho/sLlFcBTwE0RtgrBzEbhw4vBW95bmL+7s0TS4oHyo90UFAeDMgag/HGQ8nF9yqRfifIadKlWRb8HeBA+eug0fLmV2cBZwCzim6m9wEJJ2SVD7gbGmNm2jQxIehM4GzgUuAuYgXfQ7gA8ArwD7C/pk0ifimBHfDjxXLyT2cL/5w+gDwNFq3EwWGMAuiMOUj6uTdn063heg+7VqhRToSUSiUQiMdB0ajLsRCKRSCQ6SqoAE4lEIjEk+T950Fy3ilnj3gAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\frac{A C^{2} R^{2} \\omega^{2} \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} - \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} + \\frac{A \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} - \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" 2 2 2 \n",
"A⋅C ⋅R ⋅ω ⋅sin(ω⋅t) A⋅C⋅R⋅ω⋅sin(ω⋅t) A⋅sin(ω⋅t) A⋅cos(ω⋅t) \n",
"─────────────────── - ──────────────── + ──────────── - ────────────\n",
" 2 2 2 2 2 2 2 2 2 2 2 2 \n",
" C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1"
]
},
"execution_count": 172,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vrsterms = expand(vout)\n",
"vrsterms"
]
},
{
"cell_type": "code",
"execution_count": 173,
"id": "f64e2cea-1fbf-4842-bda5-a1d2e7d5fd6e",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfAAAAAkCAYAAAB2dGhrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAPKElEQVR4nO2de7QdVX3HP7yKiZECYm20aFOI1lDyuNfGhSweylpIaarCAim2VGWBUimFYhKEQr/9YReYYEhoFmBalNQsWyWytGIxmiKWhockNQQoAZtgVpSHD2IMkZZwSfrHb58wdzJnzsyZObnnsT9r3XXumdnzm31+v+/svWdmP/bZtWsXkUhkcDCzw4FlwG8AI8CnJC0fKzt124pEBoV9iyQys9/vdEYikcheYwS4RNIU4GRgkZm9egzt1G0rEulpzGxakXT7tLoDN7O/A26XtLaOjJXBzJYCh0ma1ebxhwCPA++UtLGmPC0HHpC0oA57kXqJMS+Pma0DZkn6UTfYKWOrG8uIYLevNdMrdKM+imjDzOYBt0p6PM/W/i1OdCGwuWrlbWZvA9YCj0uaXuLQi4F9Kpz6CuDOKo43s+uAqZLeEzZdDfyHmd0i6ZcV8tZXVIhx3fR9zIv42symA3OAE4DDgGeANcB8SasT6YaB/dIVpZndBbw7fB0BNoVj/7HJ+TLttENJW2NeRkD3a6YqdWmurK5qYMz10aY2rgaWm9lZkp5vZrvpI3QzOwo4C6jDsX8PXA9MMbNfK3qQpF9K2trOCc1sPHAe8Ll2jk8wE3gwkadHgCeBP61ot99oK8Z1MkAxz/W1mX0YLzhfxK/htwAfCt8vSKQ7FPgC8NGMcwzhhddE4EjgS8ASM5uRcb48O6Uoa6tLygjofs1UpRbNUUJXddAl+iitDUm/Am4Cbs4znHcHfjNwjaRKvdzM7HS8oTAfuByYAjwU9h0ftv8e8DLwBHCupEfD/qWExx9m9l3gMWArfnHvxC/0uZJ2Zpz6VGAXcG8qPwuB44CZ6ePMbA2wStIlQaTbgQOA483sSmB9eEf3deBs4MZ2/dJP5MU47N8HuBS/kN8E/AxYJulyMzsQmIf789fDcbMlrUocn6uTBH0f8wK+Pga4BZgjaWHi0M3APaGCJPj9a8CnJd2XOscRwMHACknPhm1LgCuBo/A7MQrYKeT3Vrby4p9+RFqynMjUS5m894JmqlKj5grpqoxu+rkOkfQNM5trZidJuisrTeYduJmdArxO0opmxotgZuOAz+AF8lbgaWBG2Lc/8K/AKmAa8A5gER6EZvwJ/tjlncBfAJfgrb0sjgP+K9kAMbO3AhfhQssK2PpG/sJ5jgn/vwNvMR4bvj8IzAy/b6DJi3GCa4CrgGvxC/VMoPF4dD4ew3PDcY8AK8xsYrBfRid9HfOCvl4AfC9VkO5G0pbQoFoKfEfSsoxkw8A2YF0478Rw3p3A9xP5aWqnpN+b2upwObGHXtrIe1drpip1aS7821JXZXw/IHXIdcD14frYg2Z34J8EPt/CcBEuw1sjjRb7fwPTw/8H4a2xOxLvF3Jf2AOPSfqb8P8PzOx84CTgXzLSvhkXW5LZwDpJdzexvwV3NJJ2BoE9D6xOXeRP462qNwC1dXzpUfJijJlNAP4K72Hc0NQG4H7zXsZ/Dpwn6d9C+gvwd2QX4i3zMjrp95i38vVkvMA4u4WdY/FC62Eze3/Ydk54tAde0E4AtpnZvsA4YAfwCUmPFbRT2O95toCn6Fw5kaUXyuS9BzRTlbo0B8V0VUY3g1CH3AksAf4Iv2sfxR4VuJkdiXdCOC/HaEvM7LeBv8RbRg0eBd4Ou+8ElgLfCh0b7gK+ImlzjtmHU9+fxseNZjEO+EkiP/sCZ+B3fI1tC4EnJS0Om14D/CphYwYerPRrhP9NnGNgaRXjwBTgQDy+aY7ARbz7EZWkl83s/nBcWZ30bcwL+noofK7JsxVeT+QNIR3CH4lehxeS1wAbJC0qYqcdv+flqYPlxCi9tJt3ulQzValTc4m0TXVV1veDUIeE8vA2PA57VOBZF8zZwP9I2pBnuAALgUOAH5rZiJmN4D0CpzYeB0j6CN5auQd4L/CEmb2nmUHgpdT3XU1+A8DPw/kbTMJba48ktn0AeCHxfRr+jqTBdBLv+xIcGj5/lpPXQaBljCuwW/AldNLPMS/i6/Hhc3vFcw0B90naIOn7eN+Fj5vZ0QWPb8fvTelgOZHWC/SXZqpSt+Za6aq07wekDlkJvMvM3pDekZXxPwQeKGC0KWZ2Mn4XP4z/gMbfWXhHpUmNtJLWSZon6UTgu3jPxTpYS7iLCzQCsT3k8UT88cWO8H1yyONXE8dMY88WG3iHiack/SRj30BQIsbr8Z6oJ2WY2Yj7v/FeCDPbD38kN6pwL6iTvox5CV83OvWd0MTO+KztqTST8MJldyElaRPu23MKZrkdv+fSoXIirRfoE81UpW7NFdRVW7oZgDrknvD53vSOUY/Qg7OHgNsKGM3EzA4AbgAWhFZWcl/j0cYMM9sFfAx/LPAU8DvAVFp0my/Bt4B5ZvZaSc/hPSJ3Ah80s634sIg7gFnmk0bchDs66fz9gd8NLZ8X9MpwhOOC/YGkaIzxR0vPm9kNwLVm9iIuxtcCw5JuNrOb8Tj9HPgh/r789Xg8Ghd+UZ30XcxL+nq1mX0TWBw6x9yL32EMAecDhnf4yWMY91n67nglcDowt0C22/F7JiXjX5a0XtrNe1dppiod0lwRXZXyfYe1AV1SnoQy9EngeOCzyX3pO/Dp+DvJHxT8gVlcDLwO/3HpjGwDng3neQEfK7g8nO+fgC/iQ4oqEzrSPAj8cfj+U3wIxJnAt/GOAbNxIT4APAecKinZg/Gvw/E/xntQY2avAk6jnvHxvUrRGDe4HI/rVfgd+e3Ab4V9lwFfBm7Fh6ZMBU6R9EzYX1gnfRrzsr4+De/Zeynuz9W4j++n2HvKYWCjpP9LbV8JTDafHyKXNv3ejI6VE2m9VMh7t2mmKp3QXEtdteH7QapDHmV0p08gNZWqmf0Z7oThdMurFzEfDncDMKVgYVHE5oXA+ySdXIe9SL3EmEfK0Am9BLtRM31At5QnZrYYH7EzTtLu9/jpO/DGe41nK+eyC5CPY7+RV+726uAlfBxgpAuJMY+UoUN6gaiZvqCLypNngP2Aw5Mb03fgC/GB7YeozennIpFIJBKJ1IeZXYS/0hj1dDw9DryxfF/6PUWkBzCzTfjkA0X5oqR+mas5Ehl4YhnQtzTq5FFL7KYr8MbYvvSg80hvsJFyja+sWagikUjvEsuA/qQxbeuo+TXSFXhjQPqr8LG7kR5CUtZY60gkMiDEMqBvaczYlpzlbY8KfFv4fDWwxzqlYex2pAKSqs5QtleIsa6HOuIdY9Ff9EIZEDU3NuRoo1GBj6qX0xX4pvD5m2Q8WikqPDM7HFiGzzE7AnxK0vIix3bCTt226iLM4/sh4COSlo5lXtKUKWTq8G2MdXP2doEf47l36JfrvxlRR7Xyevwx+qh53tPDyBrzn7+x4slG8NWnpgAnA4vMV54aKzt126qLhv9HxjQX1anDtzHW3UOM596hlzTRDlFH9fFG4MeSdiQ3poeRHQT8ArhCUi2z2QS764BZkn7UMvFesFO3rQp5WIuvyPVmSb8Yq3zUTR2+jbHuHmI8O0Mva6Idoo7ax8wexCvw05PbRz1Cl7Qt/KipBQxOB+bgk9gfhg80XwPMl7Q6kW4Y2C/tJPPl394dvo7gj+/nS8qcXq6ZnXao01bC5vH4tHrD+AT3uY/FzOxg3M8Luv3iLRrrkHYP3/ZbrIPdwvHutljHeGbaLXX91nC+g+kiTbRDVR2F7YW1NKg6Ml/g6Wjgn9P7slYj+wZNVpZJGPwwHqgX8dVp3oK/y3kRXyKuke5Q4AvARzPMDAFXABOBI4EvAUvMbEbG+fLslKKsLTNbamZ/WyDpBHy+2ot5Za3XPI7DZ+S5vkg+xoqisQ5pm/m232IN5eLdNbGO8WxK2eu3Kl2jiXaoSUdQUEtjqaNwTKfqgSJMxUeGrUjvSHdiA58M/ioze5uk9emdZnYMvij7HEkLE7s2A/cE52BmBwJfAz4t6b6UjSPwdVVXSHo2bFsCXAkcRWL91BZ2FuIXwkxJO1P71gCrJF1SxFZVJN0J3BnOs7RA+jvwoHQtRWMd0mb6tq5Yh/2F493JWEO5eHdLrGM8m1P2+q3hfF2hiXaoQ0dhXyEtRR1xCvCQpMfTO/a4A5f0BHA33qrKYgHwvVTgksdvMV/sfSnwHUnLMpIN40PW1gGY2UR8NZudwO5p4vLsmNlb8flk56SDFliPrxLT0lakKS1jDS19WznWYX/heMdYNyXGM1IHdegICmgp6giA9wGfz9qRdQcOcA3wD2Z2ddIp5guWHwOc3eKEx+INgIfN7P1h2zny5dnAAzcB2GZm++Jj3HYAn5D0WEE7s4F1ku5ukoctjF5+rVWeIglKxBryfVtHrKFcvGOsU8R4RuqgRh1BMS0NtI7MbAre0fFzWfszK3BJ/25mTwBnALcldg2Fz9x1hSWtIvv9etLOLcB1wEF4g2GDpEVF7IRgnwHMT2xbiC8wvzhseg2JWWsK5Klh5wr8nUyDA4FdZjY7se0PJP1nK1s9TqFYQ0vfVoo1lI93jHUmMZ5Ov8RzrKhLRw1buVoaCx0FO92ipYvwTn0vZO3M+zEXAXPN7IDEtvHhc3vFTA0B90naIF9Z5QLg42Z2dMHjJ+HvTpItpw/wylSwANOA5B1BUT6LL1bf+Pt6xraW4u0DuiXW0Ll4D1KsYzz7K55jRV06glgP5GI+8cxMYFGzNM0eoSNpg5ndiPem+0zY/Gj4PAH4csYJxzdrKSTSTAIOJeF0SZvMx0SeA8zNOz5wSPjcHmyeiHfZ3xG+T8YdfG0BW6MI72+2JPL7PLBF0obmR/Ul3RJr6FC8ByzWMZ6ROqiso5Au1gOtmQ+cK+mlZgmaVuAAkm41s3lmNl3SQ5JWm9k3gcVmNg64F1+5bAg4HzBgVYtMDeOdFNKtopXA6RQL3OZg44NmthVfJ/UOYJb5OPabgIeBrxawVQtmNgEfBgH+ZONN5uMkt0ja3PTALqWLYg0x3pWJ8cyn1+I5VtSkI4j1QCs7HwO+ImldXroi7wM+ibeUGpyG35FfCjwErAYuA+6n2COFYWCjpPSSdyuByWZ2VCsDkn4KXA6cCXwbWIJ3ZpgBPAA8B5wq6eUC+amLt+PDHtbinTEs/H/1XsxD3Yx5rCHGu0ZiPJvTi/EcK6rqCGI90IrNkm5vlWjUVKqRSCQSiUR6g0I98iKRSCQSiXQXsQKPRCKRSKQH+X/t1kYRgVWQtgAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\left( \\frac{A \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}, \\ - \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}, \\ \\frac{A C^{2} R^{2} \\omega^{2} \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}, \\ - \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}\\right)$"
],
"text/plain": [
"⎛ 2 2 2 ⎞\n",
"⎜ A⋅sin(ω⋅t) -A⋅cos(ω⋅t) A⋅C ⋅R ⋅ω ⋅sin(ω⋅t) -A⋅C⋅R⋅ω⋅sin(ω⋅t) ⎟\n",
"⎜────────────, ────────────, ───────────────────, ──────────────────⎟\n",
"⎜ 2 2 2 2 2 2 2 2 2 2 2 2 ⎟\n",
"⎝C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 ⎠"
]
},
"execution_count": 173,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vrstermslist = vrsterms.args\n",
"vrstermslist"
]
},
{
"cell_type": "code",
"execution_count": 174,
"id": "fdd288fe-941d-42f7-bc45-2dd64c7cfcb8",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAhCAYAAAClWJfKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGCElEQVR4nO3ae4xfVREH8E+xiK31hWgCURS1iAX7WtMGSYvRCEoaFeILlQhGkKhYggUjEMfRRKWARYmPRk2qxKjBRIUIVOILAZVWamktj7SVVKn4oCkFK4+16x/nbL29bHd/e3fbQtJvsvndM3fO987OmfO4M3fCwMCArsjMV2EV7oqImT32eQ4mRMTWjs+8FIdExBld+rd4pkfEibX9avwaR0TEg104DxiLQfgyvohpmfn0XjpExINjcORkfBDf6tK/hTm4rWHXGmzE+7oSTuzaMTNPUQZjMT6JafhjvTe/yo/Bf3E3PhARazNzmRJZC6rur7AOW3EWduA7uCAidrQeexIGcMsQ9izBPMxp98vMlbg5Is6tg/4wDsT8zLwYd0bENFyDU/GVLj7pFJmZOQmXYVGNss2YVe9NxE9wM2ZgLq5QnLo7vBf9eC0+inPxriH05uEPEbHL2pSZr8Q5OH+IAYA7B+2rzzm2Xs/FoTiutm/DnPr/jRpdI/MTykivqu0/YWa9fjaei2sjYkOV3TUC37qI+FS9viczz8Qb8L2W3kuUgWtjEVZHxC93w79FcZyI2JGZh+IhrGgNzGYlYg/DhiewjIBRR2ZmvhQfw0UN8Vp15CNiC5ZheWb+NDPPy8zDR6C9o9XejBcOoTcJj7TsOQBvxw8bsiWZeU5D7Vn4d6M9S3F+e/f9T+M5o0aXab4Ez8OfM7M/M/uxENMzcwLUnXYubsJbcHdmnjgM5+Ot9sBubPtXfXYTRygzYU1D9k5sb7RnKOvyIGYqp5A2Dq6//xzG1t1iVNM8M0/A8ejDY41bR+Fq5R/bCBGxGqtxSWZej/djeRcjG1iF01uyQec+XG18nTJNH6vtqYrzPt/oMwPXD8F/DO6LiL93Ma5nZ2bmgfgSLo+I21v3NtXLWZk5gA8pO+N9eBmm42tdDGxhuTI4z4+IB6psk3ICeE9mblWOa9diQWauxleVZeRHDZ6JOCozD8P2xlFtnjEM+Gim+UK8oBq7CyJiG+5XImA7jlQi9R58G9/FJV2NbDxnjbLjvrsh+4dyNHsHfoalyoY0C7/DAzgpIpqniYsqx1/ViM3MZ+BkfKOrfRPG8ga0L5CZb1JmyLSWg8bK+xG8NSJO6Mox1jegvY6IuEE5VL9onKkfV86qnfGUi8wnM55ykflkxn5njiMmQj3O7McYEBET9q+Z44jRvgG9GFcp7839+GxEXL23OfYE13hgtGtmP86tub8TcEVmPnMfcOwJrjFjTNO8vq4tiIi/7EuOPcHVBU+Y5pk5E+crCY1D8DesxOKIWNHQ68PT2oZn5s/x+trsx7217xNe03bH0QXjydXina+8nvYpCZQzImLZULq7TPPMPF1x3KNKpvtIJdvzKM5u6B2slBbOGoJzNi5UMtivwPexNDNnNZVG4BgVunBl5rLM/HQPqlOUfO1C/893DomdkZmZx+KbSup/SUNnE26qBsvMg/BjfCEibm0Z+HIlt3hDRNxfZUtxMY5Wc4jDcdT7PdVzeuEaKyLiOlxXn7VsON3mNL8cv285skm6pSZ/l+EXEXHVEGp92KbkMdXywGVKiuz2KhuWo1HPeeNI9Zwe7NmrGDy0T1WKTKeOoH+cMv3vyMy3VdlpNTVGceYUbKvlhElKkvbjEbGuR46e6zk9cO1VDEbm7Pq7cjjliLjZ8Mep2cpScalSWPsc1kfEFb1wNOo5ixuyJdgYEVdW0c56Tg/2NLkvVNbyQRyEgcxc1JC9OSJ+0wvfUBg0ZHL9fbgrUcVs3BoR62s2/mx8uH4t0Qu61HN6xdeV5PXg3zVDyIYNppEwGJlr6+/x+EFbKTMnR8T2trylc4RSkNrpiIi4NzNX4TRc0IM9Xeo5PaFWTbc07H0IWyJi/Wi5doeJ9UEratHrylqAv0WpEM7GmUjlo4Lh0KdsNO2ouRGn6M2ZXeo5exSZOUU54lFm8uH1LL4lIjY1dZvrzcnKznue8pnLCuVjg9/qLfz7sCEiHmnJb8TUzDx6JIKO9Zw9jdcoR7pVyoaa9fozbcX9WaNxxP7k8DhivzPHEf8DkEWQ8DUJ65IAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle \\frac{A \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" A⋅sin(ω⋅t) \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 174,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get cosine coefficient\n",
"coscf = reduce(multiplyIt, (filter(lambda x:type(x) not in [cos],vrstermslist[0].args)))\n",
"coscf"
]
},
{
"cell_type": "code",
"execution_count": 175,
"id": "653a6ade-b6ed-4039-a3e0-a2d9be144ce2",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAAhCAYAAAAvdw6LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGqElEQVR4nO3aeYydVRkG8F+hWMG6AWogiFYWccBuY9qQhmI0FiREhYhbJAJBRQkWK0hYzOuriUgBWySCxK3aYDRoVAhLJWhEFqXIWIoUtC2kiKBAg1DQYmn945wpXy+3nTszd2aa0Ce5ud/Znu/9zvKe5TnjNm3aZLSRmW9DH+6LiKmjbsALdlyIPSPixGFyTI6II2r47fgdJkXEvwfLt9NQDRkmvolvoCczXzYWBmTmbjgZ3xsm1Qzc0R+IiOVYjY8PhWz8MI0ZNDLzWKUjzMfZ6MGfG+njMA+nYF88hsURcXZNn4AL8FG8upY9IyJuqemzK/cheB7346SIuKfFlKOwCbe22LcAh2FGRGxsSbsTt0TE6bUjrcMumJ2Z52FFRPTg6mrftwZbP6M6QjJzV1ykVOCT+AemtWT7Gr6E83EwjsNDjfT5+DBOqmWX44bM3Cszx+NXuAVTMBMLlYZpxWH4U0Rs9tmZ+VachjNbG6NiRcPeDTi0Ps/EXphVw3dgRv3eQWG0R8hZSg/rq+G/YGp/YmZOxOdxekR8v0avxO01/RX4DE6OiGtr3Cl4F05V3OBrcE1ErKrl79uKLW9SOkQTZ2BZRPx2K2XWKpUvIjZm5l54GkubDVt5d8HeWPUilm1g1EZIZr4Zn8O5jeh7bDlCejABN22FZj/lQze7mYh4XmmwnohYi0VYkpnXZua8zNx3K1y74r8N+3bCB/GzRtyCzDytUeaVeKYRnqY0YOvK6D+NdwwKo+myFuC1eCAzN2TmBszF5DpvDBeboK6YZuJmvA/3Z+YRbfI/Xu3pxyRldC1vxH0IzzbCU3BvIzxVWS22Yvf6/1jH1leMisvKzDk4HL14rpF0EK5SKmO14qPX4934WxuqVbX8rPosM3dWfPmP+zNFxDIswwWZeT0+gSUtXH04oRHub5x1lfedist5roYPUBrg/EaZKbi+jZ2H4OGI+GebtG1ixBskM3fBJbg4Iu5qSVtTH6dhdUQ8nZmX4PzMXK/08j3QGxGXR8QzmXm5UtGP4wFlznkDLsvMSfi0ssp5GG/BZFzexrQllWePiHgCa7ARH8vMJ5Wl+TU4OjOX4TLcjV80OMbjoMzcG8/WhQplwdDaATrCaLisuXid8oFbICKewqMaE7uyFL5AWWmtwM+xTyP9LPwUP1CWvJNxZEQ8oriXA5VR91f8EFdWvtZ3L1dWQx+p4X/Vdx+HX+MKZZKfhj/gCRxV56x+nFvL/10dOZn5chyD7wxUMe0wbix26tsLMvNIZfT2tFT0cDhPxfsjYs5Qyo/VTn27QETcoGze9hko7yDwP2UvMyS8pEfI9ogtJvXMfFDZMHWKKyNiSGc2O9AerausVRqbpQ7QutPdgWGiKy4rM3f4vS4gIsbtmEO2M4zF8fsbsRivV05MvxoRV402x0hwdQNjsezdoJzm9mAOFtZT3NHmGAmuYWPMXVY9ljg6Ih4aMPMIcowE11DQdZeVmVNxpnKYuCcewZ2YHxFLW/L2YufWj8/MmxSNg9KDH6zlX3QcsTWOIdreNa4W3tnKMUyvcmB5YkQsape3qy4rM09QKn+9ouodqJy0rlck2Wbe3fEjfKoN1XSco6hw++MnuCIzt1AXB+AYrO2D5srMRZn55Q6yTlS0n7le0EraomsjJDMPxXcV+XNBI2kNbq4f3J93An6Jr0fEbS08+ym6xA0R8WiNuwLnKZJu30AcNb0jbbwTruEiIq7DdfVdi7aVt5su62L8saUxmkatrQaNU1S930TE4jZZe/GUomeoMulFytH4XZ1wNLTx9wykjXdgz6iiKw1SxZtDlZsWA2GW4s7uzswP1Ljj63E4pUEm4qkqq+6qiERfiIh7O+ToWBvvgGtU0a0RMr3+3zlQxnpdZ1tz13TF9V2IVym3UFZGxMJOOBra+PxG3AJFALu0Rm3Wxjuwp8l9jjK39WMCNmXmGY2490bE7zvha4duTeq71f91XeCajtsiYmVVGE/BZ+uNwE4wFG28U3xbEdP6f1e3iRuwU24L3Roh/ZfQDlfUvC2QmbtFxLOt8W3yTVIuCGyuzIh4MDP7cDy+2IEtQ9HGO0KdB9c27H0aayNi5WC5toauNEhELK2XCS6tl8NuVW6BTMcnkcrltYHQq0zerb33RhyrswYZijY+oqj3zfavwZ2wb92vrY2INc283dyHHKOshuYpWvdSRf++XefDuBerIqJVArgRB2TmwQMRDFEbH2m8Q1mu9ymLlKzPX2nNOOZHJzuwJV7Smvr2iB0Nsp3h/21bxVFVOtveAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle - \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
"-A⋅cos(ω⋅t) \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 175,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get cosine coefficient\n",
"sincf = reduce(multiplyIt, (filter(lambda x:type(x) not in [sin],vrstermslist[1].args)))\n",
"sincf"
]
},
{
"cell_type": "code",
"execution_count": 176,
"id": "1833b696",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAAjCAYAAABiv6+AAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAFIklEQVR4nO2afYgVVRjGf2uarVlkX6D0JWUfa6G7K4WFGUFSImTSN0kGFVKUUlokwtNj0IdlWlIkGSz5T+EfhoFZUlGpmVqbZuUfKrKRaeViamambn+cuTY77e6d7U577+g+cJl7znnnnefOO+d955znVrW0tNCNykHPchPIErbPBhYAZwIHgackLSwvq86hR7kJZIyDwGRJNcAoYI7tE8vMqVOoOppTlu11wBhJP5SbS1rkMmXZvgRoBDZKGtqOTT1wXJ6CAflNWS8DLwI1to9PDto+FXgTuL+riZWK3AXE9jgC75lAL6AmMd4beAd4VtLKLidYInIVENvVwAvAFEm7gG1AbWy8CmgAPpK0oBwcS0XeasjjwHJJjVH7W2BobPwq4DZgve2xUd94Sd90GcMSkZuA2D4PeBgYEuveAAwrNCQtJ2ezPoncvPbaXgSMBQ7FuquAPUA/Sfn4IUWQixliexQwEqgHDsSGLgYWAgOBLWWgljkqPiC2ewEvAbMkfZUYa4q+1nKUBCQP+XYScAZh7dEKknYD22ld2HON3NSQYwV5mCHHFLoDUmHoDkiFoSeA7e5CUiHIpKhnodRlqfZVqnKYhldWKSsLpS5Lta9SlcOivFrNENv9gI3AlZI2/9erZqHUZan2lUs5tL0QWCVpVlpeyZX6NGBJMhi2hwJTCdsXpwM/AWuBmZLWJGz/pdTZ/hC4NmoeBLZG577eDtHM1L7/Szm0fTUwhbCdMwC4R1JDwmwG8Int+ZJ+S8OrR8ygD3Av8EbixAmEm/8nYWv7QuDuqD0xYdueUldHCHZ/4ALgLWCe7dqEXaZqX2d92W6w/WRK930Ju82TgD/aMoi2/bcAd6XlFZ8ho4EWYEXsxOHAfGCqpNkx2ybg08hxwbZNpc72+cApwFJJ26O+ecB0YDBBG+/QR2x8NjACuFzS4cTYWoJWMjmNr1IhaQmwJLpWQwemi4E7gFfS8IoHZATwZWIbexbwRSIYcVLN0UU6Uurqgd3Ausi2P0H1Owwc2SwspvbZvgh4CLguGYwI3xOphxWmHK4Gpkdq536K8IoH5FyCJAqA7UHAcEJ0i6Ejpa6eML132+4BVBO20B+V9F1KHxDy9TpJH7fDoRm4IqWvrsQ2gvY/gJCyO+QVD0g1sCPWrouOa4tdsYhSV0dIe88DJwNPA5skzUnrIwrkzYQ/NhT6ZgNbJM2Nuk4Cfk/BJ+53GqG2FdAbaLE9JdZ3g6TPivnqAIX6Up2GV3zwV6BfrN0nOu4tgQyEgKyUtCnSMyYCD9i+rBM+BhLqUPwJvxXYF2sPAeIzLg1eI2zdFz6L2+gr+kAWQaHO/pLGOD5DGoEJsfaG6DgSeDt5ou0+kvYl+xM2AyNCR26kpK22G4HxwGNpSPLPg7I38nsNIQUciNqDCDfvmZT+ClyaCamuwHcP0CxpU2f8FMGlwI+SdhS1pHVA3gees32apJ2S1th+D5gbFaQVhLewOuA+wMDyIv7rCcU7+eQuA8aRPiBNkZ87be8iiFXvAmOixdWrwHpgUUp/JcN2X8IrPIRMc060XmuW1BQzHUG4t6lwJGVFhWU1cHts/CbCG9EjwNfAGsJfcT4n3VSuBzZL2p/oXwYMsj04DUlJPwNPALcAHwDzCEW+FlgF7ARGSzrUrpPsMYyQVRoJ9dfR9xkFA9snEO5hmwvgtpDcOrmeoF/XdPGPOyph+0HgRkmj0p7TquJLWkpYwJyVMbdjFX8R1k6p0a2pVxj+BmOdPqSBALysAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{A^{2}}{\\left(C^{2} R^{2} \\omega^{2} + 1\\right)^{2}}$"
],
"text/plain": [
" 2 \n",
" A \n",
"───────────────\n",
" 2\n",
"⎛ 2 2 2 ⎞ \n",
"⎝C ⋅R ⋅ω + 1⎠ "
]
},
"execution_count": 176,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c3_2 = simplify(sincf**2 + coscf**2)\n",
"c3_2"
]
},
{
"cell_type": "code",
"execution_count": 177,
"id": "e441c722",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAI8AAAAfCAYAAADeBZ7QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAIkUlEQVR4nO2bf7BVVRXHP08hQCkFNEQYQPvlEElUA5OCvcwhhrRfE6YVKUbljxiJQCKUL8sYEZvG/IFoP8GixrBJVApsnIjMjCh4DwMhMRBR+aGCIAhPeP2x9r2ce945997z3uHpMPf7z7lnr73X3nefddZee+3vqWtubqaG8jCzHkBXSZvbud9uwFPAOZI25qh3IfCEpB+myLsAvSU9XU7PcXkN6FhFeIAzgRfehO6/B/yhLYZjZj8ws6Wx4huBaWZ2UlIbSfuB8WZ2WjndNeMpAzOrA+4GbpJ0sJ37PgEYB/ysjaqGACuiBZLWAM8AXynTbiZwp5ml2kiHNg7sWMeVQKOkLYWCYFATg6wvsAP4paSpQd4JmA1cCpwErAYmSXosouM84BZgIHAIWA9cIenJSN+jgGbgb/FBmdmtwHBgiKTDMdlK4DHgOmAv0BE4z8yuB9ZJGhCqPhjGOCfpj0vaYWbLgUlhrC1Q8zwpMLPu+MTdERPdBNwAzALeD4wGtkTktwBfBK4ABgNrgCVm1ivo7QAswh/wIGAo8CPciKIYDvxLUklQambvA8YDk+OGE7Au9PsG8NFQNhToBZwbqbcCGBLimzTMBb5mZqcnCWueJx3j8Xjj1UKBmXUFvg1MkPTzUPw08PcgPxG4ChgnaXEouxI4H7gGuB54B3Ay8FAklnkqof9+wPMJ5ZOABkl/Thn3y8BQSYeDwe4B/hk3wqC7I3A6kBhTSWoys3nAdNzTlqDmeRIQlp6rgfkx0QCgE/BoStN34Q+kuNRIOoQb14Bw/zIwD1hqZovNbKKZ9U3Q1QV4PTau44AvAPdHym41s/GRam8HXgu/B+OGlrSl3h/ppxzuBcaY2TvjgjfVeMysv5k1B+t+K+FTQJOklTnqLD5ASWPxpWQ58GlgvZl9MlZ/J9AtVnYG7rXWRMouBvZF7gcBa8PvDwKrUsbTPVx3lBu0pK1Bx+VxWc3zJONi4E8J5euAA8AnUtptBA4SiS3M7Hg89lgbrSipQdJsSfXAMuCymK5VBG8VQcGY9gbd9fiyczDcvwc3mN+HeoOAxpSxDgS2StqWIo/iUeCSeGEt5okh7KZG4DmWEkjaY2a3AbPM7ADuOXoAH5Y0V9JrZjYXmG1mO4H/4TFST+CuoP8M4Jv4bmcrcCZwNh6cRrE06Okh6aVQ9ixwGPiSme0CbgceAi40s4bQRyNHjKcDcFYIePdJ2hXRPzz0UQ2WA9PNrI+k5wqFuRqPmV0OXISvtb2AJtzFzpX0q1jdGYDC7WVmFn3zxkqal0Vf0Nkff2DzgRnAzcAFQFfgSWCGpIcr/I0B+Bue9sZOBV7Bd1x9gG14XFDAlHD9Bb7ErAJGSiokGfcB7wUWAqeE9gvw7X0RktaY2Qr8jZ8Tyrab2dQwhs8ChnvIh4Enwu/RIc4CmBb0TgTuwYN5zKwz8DkgvlSmobBMngvcVyisy/N4wsz2A//BH9QL+Fs5CugNzJR0Q6RuPT4B1wINwAMRVQ9IWp1FX9DZHzeeZfg2+hk8WO2Ob587AheU2algZl/Fja+npO1Z5yBPmNlI4DZgQMQg8tB7DfAZSSMytNkJzJf0nUJZ3svWwHgq3czeBvwR+K6Z3R0CMCQtM7NNuPGsljSjLfpiqMe9jEXa/RpYAkwGUo0H3zE1USGQbA9IWmJmc3APl+e5WhOeisiCrfjcFJFrwJx0BhPS+nNwQ00LNPPWtxlPr0fbLcVjhiEVuu0H7EjZ3rY7JN2e94GspB9LWp+x2YtA/2hBiecJnqBfBoULJBXPR0K+Ygr+UPvSMofQO4PutuhbneLmt3Ak65qGkynd+tbg2IvHakXEl62NxBJTFVDMgJrZmXjKuxvwV+ARYDeedu+Pb0U7Vau4jfp2pZS/QWVvewK+Ha+hFK/jc1NEifFIyrSsxDARD2jHSpoXFZjZpbTMY7S3vmpRh2+HayjFYXxuisgzYH53uP4uQfaxlDaFpeX4nPTlgf1A5ySBmb0l4qCjBUl1ZcRdOHLsAeRrPJvCtR5PXAEQ0u7jUtq8gqftk852WqMvD7wKnJgkqDC5JQhHLqdIurA1gzgaLMJKDMIK6IwfshaRp/HcBYwFFprZ/Xg8NBAYCfwWz7OUQNJeM/sHMNzMFgAbcG/0YGv05YRngVPNrK6NO65ribn5jMiFRQicLamQDLwR+IuZ/VTS7ozqehJLF+S2VZfUCHwceBw/WLwKpx98HmfjpWEMsBg3CgHfBz7UBn1txUY8mdjiFDkLJO2OHQdUjaPFIqySQZiGXngCtohck4SSHse5K0lIfAsDyfqiPPRJ2pTWT5DXp8ki+He4noUfHSSiEhswumyZ2TL8YHQX8A08+LwXuC6F0JXIIqyGQShpQkikprEIyzIIU/5rF+A0jswNUDtVT0IjPvEfSKuQgQ0YxZfxVME5wLeACaQvvS1YhBkYhFCeRVgNgzCOgfimpsSYa6fqMUg6ZGaPAMOAO1OqVcsGjGKtpOnh9wYz+zqe/PxNQt0kFmFVDMLwH8qxCCsyCBPwEWCzpP9GC2ueJxn3AfVpXw5kYANGET+lf570uKqERdgKBiGkswirZRBGMQJnAZSgZjzJWBSuw9IqVMkGjKIpdt9M+vzHWYRZGYSQziKsikFYQFjezgdaUGBqxpMASQdwotWYCvUqsQFbiziLMCuDENJZhFkYhOC8n5WSGuKCWsyTjjuABjM7VVLJW5qBDdhaxFmEWRmEkM4izMIgBP9qQkmCmudJgaQ9+KRNSRBH2YAbcPJYCzZgG/peg++KLgn323H24Gj8gPgePIAejDMIXwJGxZgE00L75/BvzKIMwp9UMw4zGwZsSwvSc2USHosImW+TtKGd+82dRZiFQRiI+4vwb9BeTKpT8zyVcTUwJeR22g2SluCJvD45qs3CIJwMzEozHID/A0HcsyObfsdkAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle - \\operatorname{atan}{\\left(\\frac{\\cos{\\left(\\omega t \\right)}}{\\sin{\\left(\\omega t \\right)}} \\right)}$"
],
"text/plain": [
" ⎛cos(ω⋅t)⎞\n",
"-atan⎜────────⎟\n",
" ⎝sin(ω⋅t)⎠"
]
},
"execution_count": 177,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now compute the phase shift at the output\n",
"alpha = atan(sincf/coscf)\n",
"alpha"
]
},
{
"cell_type": "markdown",
"id": "7cd8ac2e-1864-4af5-ab3f-fb810d6c8a52",
"metadata": {},
"source": [
"This results in a phase shift angle of $ \\alpha - \\frac { \\pi }{2} $"
]
},
{
"cell_type": "markdown",
"id": "68fba51d",
"metadata": {},
"source": [
"### Find magnitude of voltage across $ V_c $ and phase shift ###\n",
"\n",
"The phase shift is in relation to the input voltage and I am not even sure that is quite right. I have to check if this is valid for a sin(w*t) driving force as \n",
"opposed to cos(w*t)\n",
"\n",
"We do this initially by comparing the coefficients of the sin and cos terms but later on we have at doing this\n",
"using complex analysis."
]
},
{
"cell_type": "code",
"execution_count": 178,
"id": "54b227ef",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAANUAAAAhCAYAAABOQ+6MAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAKdElEQVR4nO2de7Be0xnGfwlpJK5NlDKqTUUvUcmR4zLaJkx14jKmylTVrS5FqWo0QgbRp4/O0ISIy5QaWmkVVe0oxq1G3aWVlFwQTCKGCoo0EuJ2JP1jrX3ss8+3v2/v73znHDX7mcmcb6/Lu969nnV991pvBqxdu5Z6sP0D4HZJy+om7J7vy8BjwFOS2srkbSVsnwdsKumoHsoYLWnP+Lw9cB8wQtIbrdG0eRSpa9ttwKnAbsCmwEvAXGC6pDm27wa+EZN3AM/FuCt6SeeNgQGSVjSZv+W8xrC63NoeBuwn6ao8uQMbFHoMsLJsh4q4GLgAGGX7E03k7zFsDwWOAX7TQ1E7A48kD5IWAs8Ch/VQbqtQt65tH0noQO8CBwFfAI6Iz8fHZGOBM4AtgJHAH4HLbe/QGwpLeqMHHapXeI161eVW0nJgHdsH5gldNy/C9k7AbpIOL6up7QMIHXY6cDowCpiXih8ATCIQujXwKnC1pNNtDwamAQcDG8d8kyU9mMo/Psr+CvAB8DRwtKTHM6rsA6wFHsroNxMYB+wsaU0mbi7woKSTYwN9ExgEjLc9FVgkaRRwc9TxV2Xrp5UoUNe7AlcCp0qamcr6PHC/7WG2twE2Ae6Q9HLMdzkwFdiOMAsm8grVXXzO5cn2LMJMs29Mey/wJLACOA5YA/weOC1bDjm8FtUPOI18XqEBt5KutH2T7QWSns7G15ypbK8DXAqoVnw92B4CnE/oCCuAZUB2tDsHOAs4l0DagcALMW46YTQ9OuZbCNxhe4sof13gJkLljAF2AS4kkJbFOOBfkjrXuLa/CJxEaGRZsgAWpfTtAHaNv3chjOJfi8+PADvH9+0XFKzrGcA/Mx2qE3HkbQdWAvOj3C2i3DXAo6nyCtddSZ4SHEqo868CPwZOJrSFLLrxWlK/erxCMW6nApfXisibqY4CnpH0bB2heZhCGK2S0e0JoC2JtL0B8FPgZEm/jcGLgdm21wdOAI6RdGtMfzxhrX9ifJGNCKPqLZKWxPxP5ejyWUJDS2MyMF/SPTl5lhMqGklrYgNbBczJkLiMMNJtCSzpJqVv0KiutyU0noMbyGkHNgBW2h4IDAHeA06R9GQqXeG6oxxPCZ6U9LP4+xnbxwJ7ANdl0tXitbB+DXiFAtxKWmh7pe1DJF2bjus2U8VZagpQeoNq+3PAT4AzU8GP03X0HAUMBu6uIWIbwst0TuuSPgBmx3zJyDoLuNP2rbYn2d46R6UhwDsp/QYC3wH+nAqbafukVJ4NgbdSzzsQiMpW/NupMvocBet6bPw7t4G4sYQlYhvwdeBO4ApJF6bKK1V3JXlKsCDzvAzYrEa6Lrw2ox/5vEJxbi8FpsayO1Fr+ffNWPh9DQTWwkzgk8BS2x22O4CJwOi4j+oJOl8+Wnx2Ae4HvgU8bXvPGnlei/okGEEYPRemwr4LrE49jyGs7RO0kdpTpDAs/n21kPatR5G6Hhr/vtlA1ljgYUmLJT1K2Ov+KFrCEpSuuxI8JXg/87yW2m00y2sz+rVRm1cozu1dwHBg73RgLYUPJWxY69vaM7A9gWCubSconPw7iGBwGBGTLiJYnfaoIWYJYdnRub6NM+eudG3oSJovaZqk3YF7CdasLB4jznARCRFvRtm7E6b49+LztlHnG1N5xtB9BIWw+X5R0is14noVJeo6MdzsliNnqO0RhEbU2RglPUeou7SRqpm6K8pTWWR5bUa/PF6hILdxFXUX8P10eJc9VRzh9iVYkQrD9iDgImBGHOnScc/HnzsAz0paZfsi4Fzb7xJGseFAu6TLbF8GTLP9GrCUsP/anDDVEhvBDwkWmheBzwOjgctqqHZnlDVc0usEi9ca4BDbKwim6FuAfW3Pj2UsoGvDWBf4ku0tgdUpM/C4KL9PUbKu59i+HbgkbrofIoz+Y4FjAQOfJtRJl0GL0FgOIFjKoGTdleSpLLK8ltaPfF6hHLf3ABfbHiTpfeg+U21P6PHzCr9ewETgU/FFukDSSuBlUhtoQqedRrAALgL+AmwV46YA1wNXRT1GA3tJeinGryZ8Z7kBeAb4HXBNlJcteyHBkvO9+PyfWPaBwN8I1pvJhEb4D+B1YJ84AiU4M+b/N8Faie31gP1pYt/ZApSt6/0JlrxJhPqcQ6jj2YS9VjuwRFKXPQqhU21re7sou2zdFeapLLK8NqlfN16hKW7nEZbZOyUBA9InKmwfTfigNjxuNP/vYXsvwsg+KtNZeiLzRMJX9QmtkFehPHqD1yi3FLdxBbAamJR8tsjOVCOBdz4uHQpA0h2Ej3hbNUpbAu8TvodU6Cf0Eq9QkltJbxNM9SOTsOxMdQ0wTlIj02eFChUibD8BLE1Oh2Rnqg350EZfoUKFYniL0HeA7p1qKMHcXaFCheJ4B1g/ecgeU+qoEQaA7VLfrSrUhqSefgSvuOgHNOBtEPF7GHTvQG8B6zUhtEIfouLiI4chpE5fZDvVK3x4RKNp2P4McDXh3FYH8AtJN/S1jN6Q1SrEqw9HAEdJmtUP5VcctQ4bkTqRkt1TLQE2drgE1hN0EE6hjwImABfGE+h9LaM3ZLUKSd139FP5FUetQ5fT7NmZKultI8k/F9UQ8fTDS/H3y/HI0TC6nv7udRm9IauF2J5w9eDW/ii84qg1sL054dZF5zGvbKeaTbhENpo6ncoN/B1k0rYD60h6IRVWyh9CLRnNopWyMnLHE47FtBNGrtxlne1NCHU8Q9J/W6lHqow2Ko6ycgtzVAJj4t8HkoAuyz9Jq4CHCTcv8xQ7ksb+DpK0wwhXoo/LiCnsD6GOjNIoK8v2LNs/Lyh+A8Kp8Ik0/tY3jvDl/oKCskuh4igXZTgqih0JlyuTs6k1zefXAqfUyu0C/g5SaQcDfwV+KenhVHgZfwg1ZaTiy/hLqCurp5B0G3BbLGtWg7S3kGNl7SkqjvJRhqMSmEAYcDpR6z7VdcBmcfmQRRF/B8kVklnA3yVdnUlW1B9CPRll/SXUlfUxQ8VRH8H2cMIlzD+kw7vNVJLesH0JwU/FxJSAov4OIFwyPAhYYPvbMezweGS/qD+EejKgnL+ERrI+Fqg46nMcBtwoaWk6MM/xy/nAXNtOnVgv6u8ABXdieT4FE38I5xHs++cAi5Xyh9BIhj/0RzA9FTaTcDHvkhiU9pdQT5+03DMI+4gEg4G1tienwvaW9AAfTVQcBfQ6Rw430o8l3N/qgpovEW9BnkFYQyco6u+gEYr4Q2iEZnxNFMGv6Xo9/eYaYQ0bbD+i4qjvODoUuFnSomxErjNNSX+yPd52m6R5dPV3cH02ve2hklZnwzNpavpDsJ34QzgtL28GRf0RnNs9az7irNx5l8z2KmC5pMVl5PQjKo76ANHYsx85y+zcThUxCTjf9ukq5u/gwXxRQFirF/GH0AjN+JroVTj4M0wuqg0Eto7GnuWSns/N2EJUHNVHKzhycBJ6FnCCpPdqpam7ho2ZpgCJf+5G/g4aoZA/hEZQc74mehs7EkzNjxE29o6/z+5DHaDiqB5awdEQ4Oz4fjUxoNH/+lGhQoVyaGhtqVChQjlUnapChRbjf6oQsKIt6MyfAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\left( \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}, \\ \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}\\right)$"
],
"text/plain": [
"⎛ A⋅cos(ω⋅t) A⋅C⋅R⋅ω⋅sin(ω⋅t)⎞\n",
"⎜────────────, ────────────────⎟\n",
"⎜ 2 2 2 2 2 2 ⎟\n",
"⎝C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 ⎠"
]
},
"execution_count": 178,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"nonTransient.args"
]
},
{
"cell_type": "code",
"execution_count": 179,
"id": "5b88db11",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAhCAYAAAClWJfKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGeElEQVR4nO3af8yWZRUH8A+KkUa/1Go4s0gxezUE3gZzTG210JyrdFnZcqmzspxppDl/tNOpLQM1MJfk+kWxWs1cpVMhZy1DLTEJMdECdZg/SmWGSmIo/XFdD94+vC/v8zzvC+HGd3v23Ne5zvW9z3Puc/24z3lGbdy4UbfIzHdgKe6JiEldE4wAMvMi7BkRJw2TY2JEHNGQvRO/x/iI+Hc3fDv1aMe38E30ZeYreuToGZm5G07B94dJNRW3NQURsRz34RPdko3udkBmHqs8hNk4F334S+0bhZk4FfvgMSyIiHNr/xjMwvF4bR13VkQsrv2HVd6D8DzuxckRcVebGUdhI25us20ODsXUiHihre92LI6IM2sAPI1dcFhmXoAVEdFX1a+uNn67G990FZmZuSsuVhzwJB7G5IbK1/FlXIgDcRwebPTPxkdxch23HAszc1xmjsavsRgHYxrmKk5tx6H4c0RsWqMy8+04HWe3O7JiRcPWDTikXk/DOExv6N6GqfX3doxuI/Mc5ekure2/YhJk5lh8AWdGxA9q/0rcWvtfhc/ilIi4tspOxXtwmrJsvA7XRMSqOv6eQex4i/IgmzgLyyLid4OMWaM4TkS8kJnj8BSWNB9KxcNK1O6FVTpEx5GZmW/F53F+Q3yXF592H8bgxkEo9q0GbpqaEfG84uy+iFiD+ViUmddm5szM3GcQrl3xbMO2nfBh/KIhm5OZpzfGvBrPNNqTFecPtAP/p3GfjtHNNJ+D1+P+zNyQmRtwBibWtXI42Ah1Z56Gm/AB3JuZRwyg/3i1pYXxSlQvb8g+gnWN9sG4u9GepJxIBsLu9fuxjqyv6GiaZ+YMHI5+PNfoOgBXKj9mBdbjvfj7ADSr6tjp9Vpm7qysXT9tKUXEMizDrMy8Hp/EojaupTix0W459unK+25lij5X2xMU513YGHMwrh/kJx+EhyLin4P0D4ghnZmZu+BSXBIRd7T1ra6XkyPiqsy8FBdm5noluvZAf0TMi4hnMnOe4qTHcb+yxr4Jl2fmeHxG2UkfwtswEfMGMGtR5dkjIp7AaryAj2fmk8rR7RocnZnLcDnuxC/bfvsBmbkX1tUNtYVDbf4Ah0Qn0/wMvKEa+BJExFo8qm5CylFplrKjr8BV2Lsx5Bz8HD9UjkUTcWREPKJMyf2VSP8bfoSfVL72+y5XdtyP1fa/6r2Pw29whbIhTcYf8QSOqmt0C+fX8f/QiNjMfCWOwXeHckw7RvXyBrQ9IDOPVGZMX5uThst7Gj4YETO6HdvrG9D/HRGxUDlU7z2Ubpf4r3Je7Rov28jcHvGyjcztETucOYIYDZm5Y64PExExaseaOYLoKtGRmW/GArxRybx8LSKu3NYcW4NrJNDtmrlByQr1YQbm1mzQtubYGlzDxrCmeX1VOzoiHhxSeStybA2uXrDZNM/MSThbSWzsiUdwO2ZHxJKGXj92bjc8M29UcpSUyHmgjt3s9Wwwjl4wklxtvIcpr6b9SvLkpIiYP5DuS6Z5Zp6oOG69khHfX8narFdKES293fFjfHoAzik4T8le74ef4YrMbGbkh+LoCr1wZeb8zPxKB6pjlbztGV7Mcw6ITZGZmYfge0raf05DZzVuqga36ji/wjci4pY2A/dV8ooLI+LRKrsCFyhljKVDcdT+jmo5nXANFxFxHa6r95q/Jd3mNL8Ef2pzZJN0TU0Cz8dvI2LBAGr9WKvkI9XSwMVKeuyOKtsiR6OW876hajkd2LNN0Tq0T1CStMcPoT9dmf53ZuaHquyEmhKjOHMs1tZSwq5KgvaLEXF3hxwd13I64NqmaEXmlPp9+5aUa0l2S8epKcpScRFeo1QrV0bE3E44GrWc2Q3ZHNwXEZdV0aZaTgf2NLnPU9byFsZgY2ae1ZC9PyL+0AnfQGgZslv9frpXooopuCUiVtas/Kn4XP2XRCfopZbTKb6jJLFbn6sHkG0xmIZCKzJbRf7DlUz4S5CZu0XEunZ5m854pRC1yRER8UBmLsUJ+FIH9vRSy+kItfq5pmHvU1gTESu75RoMo+uNltTi1WW18H6zUjGcgk8hlT8HbAn9ykbTHjU34FidObOXWs5WRf0/wH61uRP2qWfxNRGxuqnbXG+OUXbemUp9ZolSs7lVZ+Hfj1UR8Wyb/AZMyMwDhyLosZaztfEu5Ui3VNlQs15/tV1xR9ZoBLEjOTyC2OHMEcT/AAX+uJYBGmiWAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" A⋅cos(ω⋅t) \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 179,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get sine coefficient\n",
"sincf = reduce(multiplyIt, (filter(lambda x:type(x) not in [sin],nonTransient.args[0].args)))\n",
"sincf"
]
},
{
"cell_type": "code",
"execution_count": 180,
"id": "620dff99",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAF8AAAAhCAYAAAC/ZHdEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGe0lEQVR4nO3afYxeRRUG8F9rEcEqimgCUbQqfhSFtmvaILYSjaCE+EFUQCWKETUqQrDUiMTj0URsK7ZK/CBoskKMGkxQiEg1KiKgUqQWkK8AEhTED5pSalWorX/MbHv37rt977vtun+wT7J578w988yZuefOnDvPzti+fbs2MvOlWIfbI2LeGINiMw9n4dU4AH/BDVgREWurzc/wmtpkK+6t9y/sxbk7yMz9MCMiNk6w/UocEBGn7KYfK3FYRBxTyy/HLzEnIh5u2s4ch+PL+CLmZuYTe3TwHmWi/4MT8CK8u5Y/2DBdgLNxIF6I7+KCzJw/0cGNh4h4eDcmfl+8D9/cA64sxPUNv27GPXhX23BWD0eOVx7KCnwCc/H7xv0j8A2cFRGrGk3vw9WZuX+1ewGehisj4sFadwHOwaHKmyUzV2ExFkbEtpYvN+CaiDijlpdUv16G/+IOvDcibsnMYSVyj6u2V+FWbMT7sQ0XYVm7HxyL7bi2x3x08q8G6WbshSWZeQ5ui4i5uAwn4SvN9jNbZPvgC1hao+gBtKP0PPy2NfE7EBEb6uUQNmF95T6wcm/DjbXuxThNeZDtCYHbRvrPzFn4Ia7B4ViE1cpDGA/vVJa7V+IjOEN5U9tYjN9FxKg1eBD/aj9H1OtFytt+ZC1fj4V1fnegHfkfV57kulr+A+Y1nDmkdnBSD0faGMJsbMrMmdgHj+JjEXFrtVmK9RHxi3E4NtSBwFOVN+nyiLi71t3ex4dbI+JT9frOzDwVr8V3WnbPVQKtjc7+RcS2GmCPYG3rQT6gvBEHYcT3nZGfmc/DR/HJRqNbjI78BfX3hnGcaWKBsjzNw6uwBhdGxOra30y8Fd9v+LAqM09rcDwF/6yD24BhrMnMH2XmmZl5cB8fbmqVH8Czetjtg383Kwb1r2K+8rDaWcy/Gv3sQHPZWYWn44+ZuTUzt+J0HJaZM6rNvvV3c48BtLEA10XEXRFxo7IRf6ju/jBHieSbG23eji2N8uHKug1qJrIIV+ONuCMzj9mFD4+1ytv1TjL+oYy9iYH9UwJtnbHYv/7+vVk5EzLzaCVlHKoEI38nYL/qCOVNUG3HoGYNMnNO7XCH4xFxb3Xs5Fo1MtjNtc1Rymv5aC0fUn24tNlHRKyPiOURcRSuUrKs3cU6JbFoYiL+HW7s20ZJEO6PiL82K2dl5l74Es6rEboDmXlfvZyPeyJibWb+GOfXzeNaJZoW4FSksiEOKRtrMyrgpzgey5TsaBvekZkblfT2chyXmevx1TqQS6svc/ABJXO4H8/HYfhaj8EOijVYnpnPiIiHat1A/lXMwksy8yBsaaS+i2sfozBTWVqeWclHISI24UGNTRdvUbKWM5UUdK2yUf/azr1gCHdHxKh1VJn8QzLz0Ij4m5LKvg0/wQXKBjcfv8FDODYiRrKZLcr3xCW4E9/Ct7G87fegqLn49TixUTeof5T98kT8GedCZj5JmbMxH5Yzen3hPh6Rma9XVoC5rQndXd4P400RcXT73nhfuI87RMSVykfQs/cw9WPKt8IYTEf+FGI68qcQ05M/hZgFmTm99kwBptf8KcSYI+WJIjOfg4uVs5Ot+GxEXPL/5pgMrsnCnlzzt+KMen59NFZn5pOngGMyuCYFk7bs1E/w4yLiT1PJMRlcewqdl50umm3DdghPaA90EE13PI6JYE9ytXiXKEcOQ8qh2ykRMdy1fadlZwDNVpURL1KkuzY6abp9OAbCRLgyczgzP93BdLZy0nu6nWf2ndE38rtqttV2b/wAn4+I61o8XTXdcTnq/UE0311y7S4i4gpcUfsaHrR9l2Wnk2ZbBZdh/DwiLu5h2kXT3SVHQ1N9XQfNt58/U45dTv6Amu2RypJ0U2a+udadXI9r6abp9uMYRPPtxzXl6Bf5nTXbiLjGrveQEU13pSKGfw53jWi6/TgamuqKRt0qReQ5v1Y1Nd9+/jS5z1b2ohHsje2ZubRR94aI+FUXvq7o59wgmm0/9NN0+2EimmpXfN1o+fSyHnVd/mlgIPSL/KZm+732zczcNyK2tOt72PXUdDNzRNNd1sHXrprquR24RqHuWyP/byQzH8GGiLhrUK5BsMvJH0Cz7Ycumm4/TERTnVRk5mwlZaasIgfX76ENEXHfuA0bDfqhi2bbD3013X4EE9RUJxuvUFLkdUoCkfX6M10aT59qTiGmxZQpxPTkTyH+BywiNTWT/tebAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
"A⋅C⋅R⋅ω⋅sin(ω⋅t)\n",
"────────────────\n",
" 2 2 2 \n",
" C ⋅R ⋅ω + 1 "
]
},
"execution_count": 180,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get cosine coefficient\n",
"coscf = reduce(multiplyIt, (filter(lambda x:type(x) not in [cos],nonTransient.args[1].args)))\n",
"coscf"
]
},
{
"cell_type": "code",
"execution_count": 181,
"id": "dca40fff",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPAAAAAuCAYAAAAWYZTNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAALOklEQVR4nO2de7Bd0x3HP9ejGqKefcSoeqU0iDyMVhAa41FVz3pVTcPQKtNSDSaob386beoZYVBTbaMGNVFaaYlqqvWuIEIkpPGoVlBEEGlx5faP3zqxs7PP2Xufs0/OPsn+zNy556y112+t9dvrvdZZv56+vj4qKiq6k9XyPGxmVW2vqCgJknp6svbAZrYJcIik8e1NVkVFRVZWyfHsV4DJ7UpIRUVFfvJU4IGS5rYtJRUVFbnJNAc2s/7A23mFm9mngWuBTwC9wI8kTeqEnKLSUrSsMsVVRjqZ/27QfdYeeE/gT03I7wVOkTQI2Au4xMzW6pCcotJStKwyxVVGOpn/0us+0yKWmV0InCHpg1YiM7MZwH6S/tVpOUWlpWhZZYqrjHQy/2XUfeoQ2sxWAXoKqLzDgVULqLwtyykqLc3IMrOJwIaS9isyLjNbD3gKGCHpmbyyG8Q5CXhQ0kVFyWwhLYW9tyLj7qTus8yBdwQeSonoc8B04ClJQxL81wd+DRxfJ/wQ4DRgN2BD4CXgYeB8SdPS5JjZVGBU+NoLPB/C/jxvWvLQpKyTgZ42xHUmcFurBcjMLgAGS9o7OJ0L/M3Mrpb0ZiuyU+JtqQy1kzLrfqk5sJmNNLN4pd4HmJIS96XAxcAgM/tITOYawO+An0q6PyHRo/HK+i5wOPBZ4Bvh+wkZ5QzDlTgA2BL4DXCVmQ3Nk5Y8NCtL0puSFhQZl5mtCRwH/CKP3Dos1WBLegJ4Fvh6xrRONLMfNhFv02WonZRd90sqq5kdDlwN7A/cFXlmnUYtr5kdjDcE5wNjgUHAY8GvB5gI/EXStQlhdwpxnhY7IPICcHdo+RrKMbMtgHWBKZJeDm5XAWcD2+Ctepa0jAd2BXaUtDjm9zBwr6RTMqRnZNDFtsAHwNPAsZJmBv+JRIbQZvZXYBawAPgmsBhv7U+XtDgt3YF9gT7gvmbzFSrNQmB1YKSZnQ3MDgs4twJHApfXib8lWixDPcCpeGO/CfAqcK2kscF/DeC8kP51gtwxku4N/nXfVzfofkkFlnSjmW1JpAKH01f/rJNwzKwfcCF+QmuBmc0DhgYlAeyM96qPm9mBwe3o0LIAXAT8vd7pLknzM8gZDrwFzAhpGhDStBh4NCKurgwz2wr4DrBnXNGB2SFfDWWF536Pt8ZH4S9kGF4wGnEUMAEYAQwBrgceAW5IyXuNXYFHJC21IpkzX73ATvho6PN4I/pu8HsIONvM+kn6b0peclFAGfoJ8G28Et8NfJyl39X5wGHAsXhvdiowxcwG4pW90fsqve7jw+Vb8Br/vfA97fTVGXgrMj18fxIvgACEVi5xqyoocCe8dWlIIzl4Be4PvBUW3PoB7wHflzQro4wxwAxJd9Xxn48rtqGsMGJYF5gcmQ89VUdmlFmSzgmf55jZ8cAewA0p6a7xGWBegnvmfIXefgC+3z8tViDn4YV7I6CwRZpAK2WoP15WT5H0y+A8F3gg+K+FV+7jJP0xuJ2Ar5echA/Z16XO++oG3S9VgSXNMrM+M9tG0pPAlvUm5ma2KfBdYPuI80xghzoJjjMs/H844/ON5FwNXAB8DG+R50q6JEvgUOm/irfUNbfxwLOSLgtOawPvpMmSND8Mke8IC2tTgZskvZAS9PHY93n44YGs9ANeiTo0ma+heKGL7y3WWv5+8YjN7Ex8/aHGGkCfmY2JuH1J0j0JYTeltTI0KMQ3tY7/FnjhXzK8lfSBmT0ADGrhfUXpmO4huXWZDOxv6aevxgPrAc+ZWa+Z9eIrrIPD3CGNNcP/hRmebcQw4H5JcyU9is+FTjSz7TKG3wxvhaPDosOARZHv2+Pz1FQkHYO3rHfj05GnzWzvxqF4P/a9j3zHXF/D30WUZvI1hLBmEGP98P/VBL+fhXC1v1sT3Oo10q2WoVbog6bfV5RO6j5xG2ky3os9DdyZFMjM9sK3fIbjw9UaWwOTQgaeTQobYWb4vxtwY0Ica0paFHePPbMZnsElipL0vJlNx+ekp6ekAT5U/sIgc3d8uPJe+D4QV+64DLJqaZiBz8nPM7Pb8VX1O7KGb4LpwOiYWzP52h64PUH+tsCLkl6Je4R1itpaBWb2NjBfKefmCypDs/G54h7APxL8nwmydw6fMbNV8anb9ZE8tPK+OqZ7SK7A9wADgYMSEoaZrY4vuFwUeryoX23oMZQU5UuaFpR1WVjIuA9vFYfh+20G3NtIBv7yF7Ns73gncDDZKvALQcbXzGwBvp0xGdjP/OTNFfgQ95Y0QaFB+RbeC70IbA4MBq7MkI5WuAMvfBtIej24NZOv1YCtzWwjYFFku2tXCmyACixDb5vZBGCcmb2L96IbAMMlXSnpHTO7EtfNa8Bz+Jz5k8AVBb2vjup+mWGapN5aACWfvjoZX+m7NCHsW8DLRBYhUjgIX4E8FV91nIYvajxAtrnxcOAZSf+Lud8JDDSzbdIESPoPvnVxKH7e+yp8AWIo8CDwOrBvHV3EWYTvY08C5gDXANfh2xhtI6yKPgQcEXFrJl9nBRn/JvQOZvZR/D0tcyimBYosQ2Nx/f4A75F/C2wc8T8DH+H9Ci9jg4F9JL1EAe+r07pPPAttZocCfZJuypqRis5iZvvgvdqgjI1NVrknAQdI2qsomSsandR94kKJpElV5e0uJE3BN/s3Tns2J+/j+5kVdeik7jNfqVNRUVE+8mxVVFRUlIyqAldUdDGrQXVdbEVFN6I818pWVFSUj2oIXVHRxeSyzNBJqmF+RdmQ1O7z2ql0xRDazDYG9pB0TafTUlFRJrplCL0vzV1rW1GxQtMtFXhAOLtaUVERofRz4HCgu+lrXMwvHZsNTJI0Ju35dsloh6x2YiuxNYxuoht64FEsfcleXs7CfwHSCkXIaIesdrIyW8PoGrqhAg+nyWt3wg+ntyb5h9LLTUY7ZLUbSS9Jeix8fhm/eWL9hoHaIKMdslYkuqEC9yTcE5SVC/HfZbZCETLaIWu5YV1uDWNFptRz4HCv1RN1/IbQwJqDmR0AzJE0x8xG1JHR0KJDFhk58lKYrAZxjMVvItkKv2rmQWCswp3UsWeHsPJYw8gqeyT+w/vh+BU4x0iaWHQ8RVKaHtjMNjOzH8ec9yThXi7LZs3hC8ARZvY83vMdb2bnxESlWXTIIiMrTcuy7NYOdsevaxmBV65e4M+h0EfljWYlsYaRQ3fg1xPPxG8MKfT+63ZRph54O2C0mY2TVLupsn/kM5DdmoP8Zv7a7fyjgW0lnRuRk2rRIU1GcM90+34WWa2iD23q1OI/GngTv9RtcnArjTWM8ExW6wVZrCS0hKTbgNtC3BPbEUfRlKYCS7rVzL6MrzDebGYb4AsVcbJac0gjq0WHulh+iw7Lm7XxUdYbEbdSWMMI4fLoL4uVhJWO0lTgwGTgEOBmEoyqWQ5rDlHqzGMyWXRIkZHLokOKrHYwAb/IrWapoEzWMCCf9YIsVhJWOspWgafi18yuAmwu6bqYf1HWHGqySmHRIUF209YOIjIuBnYBdolctFYKaxghfW3RXxG66yZK1aLJjTfNxBdhehMeKcqaA5TMokOMVqwd1CrCkcAoSdG7lctiDQPap7+WdNdtlK0HBh9Gj8MXROK0bM0hPFdKiw6RtDRl7SA8OwGfK35RUtywWlmsYUCb9NeK7rqRMlbgP+AvbRl7qyrGmgOUzKJDUZjZ5XglOhB4w8w+FbwWSlpYkP6K0B2UU3/98S0x8NHpJmG/fL7yGTxbbpRqCA0gaR5+5jVpCA2tW3OA8ll0KIoT8XnjVPxgRu0vOv/ruDUMKK3+dsC3wKbjC3MWPhe63VckXfGD/oqKimT+Dxbi2yvFd4f5AAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{\\sqrt{A^{2} C^{2} R^{2} \\omega^{2} \\sin^{2}{\\left(\\omega t \\right)} + A^{2} \\cos^{2}{\\left(\\omega t \\right)}}}{\\sqrt{C^{4} R^{4} \\omega^{4} + 2 C^{2} R^{2} \\omega^{2} + 1}}$"
],
"text/plain": [
" ______________________________________\n",
" ╱ 2 2 2 2 2 2 2 \n",
"╲╱ A ⋅C ⋅R ⋅ω ⋅sin (ω⋅t) + A ⋅cos (ω⋅t) \n",
"─────────────────────────────────────────\n",
" ___________________________ \n",
" ╱ 4 4 4 2 2 2 \n",
" ╲╱ C ⋅R ⋅ω + 2⋅C ⋅R ⋅ω + 1 "
]
},
"execution_count": 181,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"c3 = sqrt(cancel(sincf**2 + coscf**2))\n",
"c3"
]
},
{
"cell_type": "code",
"execution_count": 182,
"id": "ebe53008",
"metadata": {},
"outputs": [],
"source": [
"from sympy import Mul, sympify, re, im\n",
"import math "
]
},
{
"cell_type": "code",
"execution_count": 183,
"id": "8475e93c",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATQAAAAhCAYAAABX7VcDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAALs0lEQVR4nO2deZAdVRWHvywQw75qgZgYNmEYsw2FFTCAULIJsoiAIGVAEARZDAEqCP48oCBgDIiyFCABBLSQUoMs0UIWwyIJTDYTwCSkIgkoISZhUSAk/nHuy/R03nvd/V6/yZtJf1VT81737dO336/vueeeXm6v1atX0xMwswnANpIOr3H7LYGXgL0lzcuxXvcDz0kal5fNnk6hRfNjZjsCrZImRpbdB1wmaa6ZjQLOAfoAvYFxku40s9HABcASoD/wHUl/yqtefStUdnegHXhJ0tAKZYYCFwL7AdsArwNTgWskTQllHgMOCJusBBaE9bfmdQARzgN61bH9JcDD9TYgM7sWGCzp4LDocuBJM7tN0vJ6bHcFabTvAurWoowO0M20aHIOBTYFJgKYWW9gp+DMzgBOAg6WtMTMtgaOCNu1AmMk3WdmxwFXALk5tN4Vlv8M+CnQYmYbxlcG7zsVeB84HtgV+Eb4fmak6HD85NwO2Bn4NXCLmQ3Lqf5rkLRc0rJatjWzjYDTgNtzqMpewPORes0E5gNfz8F2V1BV+0aToxaddIBuqUVTYmb74Y7om2bWbmYbA23AiyG6/iFwgqQlAJLekjQhbN4K/CN8ng98kGfd1orQzOwY3NFdA4wFWoBpkfUjgNuACyWNj2y6EHjKzLYK5XYCtgAelfRGWHYLcCmwBx4FYGbjgZHAXpJWxeoyFZgs6fzwfd9Qr1bgI+Bl4FRJs+JDTjN7ApgNLAO+BawC7gIuiu8HOAxYDTxd5vdIVb/Q+N8BNgD2NbNLgTmSWvBe7GvAL+L2m4lq2ptZL2A03mENAN4E7pY0NqzvB1yNH+fmYbsxkiaH9RW1i1WjrBY56QDdRIt6aWSkLelJM5sBjJK0IOzvIDzSOhp4XNLiMnXqBewOvGJmfYBTcceYG50cmpn1B34CfEXSMjNbDAwj4tCAccDfYs5sDZKWho9twApgerC9XbC9CngxLPsMPs7+YhknAzAn7B8z6wv8Ae+5T8JP2OF446jEScD1wN7AUOBe4AXgvli5kcALkjolFLPUDx9Sj8Aj18/hDv79sO554FIz6y/pv1Xqu85Iof2VwLdxp/YUsC0dxw7urI7DT9L5odyjZrYL7vzSareWFjnqAN1Ai5woRdpjzGxDSZkiITObRvmU1EHBWQ0oObPAgcDPAdHZX0QZBPTDz5+BwMQ882ewdoUvxnu69vD977gjACCcnCPwHi6JNmATYEUYX/fHw8sLJM0OZcYA0yU9XsHGUvykBNgMj/gejORWXkqow2xJ3w+fXzGz0/EfPu7QBgJr9ShZ6idpVXDabwNTYs5xMd6ItwdyS3LnTEXtzWwT4LvA+ZJ+GdbPBZ4N6zfGnd1pkh4Ky87E86dn4w1rC9JpV06LvHSA7qFFXSSNskKZTwJXAV/CE/ePAWdJ+hdAtajOzHYgopGZbQr0lrTczN6lciqrFZgk6Qgz+xQw28wukbSoluMsx5odm9mngXOB70XWz6JzLzw8/J+awvZwfGg6FPg8MAm4VdJ1YX+9gWOB30bqMN7MzonY2BR4F9ZEfhOASWb2kJmNNrMBCXWYEfu+GPh4mXL9gf9FF2StX2AY3vDijagUCfRPqO86IYX2LXjP+lgFEzvhTmLNMFHSR7jDa8moXSctctYBmlyLeolE2mNCTrkUaUfLDMJHSYvwtrk/fmHv5pS7GYhfBCxxAFDqbB4BTgwXAjCzzcyslLNsJThWSf8E/ggckvrgUhD1pOOBLYFXzWylma3ErxwODmNfgI3C/3dS2B4OPCNprqQX8dzLWWb22bB+EN5rz4xscxzwXuT7EDwPBoCkU/Ce+Cngy8DLZha9ihXnw9j31ZTvPZbgxx4lc/1w593O2mwV/r9Zpa7rkjTa18pqyKRdXIs8dYDm16Jeqo6yAjcDt0saK2mOpGl4LuvAlPuYBexoZjPNrAU4mHClUtIzeET+uJnNBCbjnR1EHFrgQeCg9IeWTF9Yk9DbDx8mRsfauwH34yfV/HAghLK/iRszs40kvRd6gK2InISSFphZO3AycBEdJ+07Ydv98WHAB+H7LrgQV0X3IWk6npe72swewa+uTqrh2KO0A6Niy2qp3xC8h4rTCiwqhfPNRErt5+B5qAPpuEIVZV7Ydp/wmZD0HYHnLYHU2sW1yFMHaGIt6iUSaQ+JLJ4F7BkpMxB3IiPN7NxIuT507iQqEm55aYvY3AvPcZbW34aPzuLbnRj7fi+R8yMP+prZBnjifFyIpNZgZgvDx2HAfElTwol4Qwhtn8Z74OHA6YDhHrkNT/5He02APwPH4A5tYShzopktw5OYDwKHm9l04EZ8yPi7UJdBwBn4VapFwI7AYOCmHH6HSXgj21rSW2FZpvoF+gK7mdn2wHuR20hGUqfTNb9V5g7gC5KeqMdWxGYq7SU9YGbXA1eZ2ft4lLU10CbpJknvmtlN+G+4BHgVz7l9Argxo3ZxLfLUAXLQoomJRtqlZb2At82sVxiCD8Ev1rWV2b6mWygk7ZlcqmvojQ8ttsVPlE5IWgG8QeeQ9Wh8jD4aDx+n4GHus3Tk1tqAeZI65aVwh7aLme0h6d94wvKreLh6C578HQY8B7wFHBZyMeC9x6541PAKcCdwD36rQF2E+5OeB06ILMtaP/Ac1AnAa4SIwcw+hv9mjbiZuF6yaD8W/60vwyO2B4AdIptcjEftd+DnxWDgEEmvk0G7uBZ56QBNr0VdxCLtoZG/4/HbaAaFoh8CGwNvhHRQ9G9h3G53o1dPefSpXszsEDxaaYk1jnrtng0cKamuXEEjIrRmpdm1aDZCpD0D+JWkH8XWbQYsB44NkfaWeKcyGX9yYgUeMR8FnFPhtphuQ6XLq+sdkh7Fb7bcIalsRj4kkl8oSKbQIjOpI21J/8EfW9ocvzI5DR9xvdbdnRkUEVq3YX2K0AoKaqVwaE2ImS3A7/VJy52SRjWmNgXVqEGreyQVz5I2iLJv2yhY51yH33sVZShwJJ5QXxBbN63B9SmozDxiN2UnUO6JlIKcKCK0bkIx5CwoSKZ0Y23h1dYBkuq9Cz+RQtv6KXTqPuQWoYWHTe/Gn5VcCVwh6f6uttEIW81AoyO0vH6vQsPGU7S1yuR528ZK/G0MLfijFdeFtzB0tY1G2FofyOv3KjRsPEVbq0DDcmjhsZTDw1P168xGI2ytC7o6h5bX71Vo2HiKttZB6quclmIOgUjZNqBP/IAswxwDlWzUQp62Ynb3xR/DacMfmD5FHa8azpVgty7baTXMQ79qdmqse+4adqV+WSjaWlm7qbRKNeS09HMIYP4K7rvw117HSTXHQIKNTNRiy8wmmNkPUhTdBH+bwXl0vGerKUmrYR76pbCTte6ZbHVn/Yq2VpFUWiVGaJZyDoFQth/we+DH4b1IUTtp5xioaCOszzIHQVVb9SLpYeDhsK8JedvPi7Qa5qFfCjup9UuyVS/Npl/R1iqTVqs0Q85UcwiYvwhwAvAXSXeXKZpmjoGqNizbHARJ9VmfSNQwD/3C8op2suiXZKuHUrS1Oqnq0CzbHAL74CHyDDM7Kiw7ObwOBtLNMZBkI8scBEm21gsyaJiHfkl2suiXpk49hqKt5UNShJZ6DgH5dGXVcnKlOQauxSc8uRKYqzDHQJIN63i3/DWRZePxF0/eEBZF5yBIqk/U9iV4vqFEP2C1mY2JLDtU0l/T2GsyUmmYh37V7GTVL2WdSnZ6gn5FW+ugZq2SKpFlDoEkkuYYSKKWd8un5WY6vxRvYpllaSaGaUby0rDQr7EUbS0HrZIitFRzCCTtxNLNMZBETXMQpCHkJkrziWJmbwNLJc3NaqsJqVvDQr8uoWhrOVDVoSn9HAJJpJljIIla3i3fUMznq9w5fO0NDAj3EC1Vk7zOOCcNC/0aTNHWqpNWqzTj3jRzCCSROMdAkgHV9m75RrMnfgm8HU+8Wvh8eRfWIQ31aljo1zUUba0yqbQqXh9UUFDQYyjmFCgoKOgx/B8Cl5yqwEmhgQAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} + \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1} - \\frac{A e^{- \\frac{t}{C R}}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" -t \n",
" ─── \n",
" C⋅R \n",
"A⋅C⋅R⋅ω⋅sin(ω⋅t) A⋅cos(ω⋅t) A⋅ℯ \n",
"──────────────── + ──────────── - ────────────\n",
" 2 2 2 2 2 2 2 2 2 \n",
" C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1 C ⋅R ⋅ω + 1"
]
},
"execution_count": 183,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"simpeq2 = dsoln.args[1].subs(c1, c1eq.args[0])\n",
"simpeq2"
]
},
{
"cell_type": "code",
"execution_count": 184,
"id": "ee48e2dd",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"cos"
]
},
"execution_count": 184,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"type(simpeq2.args[0].args[-1])"
]
},
{
"cell_type": "code",
"execution_count": 185,
"id": "03cfa076",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAfCAYAAACbKPEXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAEIUlEQVR4nO2ZX2gcVRTGf6mppbWKLSpUUAwa/6RIk2xRimhFsKD0oRb/oFDUB6UI2qKpYhE+PwWVak21IAZ9CPZF6UNFoYpFBY1VSWhMrdWHWEoELYKhpLVqSRsf7l2ZjJvdSbLJTmE/WGbumTPffHv23HvPnmkYGxujjuqgsdYCKsH2NUA/8JOk1hrLKYs5tRaQAa8DrwItts+utZhyyHUwba8laNwCzAVaaquoPHIbTNvzgVeADklHgV+BtpqKqoDcBhN4CuiR1B/HPwCttZNTGbncgGxfBjwGLEuYDwDLayIoIxryWBrZ3gWsAU4lzA3AMWCRpPyJJoeZaXsVsBIoACcTl64GdgJNwKEaSKuIXAXT9lzgNWCrpH2pa0PxtI2cBjNvG9AG4EJCbTkOkkaAI+R4E8rlmnmmIm+ZeUajHswqohHAdn2uTxOSGuprZhUxqdLI9iXADuAiYBR4XtLO2eaYCa5qYLJr5iiwUVILsArYZvucGnDMBNe0Ma1pbnsAWC3pl1pyzATXVPC/aW67FdhE+Et3AfAb0AdskdSb8CsAZ6WF2/4UuCUOR4HD8d63SjyrJMdUUE2uFO9NQAfh7+3FwIOSukv5jpvmth8gBO4f4B7gSuD+OF6f8FsMvAM8XIKzHdgMLAGuAN4FumyP60VW4JgUpsJlu9v2sxlcFxI6VhuAv8o5/peZtlcAbwObJHUmfIaAL6JgbM8D3gdekrQ3JfBy4HzgY0lHoq0LeAZYSniXU5YjXu8EbgSuk3Q6da2P0OfcmIVrupC0G9gdn9Vdzjc5zbcC36YCmSQdtt0AdAOfSdpRwq0AjAAD8eFLCN3y08C+aCvLYfsq4FHg1nQgI34kdtwz6JlVFIv2ZmAFcG8F/xsI03+/7TXRtk7S9/G8QJgWI7bnAPMJbbQnJB3MyNEBDEj6fAINw8D1GblmFcXMbI/HvnLOknooX061E5aKl4HzgBeAQUnbsnDEH+BOwgu0oq0TOCRpezSdC/yZUU+SezNhLS9iHjBmuyNhu03Sl1n4SqEoZEE8Hp8qUUQ7sFfSYOxHrgcesX1txvubCGtuMrPuBk4kxsuAg0webxLad8XPByVsZZOpEoqZeSAeVwLvpZ1sL5B0Im1P+TQBi0kEQtJh2/3AOuDJDHoWxePxyHkzoRw5GcfNhC/9YgaucZA0TFgiinqPAcOSBifLNREa44N6bX8EbI+vWL8CxgiZ9hBgoKcCV4Gw0aSzZg+wlmzBHIoc99k+SmgSfwisjgX5G8B+YFcGrqrA9kJCiQdhJl8aa/FhSUNJ3+R6cwdh530c+A7oJbxu/Zps6V8Afpb0d8q+B2i2vbQSgaTfgaeBu4BPgC7ChtQGfAP8Adwu6dSEJNXHckJJ10/YUB3Pn0s71rtGVUS9OVxF/Avl/KCGAMMcWgAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\frac{A}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" A \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 185,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"simpeq2.coeff(simpeq2.args[0].args[-1])"
]
},
{
"cell_type": "code",
"execution_count": 186,
"id": "2e9fd9f3",
"metadata": {},
"outputs": [],
"source": [
"u = symbols('u')"
]
},
{
"cell_type": "code",
"execution_count": 187,
"id": "66f6c8ec",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAhCAYAAAClWJfKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGeElEQVR4nO3af8yWZRUH8A+KkUa/1Go4s0gxezUE3gZzTG210JyrdFnZcqmzspxppDl/tNOpLQM1MJfk+kWxWs1cpVMhZy1DLTEJMdECdZg/SmWGSmIo/XFdD94+vC/v8zzvC+HGd3v23Ne5zvW9z3Puc/24z3lGbdy4UbfIzHdgKe6JiEldE4wAMvMi7BkRJw2TY2JEHNGQvRO/x/iI+Hc3fDv1aMe38E30ZeYreuToGZm5G07B94dJNRW3NQURsRz34RPdko3udkBmHqs8hNk4F334S+0bhZk4FfvgMSyIiHNr/xjMwvF4bR13VkQsrv2HVd6D8DzuxckRcVebGUdhI25us20ODsXUiHihre92LI6IM2sAPI1dcFhmXoAVEdFX1a+uNn67G990FZmZuSsuVhzwJB7G5IbK1/FlXIgDcRwebPTPxkdxch23HAszc1xmjsavsRgHYxrmKk5tx6H4c0RsWqMy8+04HWe3O7JiRcPWDTikXk/DOExv6N6GqfX3doxuI/Mc5ekure2/YhJk5lh8AWdGxA9q/0rcWvtfhc/ilIi4tspOxXtwmrJsvA7XRMSqOv6eQex4i/IgmzgLyyLid4OMWaM4TkS8kJnj8BSWNB9KxcNK1O6FVTpEx5GZmW/F53F+Q3yXF592H8bgxkEo9q0GbpqaEfG84uy+iFiD+ViUmddm5szM3GcQrl3xbMO2nfBh/KIhm5OZpzfGvBrPNNqTFecPtAP/p3GfjtHNNJ+D1+P+zNyQmRtwBibWtXI42Ah1Z56Gm/AB3JuZRwyg/3i1pYXxSlQvb8g+gnWN9sG4u9GepJxIBsLu9fuxjqyv6GiaZ+YMHI5+PNfoOgBXKj9mBdbjvfj7ADSr6tjp9Vpm7qysXT9tKUXEMizDrMy8Hp/EojaupTix0W459unK+25lij5X2xMU513YGHMwrh/kJx+EhyLin4P0D4ghnZmZu+BSXBIRd7T1ra6XkyPiqsy8FBdm5noluvZAf0TMi4hnMnOe4qTHcb+yxr4Jl2fmeHxG2UkfwtswEfMGMGtR5dkjIp7AaryAj2fmk8rR7RocnZnLcDnuxC/bfvsBmbkX1tUNtYVDbf4Ah0Qn0/wMvKEa+BJExFo8qm5CylFplrKjr8BV2Lsx5Bz8HD9UjkUTcWREPKJMyf2VSP8bfoSfVL72+y5XdtyP1fa/6r2Pw29whbIhTcYf8QSOqmt0C+fX8f/QiNjMfCWOwXeHckw7RvXyBrQ9IDOPVGZMX5uThst7Gj4YETO6HdvrG9D/HRGxUDlU7z2Ubpf4r3Je7Rov28jcHvGyjcztETucOYIYDZm5Y64PExExaseaOYLoKtGRmW/GArxRybx8LSKu3NYcW4NrJNDtmrlByQr1YQbm1mzQtubYGlzDxrCmeX1VOzoiHhxSeStybA2uXrDZNM/MSThbSWzsiUdwO2ZHxJKGXj92bjc8M29UcpSUyHmgjt3s9Wwwjl4wklxtvIcpr6b9SvLkpIiYP5DuS6Z5Zp6oOG69khHfX8narFdKES293fFjfHoAzik4T8le74ef4YrMbGbkh+LoCr1wZeb8zPxKB6pjlbztGV7Mcw6ITZGZmYfge0raf05DZzVuqga36ji/wjci4pY2A/dV8ooLI+LRKrsCFyhljKVDcdT+jmo5nXANFxFxHa6r95q/Jd3mNL8Ef2pzZJN0TU0Cz8dvI2LBAGr9WKvkI9XSwMVKeuyOKtsiR6OW876hajkd2LNN0Tq0T1CStMcPoT9dmf53ZuaHquyEmhKjOHMs1tZSwq5KgvaLEXF3hxwd13I64NqmaEXmlPp9+5aUa0l2S8epKcpScRFeo1QrV0bE3E44GrWc2Q3ZHNwXEZdV0aZaTgf2NLnPU9byFsZgY2ae1ZC9PyL+0AnfQGgZslv9frpXooopuCUiVtas/Kn4XP2XRCfopZbTKb6jJLFbn6sHkG0xmIZCKzJbRf7DlUz4S5CZu0XEunZ5m854pRC1yRER8UBmLsUJ+FIH9vRSy+kItfq5pmHvU1gTESu75RoMo+uNltTi1WW18H6zUjGcgk8hlT8HbAn9ykbTHjU34FidObOXWs5WRf0/wH61uRP2qWfxNRGxuqnbXG+OUXbemUp9ZolSs7lVZ+Hfj1UR8Wyb/AZMyMwDhyLosZaztfEu5Ui3VNlQs15/tV1xR9ZoBLEjOTyC2OHMEcT/AAX+uJYBGmiWAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" A⋅cos(ω⋅t) \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 187,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"simpeq2.args[0]"
]
},
{
"cell_type": "code",
"execution_count": 188,
"id": "2baf1a6a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAhCAYAAAClWJfKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGeElEQVR4nO3af8yWZRUH8A+KkUa/1Go4s0gxezUE3gZzTG210JyrdFnZcqmzspxppDl/tNOpLQM1MJfk+kWxWs1cpVMhZy1DLTEJMdECdZg/SmWGSmIo/XFdD94+vC/v8zzvC+HGd3v23Ne5zvW9z3Puc/24z3lGbdy4UbfIzHdgKe6JiEldE4wAMvMi7BkRJw2TY2JEHNGQvRO/x/iI+Hc3fDv1aMe38E30ZeYreuToGZm5G07B94dJNRW3NQURsRz34RPdko3udkBmHqs8hNk4F334S+0bhZk4FfvgMSyIiHNr/xjMwvF4bR13VkQsrv2HVd6D8DzuxckRcVebGUdhI25us20ODsXUiHihre92LI6IM2sAPI1dcFhmXoAVEdFX1a+uNn67G990FZmZuSsuVhzwJB7G5IbK1/FlXIgDcRwebPTPxkdxch23HAszc1xmjsavsRgHYxrmKk5tx6H4c0RsWqMy8+04HWe3O7JiRcPWDTikXk/DOExv6N6GqfX3doxuI/Mc5ekure2/YhJk5lh8AWdGxA9q/0rcWvtfhc/ilIi4tspOxXtwmrJsvA7XRMSqOv6eQex4i/IgmzgLyyLid4OMWaM4TkS8kJnj8BSWNB9KxcNK1O6FVTpEx5GZmW/F53F+Q3yXF592H8bgxkEo9q0GbpqaEfG84uy+iFiD+ViUmddm5szM3GcQrl3xbMO2nfBh/KIhm5OZpzfGvBrPNNqTFecPtAP/p3GfjtHNNJ+D1+P+zNyQmRtwBibWtXI42Ah1Z56Gm/AB3JuZRwyg/3i1pYXxSlQvb8g+gnWN9sG4u9GepJxIBsLu9fuxjqyv6GiaZ+YMHI5+PNfoOgBXKj9mBdbjvfj7ADSr6tjp9Vpm7qysXT9tKUXEMizDrMy8Hp/EojaupTix0W459unK+25lij5X2xMU513YGHMwrh/kJx+EhyLin4P0D4ghnZmZu+BSXBIRd7T1ra6XkyPiqsy8FBdm5noluvZAf0TMi4hnMnOe4qTHcb+yxr4Jl2fmeHxG2UkfwtswEfMGMGtR5dkjIp7AaryAj2fmk8rR7RocnZnLcDnuxC/bfvsBmbkX1tUNtYVDbf4Ah0Qn0/wMvKEa+BJExFo8qm5CylFplrKjr8BV2Lsx5Bz8HD9UjkUTcWREPKJMyf2VSP8bfoSfVL72+y5XdtyP1fa/6r2Pw29whbIhTcYf8QSOqmt0C+fX8f/QiNjMfCWOwXeHckw7RvXyBrQ9IDOPVGZMX5uThst7Gj4YETO6HdvrG9D/HRGxUDlU7z2Ubpf4r3Je7Rov28jcHvGyjcztETucOYIYDZm5Y64PExExaseaOYLoKtGRmW/GArxRybx8LSKu3NYcW4NrJNDtmrlByQr1YQbm1mzQtubYGlzDxrCmeX1VOzoiHhxSeStybA2uXrDZNM/MSThbSWzsiUdwO2ZHxJKGXj92bjc8M29UcpSUyHmgjt3s9Wwwjl4wklxtvIcpr6b9SvLkpIiYP5DuS6Z5Zp6oOG69khHfX8narFdKES293fFjfHoAzik4T8le74ef4YrMbGbkh+LoCr1wZeb8zPxKB6pjlbztGV7Mcw6ITZGZmYfge0raf05DZzVuqga36ji/wjci4pY2A/dV8ooLI+LRKrsCFyhljKVDcdT+jmo5nXANFxFxHa6r95q/Jd3mNL8Ef2pzZJN0TU0Cz8dvI2LBAGr9WKvkI9XSwMVKeuyOKtsiR6OW876hajkd2LNN0Tq0T1CStMcPoT9dmf53ZuaHquyEmhKjOHMs1tZSwq5KgvaLEXF3hxwd13I64NqmaEXmlPp9+5aUa0l2S8epKcpScRFeo1QrV0bE3E44GrWc2Q3ZHNwXEZdV0aZaTgf2NLnPU9byFsZgY2ae1ZC9PyL+0AnfQGgZslv9frpXooopuCUiVtas/Kn4XP2XRCfopZbTKb6jJLFbn6sHkG0xmIZCKzJbRf7DlUz4S5CZu0XEunZ5m854pRC1yRER8UBmLsUJ+FIH9vRSy+kItfq5pmHvU1gTESu75RoMo+uNltTi1WW18H6zUjGcgk8hlT8HbAn9ykbTHjU34FidObOXWs5WRf0/wH61uRP2qWfxNRGxuqnbXG+OUXbemUp9ZolSs7lVZ+Hfj1UR8Wyb/AZMyMwDhyLosZaztfEu5Ui3VNlQs15/tV1xR9ZoBLEjOTyC2OHMEcT/AAX+uJYBGmiWAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{A \\cos{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" A⋅cos(ω⋅t) \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 188,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get sine coefficient\n",
"c1 = reduce(multiplyIt, (filter(lambda x:type(x) not in [sin],simpeq2.args[0].args)))\n",
"c1"
]
},
{
"cell_type": "code",
"execution_count": 189,
"id": "99628c59",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAAhCAYAAAAvdw6LAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAF10lEQVR4nO2ae4hVVRTGf6OVpFnZC8zKprKHGaMzokSlUWRWSiZl9JDsjx4YouRYZMHXp5Fi2VhGKGUMSVREJRpWihVlVii+Ku0Ps2FKs9CpNO3t9MfeF+4c7sycGc/M3Go+uNyz91n72/vs11p7rV1SX1/P/w227wF6Spod012ATyQNsX0XcAswVtJu28cDoyVV234eWCnpJdvjgKmShmbZtsOyJPs3wPZwYCawx/aNwMVAf2C97V7AI0CZpN0AkvYA1bH4AOCZ+Lwd+CPr9pUU4wqxfR6wAfhS0sA24H8fmCCpJqYfBLYCxwIjJY0rUKYE2Av0AfYD84ElklZk2bZiXSFPAU8AlbaPkNSimWh7I4W/bYSkncBpucGIuBx4GhCwsRHaUqAb8AHQF1ia9WBAEQ6I7bFAF2AO8ABhO9mYkOkDzAKuAboCq4CJkr4HaGpV2T4F2JmX7gl0kfSz7f2x7kIYALwjabTtU4EttqdL2tGa72wMjVXeIbB9JPA4UCnpJ0LHDUrIlALrgR2E/f9S4ARgQcpq+gLf5aUvA96Lz28BN0dFju2jbd8a3w0gTgxJ3wBvAiNTf1xKFNsKuR9YLWlDTH8BDEzILAAWSZqey7A9E3g9ZR2fA2fY/gy4EbgSWAwgaY3tJ4D3os6oB6piuQHAa3k8y4BrgUUp602FolHqtk8nzPyyOAOJnTNY0rCY7gvUAL8CB/OKdwUOSDq+FfWuA4ZK+vuQPiAjFNMKqQJ6AV/bzuWVAPtsl0iqB8oIlk5FgfKtMkElDW5NubZCUQyI7RHAcEJH53fsucCrBAtnO/An0APYJemX9m5ne6DDB8T24cCTwFxJ6xPvauPjIMKAfAL8CCy2PYOwWs4AxgCTJOVvY/9KFIOVNRk4kXD2aABJe4FdRMUu6UfgKuAYgmW0kWCVfftfGAwoIqXeiYAGW5btGoKdnhYvSrq1ebFOpEVSh3wF/NaC8jubF+lES9C5ZRUZMrGybHeOagaQVNLuKyQ65hYDJwF/ATMlvdreHG3BlQU6wuz9C5giqT8wAphnu0cHcLQF1yGjw3WI7U3AqJz/qqM42oKrNcj8pG57IDCN4Ao5geDqXgfMkbQ2IVsBdE1+vO1VBLc4hBlcE8s/W6C+ghytbHtmXAneYUAlwTV0MnC7pOpCspluWbYnEDr/d4Jr+2zgtpi+OyF7HPACcGcBqnJgOtAbOAt4GVhoOxkbaYqjpW1vMZftatsPpxA9iuD2n0zwVDeKzFaI7QuB54BpkqryXtUCH8QPzsl2A5YAsyWtSfCcSYhtvy1pV8xbCDwEnE+ItTfJEd9XAZcAQ5JulehyXy1pShquQ4Wk5cDyWFd1U7JZbllzgU8Tg5HfqLrYoBLCLY53JS0uIFpBcBpuivK9Cf6qg4R4SbMcts8BJgFXNOLj2kqMRKZoT7siq3NIP+BC4KYU4hcRtrPNtsfEvPGSPovPFYQlvjfelzqS4JKfKmlLSo5KYJOkXGg2iTogd5+qOa52RVYrpDz+r2tOUNJqmtZd5YSt7zHgaOBRYJukeWk44iBeT7gkkcurArZLmh+zehKu8qRpTz73dIJuy6EbUG+7Mi/vKkkfpuErhKyUevf4n0XQqBxYI2lbjI/cDUy0fUHK8qUEHZQ/w8cBB/LSZcAWWo4FhFBA7re0QF6zk7IpZLVCPo//w4FXki9td5d0IJlfQK4UOI68zpRUY3sDMB64L0VbesX/XyLnpQRT84+Y7kfouFkpuBog6sG6vPbuA+okbWspV2PIZEAkrbX9FjA/XuX5iHBjoxy4AzCwOgVVBUF5J2fvSmAs6QakNnLcbPsnQuBrGTAqHvqeATYDb6TgygS2jyKY7xB2pdPiea1OUm2+bJbnkOsI1tC9hEjeWsK1no9Jv4wrgK8kJUMAK4F+ts9vjkDSD4QLdjcAK4CFBCU/iBAC3gNc3c63TAYTzPUNBCPF8XlGUrDDXSedaIhiiKl3Ig+dA1Jk+AfWsmekLE7UlwAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle - \\frac{A e^{- \\frac{t}{C R}}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" -t \n",
" ─── \n",
" C⋅R \n",
" -A⋅ℯ \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 189,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get cosine coefficient\n",
"c2 = reduce(multiplyIt, (list(filter(lambda x:type(x) not in [cos],simpeq2.args[1].args))))\n",
"c2"
]
},
{
"cell_type": "code",
"execution_count": 190,
"id": "36345ddc",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAF8AAAAhCAYAAAC/ZHdEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGe0lEQVR4nO3afYxeRRUG8F9rEcEqimgCUbQqfhSFtmvaILYSjaCE+EFUQCWKETUqQrDUiMTj0URsK7ZK/CBoskKMGkxQiEg1KiKgUqQWkK8AEhTED5pSalWorX/MbHv37rt977vtun+wT7J578w988yZuefOnDvPzti+fbs2MvOlWIfbI2LeGINiMw9n4dU4AH/BDVgREWurzc/wmtpkK+6t9y/sxbk7yMz9MCMiNk6w/UocEBGn7KYfK3FYRBxTyy/HLzEnIh5u2s4ch+PL+CLmZuYTe3TwHmWi/4MT8CK8u5Y/2DBdgLNxIF6I7+KCzJw/0cGNh4h4eDcmfl+8D9/cA64sxPUNv27GPXhX23BWD0eOVx7KCnwCc/H7xv0j8A2cFRGrGk3vw9WZuX+1ewGehisj4sFadwHOwaHKmyUzV2ExFkbEtpYvN+CaiDijlpdUv16G/+IOvDcibsnMYSVyj6u2V+FWbMT7sQ0XYVm7HxyL7bi2x3x08q8G6WbshSWZeQ5ui4i5uAwn4SvN9jNbZPvgC1hao+gBtKP0PPy2NfE7EBEb6uUQNmF95T6wcm/DjbXuxThNeZDtCYHbRvrPzFn4Ia7B4ViE1cpDGA/vVJa7V+IjOEN5U9tYjN9FxKg1eBD/aj9H1OtFytt+ZC1fj4V1fnegHfkfV57kulr+A+Y1nDmkdnBSD0faGMJsbMrMmdgHj+JjEXFrtVmK9RHxi3E4NtSBwFOVN+nyiLi71t3ex4dbI+JT9frOzDwVr8V3WnbPVQKtjc7+RcS2GmCPYG3rQT6gvBEHYcT3nZGfmc/DR/HJRqNbjI78BfX3hnGcaWKBsjzNw6uwBhdGxOra30y8Fd9v+LAqM09rcDwF/6yD24BhrMnMH2XmmZl5cB8fbmqVH8Czetjtg383Kwb1r2K+8rDaWcy/Gv3sQHPZWYWn44+ZuTUzt+J0HJaZM6rNvvV3c48BtLEA10XEXRFxo7IRf6ju/jBHieSbG23eji2N8uHKug1qJrIIV+ONuCMzj9mFD4+1ytv1TjL+oYy9iYH9UwJtnbHYv/7+vVk5EzLzaCVlHKoEI38nYL/qCOVNUG3HoGYNMnNO7XCH4xFxb3Xs5Fo1MtjNtc1Rymv5aC0fUn24tNlHRKyPiOURcRSuUrKs3cU6JbFoYiL+HW7s20ZJEO6PiL82K2dl5l74Es6rEboDmXlfvZyPeyJibWb+GOfXzeNaJZoW4FSksiEOKRtrMyrgpzgey5TsaBvekZkblfT2chyXmevx1TqQS6svc/ABJXO4H8/HYfhaj8EOijVYnpnPiIiHat1A/lXMwksy8yBsaaS+i2sfozBTWVqeWclHISI24UGNTRdvUbKWM5UUdK2yUf/azr1gCHdHxKh1VJn8QzLz0Ij4m5LKvg0/wQXKBjcfv8FDODYiRrKZLcr3xCW4E9/Ct7G87fegqLn49TixUTeof5T98kT8GedCZj5JmbMxH5Yzen3hPh6Rma9XVoC5rQndXd4P400RcXT73nhfuI87RMSVykfQs/cw9WPKt8IYTEf+FGI68qcQ05M/hZgFmTm99kwBptf8KcSYI+WJIjOfg4uVs5Ot+GxEXPL/5pgMrsnCnlzzt+KMen59NFZn5pOngGMyuCYFk7bs1E/w4yLiT1PJMRlcewqdl50umm3DdghPaA90EE13PI6JYE9ytXiXKEcOQ8qh2ykRMdy1fadlZwDNVpURL1KkuzY6abp9OAbCRLgyczgzP93BdLZy0nu6nWf2ndE38rtqttV2b/wAn4+I61o8XTXdcTnq/UE0311y7S4i4gpcUfsaHrR9l2Wnk2ZbBZdh/DwiLu5h2kXT3SVHQ1N9XQfNt58/U45dTv6Amu2RypJ0U2a+udadXI9r6abp9uMYRPPtxzXl6Bf5nTXbiLjGrveQEU13pSKGfw53jWi6/TgamuqKRt0qReQ5v1Y1Nd9+/jS5z1b2ohHsje2ZubRR94aI+FUXvq7o59wgmm0/9NN0+2EimmpXfN1o+fSyHnVd/mlgIPSL/KZm+732zczcNyK2tOt72PXUdDNzRNNd1sHXrprquR24RqHuWyP/byQzH8GGiLhrUK5BsMvJH0Cz7Ycumm4/TERTnVRk5mwlZaasIgfX76ENEXHfuA0bDfqhi2bbD3013X4EE9RUJxuvUFLkdUoCkfX6M10aT59qTiGmxZQpxPTkTyH+BywiNTWT/tebAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{A C R \\omega \\sin{\\left(\\omega t \\right)}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
"A⋅C⋅R⋅ω⋅sin(ω⋅t)\n",
"────────────────\n",
" 2 2 2 \n",
" C ⋅R ⋅ω + 1 "
]
},
"execution_count": 190,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Get third coefficient (of exponential term)\n",
"reduce(multiplyIt, filter(lambda x:type(x) not in [ exp],simpeq2.args[2].args))"
]
},
{
"cell_type": "code",
"execution_count": 191,
"id": "07f2f49c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMgAAAAkCAYAAADM3nVnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAKeUlEQVR4nO2ce7BVVR3HP/cCGeIjxXIwg4Q0vaI8LoNDhpk1vrJ8TGZZjY8sSdNMMUfSvv50ynyCWgiTFsZkGZmlpaJDTIaPgESExAzUQfEtKqClorc/fmtfF/uexz7n7nPu8Xi+M3fuWXuv/Vu/9fz91m+v727r6uqiEpjZR4DZwIeAjcAFkuZUJKQCmWY2HBgp6eYo/2+AcyWtNLNjgVOAfkA7cJmk68zsdOAM4AVgIPAdSXf0Rs/e1qWF6tFXY6S9Cl03AqdJ6gD2B6aZ2aBUZXYws21yknkQ0BHJbgdGhIqfCBwPHCBpNPBpoC1kHQlMljQKOAe4oMJ6Vouy7dOsMLMBZrZLjcT3yRhpq9SCpGFmS4FDJD0R0gOAEyX9tLcygeHATcCLwAbgk3hDfAM4G3gEGCXpqQIyFgInSVpsZuOAqZImVqtTtUi3T+reNsDDwCckrcqpvDnAfZIuy0NeFeUfA9wiaW2Ny6nLGOlfpPDdgCXAw2HWFVOyE+iX6vxvAXMz1rOczCfM7EHgWEmPh/v7A3cAhwPzi1S8DdgNeMTM+uErSL0sSKxHofaJMQW4tTeTw8wuAfaUdEC4dD7wNzO7RtIr1cotUtY+wGSgE9gBOE7SrFS2m4DTgfPyLDulR93GSDEX60rgcqDDzN5XRMltgV/hEyLGZyT9p2wts8scmlQ8kQ/Mw83jA0VE7QRsBtyF+5eD6rH/iFGifZL7mwMnANf2sqjxwMIkIWkZ8CjwtawCzGyWmZ2XIesWwHLgu8B/C2WQtA4YHuqXGWb2gJktL/C3QypfXcdIDwtiZkfgE+di3ER1pAsxs82APwI/kXRPdH0kbup6wMw+DFwIfA7fLM3DzduzxWSa2Y7AU5GMLYF2Sa+Y2asUn+AjgbmSPh82dw+Z2RRJa4KcNnyVmwQMBZ4HZks6O9LlIuArwNah/pMlLQj39wntMxJ4C/g3cLyk5aXaJ4WDgS7g7lQ7TQUmAuMlvZ26txhYIOm0sHBtAAYA+5jZOcCK4KPfHHT/WZGyq4KkW4Fbgy6zSmRdAXw26JHoXrL/S3kqkYy6jZEEmzxsZgOBS/HB8HIoeEwqTxswC/irpNmpQsfgq1e6YjsB9wNrcB9xX2A7YEYZmcOAp6P0fsD88Ps24GgzGxxkbGVmyarZvXIEM/xn4MBIzo+Bc/EO2x04EojdoIuBo3CzOwZYBtxuZkPMrD/wJ2ABMArYC5iGT5Ry7RNjIvBPSd2bQDP7OB5tOTM9OQJW8E5/bAQmhN97AUOAvUN6ITA+9GdfYBUwNkmU6/8s6IMxAvS0IGfhK9SSkP4XMDqVZ2988DxoZoeFa18Ppn17YF2B+s0ArpU0JarwBcAfSsnEzflwM1sW7h+Ah/qQdI+ZXQ7MD43XBUyNKn9jVP4twKHAtWa2BfA9PCLyi3B/JXBv0GsQ8G3gBEl/Cdcm4Q1/Mu56fgDfiCZ7h4cztk+MYUQrX8BkYKmk+RTGWnwyIOltMxsCrAcWxRMtyB2A7xNy2fxXiHX4WEhQrv+zoG5jJC60e4KY2UeBU/FVMcFyYFz8QHAzipmtRIlumNkwPCw30cxOjW71A17LILMzkjUeX2ETXa4Brkk/IOnoVPp64PqQ7MB9z3lFyhuBD65u10fSW2Z2L9AhaW1wL+aa2bwg5/eSVmeoS4yBwLNR3dqBL+LWK7k2FXhU0lXh0pbAq5GMMfiESocik/1BQQtiZlPwAEGCzYAuM5scXTtI0t8z1KMQ3iaEUrP0fxbUeYx0I7YgU4FtgMfMLLnWBqw3s7YCnVAIz+GmPsYofEXp7JmdNzLI7IakceVz1RRdQY/jzGwabpK/APzIzA6TVEn07gW8vRPshFum2NJ8CfhhlB4FPBSlR+PRxjS2Df+fL1L2DOB3Ufoi3P25Mrq2iS9eIbbmncmfW/9nQd5jpD90h8U+hVciVnpXYA7eeT32FgWwjOACRHgTGAQ8I2lDbxXOASuA1/FIR6Fo2yq8DfYOvwlhwAlEK4ykpcBS4CIzuw04hsrC20uAY6N0Mlk2hDL3xV2kN0J6Z3xCXBg9Mwr3s9MYCaxJNsBphHcU3e8pzGw9sFbSygr0L4VhwIPhd6P1f0Xob/5i7wr89fv98U0zWx1+Ftx8F8ASvFNj3Ae8BMw2s/Px1WQ4cBhwSpHNaM0gab2ZXQFcaGav42G+wUCnpKslvWpmV+MD/wXgMXzPsj0wPWw4T8QjNGtCXfYErq5QlbmhjMGSXgRW467J0Wb2Mr6a3wIcYv5SbDo+6G6KZPQHdg2h0NdCYAU8AFD1u6hiCPu3j4VkOzDUzEbjk2t1lHUPYGb43VD9Xyna8Zj2B9nUvALdMe1n6LlRL4jght1tZkOjay/hRwG2xqMLD+CRsif7sHHOxt2Kc3GLciOwY3T/LOAG4Je4vnsCB0p6Gvebd8Et6yPAdcCvg7zMCJv2hcCXQ/q5oNeR+EuumfimfQw+yF4EDpb0ViTmB+H5JwmWxczej78g+3kl+mTEOHwRXILvbyz8Pj/JEN5/PCVpfahXI/Z/ZvT6qEkaoYOOlzQ9V8FNCDM7ELfeHamB3xuZJwOHSto/D3lVlP9VYJ6kZ/qi/LxRzWHFkpD0P/ydQSWHFd+TkHQ7/jJvx3J5K8CbRFGceiK468uaZXJADSxICy00E3K3IC200ExoTZAWWiiB1gRpoYUSSF4UtjYiLbSQgqS21iY9wHLikuclJ29ZeaJR9aoFWi7WO8iLS54nJ71R+e2NqlfuaDoLYjnxvK0El7wv5OQtq4Iyy3Lc+0KveqEgJ/1djqI873Bu6Ez8YOZ2ONFmMXCxpEVRvoJc8nC8fb+Q3Ag8Hp4teKyjmJxqkKesSGYWjnlJjnst9GokNJWLZSV43ubfRlqMn+Q9Cj9PdUxIT4ryleKSj8Un4BD80N5vgZlmNiadsYycilCpLMuXY16U455nHRsVzWZBivG8J+CkmTMlTY1urQbuCh1dkktuZiNwvsbtyVEKM5uJf09pdyJeRhk5mTjnWWT1FhVwzHtw3GupVyOhqSwIBXjeAZcB/0hNjm4ElmA5LnknflR7KUCgu16KH1HvpgmUklMh57wSfnutsQnHvYH0qjmazYL04HkHotEEfAUshXJc8k7cJVkX6LEDcTLTGZIeyignM+c8o071Qprj3ih61RzNNkE24XkHJF/XWFzqwQxc8rG4m3YJsBX+ZZSVkqZlkVMN5zwrv70OHPNNOO4V8O7f9Wi2SqZ53gDJB8x6S/ccC9wjaWVgXk4CTjKzPTI+X4xzHn+4IM05z4oZOKkt+bu5wLWSC0QZlOO4Ny2azYKked7gURrw0O4N6QfMbHNJJb+uEWi22xINbkmPm9kS/NMz38+gWzWc80yoA8e8JMe9mdFsEyTN80bSovBRhavCJvNuPNI1FvgmThtdUEZuJ74ZT6/udwJHkG2CVMM5rykq4JjXhOP+bkBTuVhpnneEw/GI0+k4J3oRzju/l2yuRyewKrAlY9wJ7Gxmu2fQrRrOea2RhWNeS457w6MZj5rkzvN+L6OvOe59jaayIFAznvd7GX3GcW8ENJ0FaaGFPPF/JpzGxx6++EQAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle \\frac{A^{2} \\left(e^{\\frac{2 t}{C R}} \\cos^{2}{\\left(\\omega t \\right)} + 1\\right) e^{- \\frac{2 t}{C R}}}{\\left(C^{2} R^{2} \\omega^{2} + 1\\right)^{2}}$"
],
"text/plain": [
" ⎛ 2⋅t ⎞ -2⋅t \n",
" ⎜ ─── ⎟ ─────\n",
" 2 ⎜ C⋅R 2 ⎟ C⋅R \n",
"A ⋅⎝ℯ ⋅cos (ω⋅t) + 1⎠⋅ℯ \n",
"──────────────────────────────\n",
" 2 \n",
" ⎛ 2 2 2 ⎞ \n",
" ⎝C ⋅R ⋅ω + 1⎠ "
]
},
"execution_count": 191,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Compute c3^2 using pythagoras theorem\n",
"c3_2 = simplify(c1**2 + c2**2)\n",
"c3_2"
]
},
{
"cell_type": "code",
"execution_count": 192,
"id": "907ce05a",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAL4AAAApCAYAAACLF5NmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAK3ElEQVR4nO2ce7BVVR3HPxcwwrdoNZhhPigFEvA6OIyBluMzNbLIcnJ8jI2kqaSYA2lfv1qaioKaARMqSpmmvcBUZIxR8ZEQD1HogYg4KCqgiZoPlP5Y68C6x33u3efecy942N+ZM2fvtfb6rd/av9/6rd9ae/1Ww/r16ylQYEtDl/YgarvoTVs4JDVsah6aQ0OtLb7tnsA3JY2tKeECBWqITu1A81hgWjvQLVCgZmgPxe8laUk70C1QoGaoqY9ve1tgbZVlPgdMAT4NrAMuk3RXkr8n0FfS1Hj/O+DiUueyfQpwNtCZ0JGvAXYGzgdWAd2AH0p6oE2Nq0FbClSHctnHtA3yz5K9pFttn0cL8q+1xT8MqFbB1gEjJPUGDgfG2d4myT8K6A1guxOwV6L0ZwCnAUdI6g98BWgA+gIjJfUDLgIua3WLatuWAtVhg+yhqfybkT3kkH+tV3UOAi6spoCkl4CX4vVK26uA7sBbtg8mML3a9gnACGAugO2dgJ8B/SStiuVXA5Ntnwn8KlaxFHivje1qc1s6ov56Qobsv0zoBHObk30s3pcW5J9p8W3va/sd2/OrYLQT0CDpg7xlMmg0Ap0lvQAg6SHgKeAwSQMIjS+NKN8AZkp6sYxGA7Av8G/bnQlWoaMsfspHk7Zk5O9k+2Xbe9W43rtsn19LmpsC5bKX9BZhFH2ACrKH/PKvZPGvB64FRtr+hKQ8FnMg8GSO5zJhuztwG/D9sqyekpbF60OBX8brvsD8DFJ7AF2Bh4Hdgakd4d+naKYtKUYD90p6tg31XA3sJ+mIJPlS4CHbkyT9t7W0K9Q3BBgJNAK7AqdKmtxKWvPJ1r/DE4VOZQ8b5S+yZQ855f+Rim0fTxgJrgJGEYaX+WXPDAEek7QuST4SaNXave2uwJ+BX0h6LEnfDXgxXm8HdEqE+RbZI1ZfYLqkY+Nkc5Ht0ZJWtIa3alGpLWXPbA2cTlj6bQsGEgS8AZIW2l4KfA+4MQe/k4Flki7JUd+2wNOETn1bC3Q/C1wBfI0w+XwQOFPSy5HP/i2U3yD7eL9B/rYryR5yyr+J4tvuBowhfIB63faLwAASxY/+1iTgOGBmUnyHShamuZcQh6bJwN8kTSkrujvRZwa+WlbffcAk2+Mlrba9feSpZ4lfSS/YvofQKW9K+GkAzgOGx+dfBaZIGhUV90rgu8AOkdZISbOS8kMIhqEv8AHwL8KQ+kwzbUlxNLAeeDTjXY0FBgMDJX1YljcHmAX8GHgT2AoYYvsiYHGcVANMjfy3qPjVQNK9wL2Rl8mVnrO9B/AEcDPBPe0KXAdMILgpeZDKHprKP1P2kn5D4glUkj98tNdcCMySNC/ePwP0Tx+QdCfwC4KSlRraE3g+i/v4EuYCKwgv4RBgF8JLgDAhPgEYant+/H0p5j0N7Gl7IXAuyYpRtKbXAjNj/iyCIpS7QNMIvmGKy4GLCZ2xDzAMKPniV0V+TiN0+oXA/bZ7xPZ0Af4S6+sHHAiMI3SA5tqSYjDwD0lNPpvb/iJhee6CcqWPWBx5WgcMimkHAj1i3SU8CQyMhmxTYAJwk6RRkhZLmk/wsw+tgsYG2dvuDRxBlH8zsod88t9o8W1/HjiHIMy08gMymPoTwar8KN4397W29BJGJ3VdBvwxNmIWFYatOII0xjJzKJtDSJpEGH1S3FL2zO3A7Und20a+R0i6OSYvAR6PS48/AE6X9Nf4/HCCtTmLsDS2PbAjMC3xz/+ZVJlniXh3kmE8wUhggaSZGXkAa4ADJX0YO+JaYHZ5B4q0tyL44a2eQ7QGtncnKNpg2+ckWZ2Bt/PSSWUf6Q4kGIVSfpbskXRi2X0T+ZeQujpjgZ2A52yX0hqAtbYb0pcraZHt9bb7SHoG2DtrklarlxDrzOqArUFvwtD7YEbeXgSF2eCCSPrA9uOxHJLWxGF+uu0HI527JS2vgoduwMtpQlwV+xZhxCmljQWWSrohJm3HxqXRAYROkrXZ6n9JPU1gezRhYl1CV2C97ZFJ2lGSHsnfnCboB7xBorQJWr2sXEP5A1HxbR8OHExgNmVuH+Auwkx5aVnZacBxtp+n8tfadnkJmwhpxz/V9jiC73gc8HPbQyVNz0lrFcHIpNiDMJIsTNK+Dfw0ue8HLIrX/YF5ZKN7/H81I28C8Pvk/kqCG3p9ktaWhYD3gW2AlZLebAOddkUX21sRJh7XSJqbZtouWbEBZCv+5YSJ3YwK9DfHl7AYeJfgb/6nLO9ZQoc8KF4T14IHUTZcSloALACutH0fcDKQV/HnAaeUpZU6wpux3kMIrsp78b4XQdmviM/1I0zystAXWFFaQSnjew3BZSLSXQusqeH+qieA14Apti8lGL49gaHA2RXmLh2OLoRJ46do2uMBkPSG7ZWEF/6HsuxHgF6EWfopFehvdi9B0lrb1wFX2H6XsBy4M9Aoabzt8QRlXgU8R5gPfIb4JTBO1s8gzHFWxPbsB4yvgo3psY6d4xdHgOXAh8CJtl8nyGMacIztBbH+pwjzKwiy28f2rsDbkl5P6A8mfyfMjTg/2jvedgJ62u5P6DjLASS9Zvsogss2k+DWLgXu2FyUHqCLpDGEJcxMSOpRIX2d7enxOvNr7Wb8EkYROuTFwG4Ef7u0Ll3acnELwfWYBxwZtyNAmJt8geAC7hLL/pbgMuRCXGt/EvgOcclR0iu2R0XehgImjKT3EAzIDGBY8q5/Eus8D5hImJRj+5MEY5R+1KoVDqDpkrLj71YS4ydpDmFBYLNFmwJRbA8D1ku6u3YsbRmwfSTBxezdlm0eGXTPAr4u6SNLeAU2ok2b1FRsuW01JN1v+0bCiJP5DaSVeJ9k2a9ANmoeeligwMcB7RGBVaDAZo9C8QtskSh9wCr8nQJbDCQ1FD4+tYmVrQWN9qBVIBuFqxNQi1jZWsbbFrG77YzC4mcgfik9plLYYEfRaA9aBQIKi18GtxAr21E02oNWgY1ol7MzNzfE/SQXEHag7kKI7JkDXCVpdvJcxVjZuAW59Bl+HbAslv912XN54m3z8l0zWhm0axY/+3FE3Vt8h0OH5hB2ZJ5A2GdzcrwfnjzXUqzs/oR97D0IG7XuACbaHlAFjWr4bhUt25NtX5Lj0VL87Lls3L+/xaCuLb7tQYQonQvU9BDb5cDD0aKWYnAnUyFW1uEIkB2B+yWtjGkTCRFZfYB5LdGIZVqMp5U0Ig+ttiJv/Gy9oq4Vn3Cc4N9V4eTmuDcdNsbKPmV7aEw7SVIpKKSRsKV6AUAM+xtD2EY8Nw+NJJ72sBbiafPwU6CNqFvFj4EbgwinDTSL5uJ+IxoJrsEbMUSwGyFA5HxJi3LSyBVPm5NWgTaibhWf4JND8O9rQWsScDUh2PxyYImkcXkKtyKeNjc6IIa2LlHPVmXr+F+LkMf9CQdoLYnhmcOBMyscHZKFSvG0acB9Gk9bDSYQIuRKv6kZabXo/HWFerb4T8f/g4E7yzNtby2pxZMeYqhhdxKllbTM9jzgJMLhTi2h2nja3OiAGNq6RN0qvqTZMQj8hniw0qOEkxL2J6yLm3AQUUtoJExiy63xDOB48il+tfG07Y488bP1jHp2dSDEno4hxKXOB2YTYmofJ//w3wg8K+mdsvQZQC/bfVoiIOkVQiztMMJpYBMJk90BhHja1cDRtQxBzIEDCPHE8wiTdcfrSzuQh02GYq9OgS0S9W7xCxTIxP8BxZAlhJxn9/AAAAAASUVORK5CYII=",
"text/latex": [
"$\\displaystyle \\frac{A \\sqrt{e^{\\frac{2 t}{C R}} \\cos^{2}{\\left(\\omega t \\right)} + 1} e^{- \\frac{t}{C R}}}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" ____________________ \n",
" ╱ 2⋅t -t \n",
" ╱ ─── ───\n",
" ╱ C⋅R 2 C⋅R\n",
"A⋅╲╱ ℯ ⋅cos (ω⋅t) + 1 ⋅ℯ \n",
"────────────────────────────────\n",
" 2 2 2 \n",
" C ⋅R ⋅ω + 1 "
]
},
"execution_count": 192,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# find c3 by taking square root\n",
"c3 = sqrt(c3_2) \n",
"c3\n"
]
},
{
"cell_type": "code",
"execution_count": 193,
"id": "56dcb8dc",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAIoAAAAVCAYAAACZt3byAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAH10lEQVR4nO2ae7BVdRXHPxfQBJ0gQYV0KArlocnjKojhgwIaZ8x8NPaYoKQIcpJMIqKwr98MRCglLRWkGiwS0TvGqJgpFQwQKIhPbAQSlRTDEAiJl9Af67cv++7OuRebc7lM8Z05s/Zev/V7nbP2+n3X2qdq3759HMZhNIQWTb0A21OA0yV9okTbHcAOSVfndD2BMcB5QDvgdWA5MFnSE7bnAx9L5nuAdantzkbcxv88mjX1AoA+wONFpe0q4CLgtzndlwin2Al8BjgF+GK6H5nMegPfBToAnYHZwDTbvRprA/8PaLKIYvtIYBtwBHCu7fHAC5K6J5MzgfcAi5J9P2AGMEbSzbmhXgEW2j7W9oeBNsDvJG1I/aYB44FTgZWNvrEKwfZM4AKgk6S3D9Kc1cSDOFzSjHxbU0aUPUC/dN2XiAAfzbVfDDwkaU+6/zGwrOAktZC0CagGtgJPA9juAPwI2As8WeH1NxpsnwkMASY1hpPY/qbtfbY/n9dLWkFE8OttH5NvazJHkbSXcI5/Ak9I2iDprZzJp0jHju2TCae6tYFhq4FjgK22twOvAZcAoyWtquwOGhUTCIe/vZHGr05yRYm2G4D2wKi8sqk5Si/gaUl1Ui/bnYEPAY8kVe8klzcwXm/ieOoJ9E/975Q0tULrbXTYPgUYCMyR9K9GmqaaOPZfLDZIehz4CzDCdq1/NApHsX0Z8BWCZ7wXeBn4JXCjpHdypj0pzRsuBubnwm6rJLc1MHVv4NeS1qR1jAT+anuapGfLrLUPMJpwrHbAJuBZYIakOQXby4GvAz2AI4E1wG+AmyTtLNheBHwD6A4cC/wDWA3cI+m2evYwDKgC7imz3hHAHWnO0eUGsb2WeNjaS3oj6SYBY3Nme21n10Ml/SpdzwauAwaRHtaKRhTbzW3fDdxHZBz3ArcRHGEC8ItClx7AMyWGqj12Ep5L8rwy87ay3Yn4QWodQtI6whGHlOk3HFhCOOYSggc9BBwPXFmwnUj8eN0I5/gp8YNOBB5J5Dyz/Sowl3CSB9K484CWwBWl1pLDQOAdYGmJ9Z4ATAY2AGpgnOxYOTunexKYma6XAM59/pSzW5zkoExR6YjyE+CzwCTg2oyI2h6TFjLU9o05vtAC6Gr7/cB2SZttHwecBXw6GzTVRx4GbrXdMm1kHxFBhqeNticcsshFHgUuBb6dV9ruTjjxVuAcSc8X2k/KXfcDxgGvAn1yGdU44H7gQuBbhNMAjAB2AT0k/b0wbrtyX57to4ko+0IZEvt9IkKPl9RQdF2XZNdMIWmO7TZESWGmpOll+j6R5LmZomIRxXZf4imcK2lcLltB0m72e3LfXLfvEY61niBRAJ8kyO0bhSkuITKYa4CniM2MBf5McJdqYK2kHYV+jwIn2z61oP8a4ajXF50krXl97nZYkj/MnCTZ7CGOrb3EUZvHHmB3iXHfLOpyOBFoThQR6yA52JcJx/55PWNkyBztfQV9xvfKZoGStgA7gI6Zrk5Esb0O+MABLCLDLElfSNdXEaF4u+3rStielmStc0qaBcwq2BWPncx2JxF2J5dZy7j0Kfabn9ZVxFlJPlxmvDyyL/cPJcZ/0fZ6oJPt1ulLnkUcN6tszwYWAIslbWxgnrZJvlWi7XKirjRH0vZMmTjWNcAtkpbk7DNeV4c7pb3sJndEl8Em4ITspnj0rCU86UDxWu56cJKfa6DPyw20Lwbufhdr+G/RJsm/HYBt6yT/40nP6TumMbdIusn2m0SEHQVcDeyzvYAoGJbL3rIs56gSbecnuaCgv5CoUk8p6DsnuTpT2G4BfARYVSTfJdAyt566jiLp4w10LgnbRwHHAQsllSScBwpJ5SJGpbE5yROJdLA+bEmyPfEwFdGhYIeku4C7Eic4mzg6hxHEt2uZ6JLxmbYl2rokWVxr9o7slUyR0tr+6TbvWN0JJ6y3+Jj6twFeynSVIrNZaC9L1A5BLAXOIMrkDTnKSiJkn0/BUVLN5yTgJUmbix2Tbh4wL/0AwwiSWFNinteBjex3ijyyqFZLYm13I96VQd0jZiCRuS2TlI/gPXP7qQ9diN/0qUxRETKbCkPPAN1tX1rKxnZ/280rMV+FcDtBOK9NGVAd5LMe9qf141NWltk0Jwh2M3IE0/aA9FKziOOT3F6ijVR4XAi0Sw6YRxaBTk9zVBF8LYsOXZK+Fft53A3URRaptpaaP4eMv/0xU1QyPR5D1CBqbD9GOE4zIrRXA0dI6lhP/4MKSatsX0kUr1bankuc522JQuFWYECyXWJ7MpFiP2f7PiKruIAg6YuoyxHuB7bZXkqkqVXAOWncFcBj9SytBriMOFLWFMY8A5ia/mrRK90PIkoPM20/QCQDXYDpkuYWxs5qKxNsn5b28Lykewt2g4laTm3/iqXHkn5PnMU1BGEaRRS6uhFfTEOFpoOO9B+V/sCDxLEyhvhrw0bgZwXbsQRRXw0MJfbXjHgzPUjSrpz5d4j0vTdBaK8g3pKPBQakckE51BBcZWhBPwWYSvyAI4mHfLCkZen+aKISvCvNObLQH0kLiez07STF/uMIANutiQLkg5JezfRVh//hdughFfImAr0lHdS/Rti+CriFKEIuyvRN/VLwMErjZiKL+cHBnDRVvccBNXkngcOOckgiVZeHAMtTWf9g4YPAdOJ1RB38G/MEvFNLIDe6AAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle - e^{\\frac{t}{C R}} \\cos{\\left(\\omega t \\right)}$"
],
"text/plain": [
" t \n",
" ─── \n",
" C⋅R \n",
"-ℯ ⋅cos(ω⋅t)"
]
},
"execution_count": 193,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Compute the phase\n",
"c1/c2"
]
},
{
"cell_type": "markdown",
"id": "4b24e8dd",
"metadata": {},
"source": [
"The tan function can be equated to the fraction of $ \\frac{\\sin( \\theta )}{\\cos (\\theta )}$ "
]
},
{
"cell_type": "code",
"execution_count": 194,
"id": "05abad5c",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAMkAAAAVCAYAAADsOspRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAKY0lEQVR4nO2beZBXxRHHPxxGUUtQ8SAaQYMHuCqy3gGEKGoSIx4pElMKQkw8KhoDIYjBNN+gqJh4RhE1iah4oJQSb9GoRLdERNAoSako3sYDZINEESR/dL/dt8P77eLubxdT7rfqV/N70zM9/d6bnp7untdm9erVtKL5IOlCYHczO7SAdhXwiZmdEde9gFHAgUBn4B3gaWCimc2JNg8D3w4WK4FFQb+mWW/kK4y261qALzMk/UDS+k1ksw/wVAHvNsARwJ1xfQKuEJ8CPwR2AobG9cm5rr2Bs4AuQHfgFmCypD2bKOdXGpIGS1qviNa+pYX5f4GkfkAHM/u0kf2/BiwD1gP6SRoL/NPMekaTvYH1gccl7Q9cC4wys4tzbF4HZknaLHh+E+gE3G9m70bdZGAssCswrzGytgKAR4DxwJkpodWSFEBSO+AM4MYmsFkJ7B//98VX/m/l6EcC95jZSuAPwOxEQWpgZovjbyVQDTwbcnYBfg98DjzTBFlbFJKmSHpP0kYtPG6lpNWSTkxpZvY+8KGkviltnSqJpG4h9HXrUo4CHAfMMbNGO2xm9jmuGP8JXu+a2ZJck0HAnZJ2xJXp8rVgWwlsDFRLWg68DRwFjDSzBY2VtSUhaW/geOB8M/u4mcb4ZcyrH+frzWwuvr0dL2njgq434takDlotSTFGAbeXgc+ewLOpsknqDuwAPID7GOD+SEPojW/LegF9ov81ZnZJGWRtKZyLW8NJzThGZZRzC2jnAVsDp6cEM3sHWC0pb/FblSSFpJ7AN4CXy8CuF8V+wpHAw7GSbhh1y9aCX2+gysxeNrNncIf+VEm7lUHWZoeknYCDgWlm9t9mHKoSf54vpgQzewr4F3CSpKL5PxcYnK8oq+MeEZrv4ytoF+Az4B/AJDO7MWk7DrC4HCppaI48zMyu+yL8gmc34FVgCjAOOB9/KRsDzwPjzOzuBm7jQApW/2ScY4ATced7E+A14C/ABWa2Ktd0D+C+AhaDQkZCrmzcWwvG2tDMlkvaHtgMv38AzGyRpHn49uXXBX33AUbiVqczsDj6X2tm05K2g4Gfh8xfwxeJm4CLioIXko4AfgH0DLk+BF4CbjWzKwvuGWA40KboPnN8TwKuinFH1tNuIW6Ntzazf0fd+cDoXLPPJWX/h5jZDfH/Fnx+DMStcR7zSJ5luS3JJKArMAu4JITpCtwgKd3rPQpcGv+fBZT7zW8Evzy64mHXbsAN+EupAGZIGtDAPVQAbxURJLWTdDO+FesO3AZciTvO5wJ/Trq0B3aR9HVJnYLHFsB+wF0Akf+4D7hc0gmSdpTUPUKSM6ndjlXGOKnvMRO3TKmsPwWqglaFBwfuAbYETk3aTsCfUQ9cMf6IT+YJwAMRqcu3/xkwA1eQu4L3vUAHYFjRswscDKwCniwiStoKmAi8S+0CWgrZVuqAXN0z1C4+VdSdU4/m2j0R5cACvm/j76xGN8odAq4ws4X5injA9wFnSrrKzN4CMLNHJS3CV6P5ZjauKfwS9MethnL9bgLux/2NR+q5h23xl1SES4Ef4Rbq7IhMIWkU/hKGSLog50T/BrgAGAFMBk7BLeOcbPULHIU/hxHAFcAK4BV8Ume+SiWw0Mw+SWSaCYyWtKuZvRDy9MSVtxrom9XnnsW2uf/7A2OAN4B9cqHlMcAdwOHAr3CFyXBSyLiHmb2X8O5c9OAiktULD4OXcth/i1vmsWbW0PZzUZS7ZBVmNi0Wo6HAFDO7ukTfOVH2K6BV45Z0S2IelFVJ0gkddSskXYFniQ8Crm8Bfq8B5yT9HpD0Op7cqw8b4RGpOpC0L74CzzCzMQnvzyRNwVe1fYnV3symAlMTVoOIBGKu/6f4CjqxlFAx5piC+ofxVT+PU/B3Oz5VkOjzZu5yeJTnZAoSbVZKGgl8F99a5pUEPMT9WQHvD0rcwjZAO/wUwRoI5foJPkn/VIJHHpmibZrUZ5a3ZEjczJZK+gTYroBcHWVN9KuOksTK3nUtBMww1cyOy/XfDt8THhQCdEjab/MFeDeF3/zEN8jwBrW5i1JYhScAU5yGT8bl4U+lqIiyoS3sE8DNDbRpKvaLssgfSpFNqr+lBDN7UdKbwPaSOprZ0iBNxbdYCyTdAjwGPBG5hlLYPMolJeiD8eTqNDNbnlWGXzUCuMzMqnLts4BH6i/1ptZ3rQ+Lga0K6rOtZc0CkFqShUBqzuvD29kfSTvgfsCmwN+BB4Gl+KTrhpvAtT7i0UR+H5WoX0nDk3gJbvJTHBLlsQ30f60+opmVtBZlRKcoC32rBB2jLFzho3674LkUwMwukvQBbllPxxOvqyU9hp8aKApnZ9GsDUqM0z/Kx5L6w/FjOhcm9d2jfCmrkNQe2A1YsBYnJTrkZMoje/c1ylxHSczsoAYY14cR+GoxzMyuyxMkHYtP6nXJb23xCrl9boy3AbAFMMvMDmymccuJj6LcBg931ofMOmyNL5IpuiTtADCz64Hrwwc4APerhuOO/i4FViXzXTanGDtHmcqbHQx9PasIp7pPXOaVqieuhPWePoj+nfBIaIqOwAdmlm27yuqTZJo9vYBWamJlW6J2ZeJXDjyNv/A8sj1/oVP6JcSTwF7Ad2hYSebhW5T+JEoSSc9tgVfN7KOizlF/L3BvTL7huEOcvrd3gPepVYYUmUWrcdgl9aDWh8xbhoNxx3q2meUtd6/cPdWHnfF3Or+A1oPkQGo5Q8CLouyfr5R0KO74FWEJsJpiB6ox/MqBR4Cukmr8n0h8PQf0lHR0USdJfeLM15cBk/Ct5dkR6aqDfHSL2rD12AhPZ23a4efC2pI40pIGyE8xp9gyyuUpIfJOs4DOoXwpMsuze4zRBg9kZFZh56jfkNoAx3kJj8xKVVM/Mp+tKMrZC4+C1qCcluRKPEZ+m6TbcX+lAjgMmIbvK+vAzJZJmg30lTQVz5CuAv7aGH7lgJktkXQXbs5n5kij8JDsdEkP4UrTFt/SVALrmVmRsrc4zGyBpFPxpNw8STPwvfvmeAK0GhgQbaskTcQTaM/Hs/4Yt0IVwOOs6Q/cASyT9CS+mLUB+gbvucBDJUSbDhyDb6HSEw134NbvEvl3NXvG9UA8vD4l3ssgXGGuNrMZCY8sd3KupIq4jxfM7Lak3SH4PKvTPxRzLzzkXYOyWRIzew5/8FXA9/Aw5CbA0fjLKoXj8cl3GJ5AGg/0bgK/ckBAejjuQXzvPR13Dk8P2Xvgk6K+JFqLIz7C6gPcjVvjUfj3K+/juZh829F4QOIlYAh+b23xI/gDzWxFwv5MPNfQG3feh+ERwdHAADNbIzQcmI77JkMKaBfiCeNV+HGb9sAhZjY7rjfCc0krYsyTUwZmNguPQn4cpVG7BQNAUkc8wXq3mb2RsOgX9XX8qTatXyYWQ9JlwIR87qAVTUckKSfgC2GLf/8i6TTgMjzJ+nhCmwyMyX2aALQecKwPZ+HJrVaUFxfjkarftfTA4WeOAaYXKEh28HJx2q9VSUogjkVMVdM/321FDnGs5njgabXwR1d4fu1qEp8j8GacXlgD/wPrE+4TW9mfFgAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle - \\operatorname{atan}{\\left(e^{\\frac{t}{C R}} \\cos{\\left(\\omega t \\right)} \\right)}$"
],
"text/plain": [
" ⎛ t ⎞\n",
" ⎜ ─── ⎟\n",
" ⎜ C⋅R ⎟\n",
"-atan⎝ℯ ⋅cos(ω⋅t)⎠"
]
},
"execution_count": 194,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"simplify(atan(c1/c2))"
]
},
{
"cell_type": "markdown",
"id": "8f32d128-ddcd-41a1-a055-e3a5207888f6",
"metadata": {},
"source": [
"### Complex Impedance Analysis "
]
},
{
"cell_type": "markdown",
"id": "61093af9",
"metadata": {},
"source": [
"I wish to compare this with the complex analysis of the circuit"
]
},
{
"cell_type": "code",
"execution_count": 195,
"id": "3bfdd494",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAIAAAAAUCAYAAABFyTWeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAFxElEQVR4nO2ae7DNVRTHPwflOShKb2XyapoSMnow8iqTRA8NpTHUMBoy0pR/+rYYMqVIkxqjh6akBzKp5A/KFCmKqckrg5qhmBRR8rr9sfdP++77O+c65+jelO/MnXV+a++1f+v3/a2z9trrnkxJSQkn8f9Flcp24CQqF9XSlGY2E+gBXCRpX8W6dGLBzEYBTwJ3SpplZm2AlcC9kmZUrnflo0wAmNmVwABgdLaXb2ZNgUFAd+ACoD7wK7AGmAu8LOn3YP4ioFu0zE5gA/C0pLeKfZBKRFsvVwJIWmVm7wDjzGy2pL3ZDM2sEbANmCZpeMp4XjwXgrQMMB7YAzyX4lAGGAs8BJwCLAPeBnYDjb2jXYB+QIfAtA1QAozzshrQAugNXGNmoyRNLuZBKhEP4zjZGOgeA1YAI4AJOWxvxm3Dc0NlETznjVIBYGbNgK7ADEl/pMx/ERgIfAv0l7Qmsq8JjAIuDnRNgNOB9ZIUzR+KC7T7gRMyACR9n6L73MzWAUPMbKKkI1nM+wA/A0sjfd48F4o4AwwCMsAb8US/1w0E1gLtJf0Wz/FBM947mCBJkatS7r/QyzPTnDOzIcDzwFOSHsj2EGa2CWgCnCXpp2zzjjfM7DpgMTBJ0oPR8GzgUdzW92GKbV2gMzBL0uFAXyjPBfEVnwK6AoeBzyKDs3FbwyGgb5pTKQ4myBUASQSvTXGyEfA48COgeDxCsvbV5cw73mjt5ZcpY596Gdc+CXoCpwLzEkUxPBfK19EAMLPaQCtgbUrxNxKoAbwq6ZtyFo9RqkgK7tcQmOQvJ6bYPQLUBSbkKqQ8tnjZIk/fikWuAPjCy45ZbPsA+4BFgW4khfNcEF/hFnAuUBXYnmLQ28tX8vHIFzMJSb3MrLO/R2OgF64AGhafAnxwDMYVoy8cw62SgD0tH/+OA1oDe3GnmVKQtNvM9uOq91IwsxrADcAHkvYHQ729zJfngvkKA6CBl79Ei9cBmuGq9xX5OAY0Ber5z/GetA+4TdJCyqIvUB14MzpOtsMVP1MlLQvm1/Lyz1zOmNkWXPAdK16TdFeWtWrjeFkmKVs7dRfQKEXfDahD6fRfDM8F8xXWAMl+UiNa/Awv9xRw5kzS/0uSMpIyuEAbBdQGXjez+il2nbz8ONL3BO6g7ItOaomN5MYmYH0ef9tyrHU5LoOlpf8ENfmb1xC3AAeA9wJdMTx38jJvvsIMsMPLBtHkJF3UNLOqYcV6DCiz/0vaBUw2s6uA23FNp2ciu+Zerov013t59OhlZlWAa/1lTEApSOpyzJ6Xj2Rr+ypt0PtVH9gc6asCNwGLJe0OhorhuWC+wgywHdedax7okLQD2IqrWDvl8sIvHiLXCSBpk/ZLGUu2jaPFjJm1BNr5yzCiu+KOkSskbc3l33FGrgIQHI8ZYHWk74j7ks0LlUXyXDBfRxfy+9hSoKGZxQ2GpEkzzczKVNpmljGzHrizb+jkFbgjzZrYBliCa2u2N7NzorGdXl6WrI874iRkN/f6Wl4PrvtWkWgN7Mc1a9LQ3sslkb4PcASYn2KTN88eBfMVN4LmALfiUsd3gX6qX3wQ8LXv7W8ADgLn41LKecCswKYFrtBZE1W6AEg6aGbvA/1xpDwbDM/DZY8pZtYKF0htccXTR8BMM3sX10ptDkyXlEboPwIzqw5cAqyWdCjLtO64nsr8wC6Dq/SXZ2lYFcIzFMFXnErm4GqBu0OlpBJJg4EbgQW4fsF9wD3e4eW47tWIwCxX+g8dBxd0IZ4ApuAIHIoL1O6SVvjr2rj28QFgmNdVJC7F9ehT07+Z1cO96AWSfgiG2uJe5Nw0uwJ5hiL4ysQ/CDGzMbh/YLSWlFrgnERumNlw3Le5g6RPAv0EYAzQRNLmbPYVibQfhEzGVY1jK9iX/wR8f34MMCd8+R59cFviv+LlQ0oA+P16ALDSNztOIj9cCEwHRscDklpKalXRDuXCX288X40ur3MzAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{C R \\omega - i}{C \\omega}$"
],
"text/plain": [
"C⋅R⋅ω - ⅈ\n",
"─────────\n",
" C⋅ω "
]
},
"execution_count": 195,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Z = R - I / (w*C)\n",
"zc = cancel(Z) # express as fraction\n",
"zc"
]
},
{
"cell_type": "code",
"execution_count": 196,
"id": "f3db2138",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAEcAAAAcCAYAAAAz+aIrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAADE0lEQVR4nO3YXYhVVRQH8J/Si/ZBSS9KEGIWIjXXGSh8CCvoJXwx+qAo6iWIIIjKQgsWC6LAipHEYMhXoZ588MFIogj7nEGbjIrSGAwqwixkGvqc6eGc0TN3PpwZTgdv3D9c9rlrr73X2v+z9jp7ryUTExM6BZm5G6siYksT9i5owkiNeBZ/NWVsSSdFTtPomMjJzCvwHdZFxFdN2FzahJGa0IMxfN2UwU4ip4WjETHelMFOIqcHnzZpsJPIaemSMx2ZeSHW6JIzI64r28+aNNop5PTgm4gYa9Jo9xA4B6YcAjNzBFcuYPzeiLivVo/OI7SfkI/j9wWM/75GX8471LKtMvN/uTe7OWcOdMrXqjFk5u7M3Md/cCvPzBa2YhMuxw8Ywo6IGCx13sYt5ZC/MVL2v1a3P4vAmZpRrZGTmQ8qiPgDd+NqPFD+f7ii2ovtWImr8DoGMnNDnf4sBhHxS0SMUmPkZOZG7MHWiOivdJ3Ae5m5otRbg0vxZkT8WMoGFG9sPY5U5uzHjbi+/TaemUM4FBGP1biGKTWjOrfVy/i4jZgziIhT5WMfTmO4dGglXsI4DlccvQaP4tZZyhRfou5Im1IzqoWczFyLjbhnHup9uAinM3MpluFPPBERX1T0nsRwRLwzyzyncMPivZ4RLZWaUV2R01u2Q/PU3YMXcQmex7GI2DmpUJJ2B3ZUZP34NiJ2laKL8Vv75Jn5HJ45hw83R8S7M8in1IzqSsjLy3Z0Hrq9+CAijkXEYUWifiQzr63orFbkpaMV2V2KkJ9ED6qRNomdWHeO3yez+NZSIaeuyPm8bDfhjfbOzFweEWOZuRorVBYdESOZeQT346lSfFnZjpbjb8Iqxfab3MYtvNBuKyJO4uRCFzBTzagWciJiMDMPYFdmLsP7mFBEyUNIHFLkm3HT3/hB3O4sOSdKvXsz81e8gv3YnJnDeFVR29lXh/8lptWM6jznbFF8dR5XsD+Ip/Ghs7moD8cjov1yexBrM3M9RMRP2IY78RYGFAl6Az7Cz7gtIv6p0f9pNaPu3WoO/AulNQt/mBxX9AAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle - \\frac{i}{C R \\omega - i}$"
],
"text/plain": [
" -ⅈ \n",
"─────────\n",
"C⋅R⋅ω - ⅈ"
]
},
"execution_count": 196,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Now we try and work out Vout as R/Z\n",
"rzc = (-I/(w*C))/zc\n",
"rzc"
]
},
{
"cell_type": "code",
"execution_count": 197,
"id": "01ccfae6",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAfCAYAAACbKPEXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAADpklEQVR4nO2YT2hcVRTGf4mB0lpFiwgVFIpGwSI2GVGKaEVQULpQ8Q8KRV1URCwWTRWL8PkpaKlKigUx6CLYjeJCqVDFooLGqCS0ppa6SaXEhSIYpMaqJXZc3Dvy+jqZuUleMlN8Pxje3DNnvntycu6fOR3VapWSYuhqdQD1sH090AdUgAuAByUNtjSoBDpbHcAMLAcOAo8Bf7Y4lmQ62n2Z254CHi0r839GmcwCKZNZIGUyC6RMZoG05WluezlwSRwOA9uA3cCkpImWBdaEdq3Mq4D98bUUcHz/XCuDakZbVubpSrtW5mlJmcwC6QKwXa71eSKpo9wzC2RWLTjbFwK7gPOBaeB5Se8utsZCaBXBbPfMaWCzpMuBm4Edts9sgcZCaM2beS1z22PAekk/tlJjIbTmwinL3PYaYAuwDjgP+AkYBbZLGsn4VYAz8oHb/gS4MQ6ngSPxu2/UmauuxlwoUiunm9z1P2mZ236AkLi/gXuAS4H74/jhjN8K4C3goTqavcBWYCXhJ+HbwIDtntxcjTRmxVy0bA/afjbBNbnr/19l2l4LvAlskdSf8ZkAPo8BY3sJ8D6wTdJwLsCLgXOAjyT9HG0DwDPAasJPwoYa8fN+4Drgakkncp+NAkOSNqdozRdJe4A9ca7BRr7ZZf4K8E0ukVnRSdsdwCDwqaRdddwqwFFgLE6+EngZOAHsi7aGGrYvAzYBN+UTGfke6EnRWmxql/ZuYC1wbxP/awnL/4Dt26Jtg6Tv4vsKYVkctd1JaFIcB56QdChRow8Yk/TZDDFMAtckai0qtcrsjc/RRs6Shmh8neolbBUvAWcDLwDjknakaMR/wJ3A9oytH/hB0s5oOgv4IzGerPZWwl5eYwlQtd2Xsd0i6YsUvXrUAlkWn1NzFYr0AsOSxiXtIxxaj9i+IvH7qwh7bray7gaOZcZXAoeYPa8DazKv3XVsDYupGbXKPBif64B38k62l0k6lrfnfFYBK8gkQtIR2/uBDcCTCfGcG59TUfMGwnXkeBx3E/7oFxO0TkLSJGGLqMX7O6HZPD5brZnoihON2P4Q2Gl7KfAlUCVU2kZCc3aoiVaFcNDkq2YvcAdpyZyIGvfZ/g14FfgAWB8v5K8BB4D3ErQKIdf17wQuinfxU7r+2f3mdsLJ+zjwLTACPAV8RVr5V4DDkv7K2fcC3bZXNxOQ9AvwNHAX8DEwQDiQeoCvgV+BWyX9kxBPUSR3/cuuUYGUzeEC+Rfmr4kfdXoELQAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\frac{1}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" 1 \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 197,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sympy.re(rzc)"
]
},
{
"cell_type": "code",
"execution_count": 198,
"id": "b5d08d9b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAGQAAAAfCAYAAAARB2hWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAERUlEQVR4nO2aa2gcVRzFf6lCaYyiRYQKKkWrYBHTRJTioyIoKP2g4gPFov2giFAs2lYswvEoqFQlxYIY2g/BIigKikJ9FBU0VktCa6rol1RCBBXBILXWBzXxw9ytk3Gze2cz+6J7YJmdO+ee/c/evf//nXu2a2Zmhg5aByc2O4C8sN0LbARWAacDPwKjwBZJI4HzIXBN6HIUmAjXtzc63rxY0OwA8sD2PSRf/l/A7cD5wN3h/P4UtQ/YDCwBzgNeBQZtr2hkvLWgbWaI7ZXADmCjpIHUpUngE9uLA+9c4FTgPUk/hbZB4DFgObA/pTkAXAlcKmk683mjwLCk9fW6p3JomwEBngf2ZgbjGCRNhbf9wCFgDMD2EuA5YBrYV+LbvgBYB1ybHYyAb4GGz6i2GBDby4CVwB0R9H6gBzhkewGwCPgbeFjSNyneBmBM0sdz6EwBl9UedW1olxrSF46jkdwdQC9wBfA+sF3S1hIhDNQtwBuptgHb61I6JwO/zyvqGtAuA9IdjocjuH3AHknjkvaRFPsHbF+U4iwlqTNfpdpuA46kzi8G0jOqIWiXAfk6HFeVu2i7OxyXAotJfdGSJkgK+ZpUl9PC8XDodzVwJklqK6XIXuDNQqLPgbaoIZJGbL8LbLO9CPgMmCGZDfcCBoZJ6sc0//9l7wZuBjaF88nAu9P2r8ALwDvAattjwIvAAZowIO0yQwBuIlktPQR8CYwAjwCf819t6QcOSvoz03c3sMz2cgBJPwOPArcCHwCDJEV+BfAF8Atwg6R/6ng/ZdHV2TppLcxKWbYngHNy9H9F0l2FRnScI1tDDgLZ6V4JPxQYSwcUlLJsd/JeAZDU1akhLYaGL3ttnwXsBM4g2Rp/UtLrjdaoh1YRaMay9yiwXtKFwHXAVtsnNUGjHlrzRtNTVngQWy3p+2Zq1EOrFhSesmIcvRS3Hzghe/N5HL+5NGqMvTCtjO5VJA+e/SRbNGslDZXjFpqycjh6BEPpZeC+MlJRjl8Vjbyx59ayPWT78QhqD8l+3IPAH5WIhc2QWEcvcBcCbwHPSNqT0Yly/CpphOvRbmA1rflC0i5gV/isoUrcIlNWlKNnuwsYAj6StLMMtarjV00jjxsYEU9DUciA5HT0LidJZwds3xja1kgqbZnHOH7VNPK4gdW0GoqiZki0oydpmMq1q+T4PQucAjwFjKcdv0oaKTdwS6ptAPhO0rbQdMwNjIgnrb2ZpLaVsBCYsb0h1Xa9pE9j9MqhqKKex9GrhhjHrxLq6Qa+RGJclV5vl2mLsZnnRFEzJO3ovZa9aLtb0pFsexleWcfPdsnx2zRX3xRi3cCnI7RmIdTB0r9bsP0bMCVpPK/WXChkQHI4etUQ6/hVQsu5gbZ7SJbvkGSls8Pz2pSkyTS3yOeQGEevGqIcv0poUTfwEpLl+n6SRYrD+yeyxKZvnXQwG+3kqR8X+Bct6x38fhVFpgAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle - \\frac{C R \\omega}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" -C⋅R⋅ω \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 198,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sympy.im(rzc)"
]
},
{
"cell_type": "code",
"execution_count": 199,
"id": "18c46477",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAOEAAAAjCAYAAABik23FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGT0lEQVR4nO2ca6gVVRiGn2OGnZNFWgRGF6Qs0CL1hGFhN0hKBCu6k3SCiigiKS2S4Os16GKFlhRJRpp/Cn8UBmZJdzVT85ZYP1TEyLJSyszKzNOPWdvGcbtn7X1m9sw5rgdk71mz5pvX8+3Fusy8q6Wzs5NAIFAcvYsWACDpNGAucDKwD3jCzOY1O0YesQKBNHoVLcCxD5hgZoOB0cB0SccWECOPWIFATVrKOByVtBYYa2bfFRkjj1iBQJKmDUclDQUmAZcCJwE/ACuBqWa2IlavHTgq+YOX9CFwhTvcB2xx175a5V5VYzSoO7NYgcaRdAkwEWgHTgHuMLPZhYrKiKYMRyV1EDW4v4GbgLOB293xPbF6/YE3gLurhBkOTAYGAGcBbwIzJQ1L3KtWjHp1ZxYr0GX6AuuBB4A/C9aSKbn3hJJGArOASWY2LXZqK/CZ+6EjqQ/wDvC0mS1NxDgTOAFYaGY/urKZwGPAEGB1Wgx3fhowChhhZvsT51YCi81sgk+sQHMxswXAAgBJs4tVky3NGI4+D3yZaIAHMLOdklqA2cBHZja3SrV2YBewFkDSAOA5YD+wypXVjCHpHOB+4MpkA3R8AwzziRUIZEmujVDSIGAkcEtK1YuJhqnrJF3jysab2dfuezvRcGSXpF5AK7AXeMjMNnjGmAisNbOPD6NhJ3ChZ6xAIDPy7gmHu8+VtSqZ2WJqz0+HEw1pnwWOB54ENprZdJ8YruFeD0yNlU0DNpvZDFd0HPCHp55AIDPy/qG1uc/dXYwzHFhqZhvNbBXRYs69ks7zvH4g0Zwy3pPdCOyJHZ8PbKAbIalDUqeky4rWEmicvBvhevd5abWTktqqlSfqDAT6E2tAZraFaDFmvKeOfu5zt4t5GdEy9153PAgYCrztGS8QyIxch6NmtkLSe8AMSa3AEqCTqGe7CxCwOCVMO9ECTLKXWgRcBzzsIWWri3GrpF+BF4F3gbHuQfzLwDpCIywtkvoSPZqCqPM43T173mlmWwsTlgHNmPdcS7SS+SCwBlgBPAJ8Qcpc0dEObDKzvxLli4BBkoakBTCzn4BHgRuAD4CZRAs1w4BlwA5gjJn966EnUAwXEI1+VhMtzMl9n1KkqCwo5WtrAT/cSxCvA5eb2SfFqgk0SmiE3QRJW4Az6rhkjpl15KMmkCWlsDIFvJhOtMIbZygwDphD9C5tnDU56wlkROgJuzFhONoz6A0gKbTEkmBmLXnfI+S7PJhZS+/Kl64ECs54P8qiK+S7efhoy+oRRXDG+1FWXfUS8u1PqraD5oSS+gHfAheZ2aZG7xqc8QfuOw9YZmbP56Grq3PCkO9sScu3q3OItuTq6GRgQTIhvq54V/cQJ3o9rvjDxWiUvJzxnk7vKcCnkmaZ2W9Z63L3S96zHnLJtyvvUTshdDXftbT1ilVoA+4EXktc2IGHK97VPZwT3csVnxKjbuqNJWm2pMc9w6c6vZ31aTNwW1d05UHO+YZushNCHTlvON9p2uI94Rii9zqXxC70csW7ulWd6L6u+FoxYudL44yvw+k9n8hP+VIzdNVBLvl253rcTgiN5ttHW3xhZhTwlZnFl69TXfHuJrWc6KmueI8YcWf8pG7mjF8OjJDUWjJdeeUbst0JodvmG/y0xXvCM4BtlQP5u+KhthPdxxWfFgO6rzN+G3A00TxiQIl05ZVvOLJ3Qojne5OPtngjbAW2x469XPGQ6kRPdcWnxVBOznhJk4nmLRX6AJ2SJsbKrjazz9Ni1aAyf2gtmWM/r3xXYpVyJ4Qm5PxAvn21xU/+wv/mVyiPKx7yc8a/QvT+ZeXf/CplPnarWlTmUT93MU7W5JVvKPdOCHnnvO58x3vC1UBH7Djuin8reaGkNjPbkyxP1KnqipdUccX7GHLB3xn/lGe8ipadRMOait7fiUyiG+uJk8K5wPdmtj21ZnPJPN+uXhY5zyXfTkveOa873/FG+D7wjKQTzWyHlccVDyV0xsvf6T2K6G9bNvLIN/TQnRDyzPeB4aibKC4Hbo6dL9wV77SV0Rmf6vSWdAzR37DqSwlFklO+oefuhJBbvpOvrV0FvAAMbvJ/sEci6T5gnJmNLlpLNUK+s6XRfB+0amNmC4keMp6aobYjmX+InnWVkpDvzGko38HUGwgUzH8lFRLshXfbmgAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\frac{C^{2} R^{2} \\omega^{2}}{\\left(C^{2} R^{2} \\omega^{2} + 1\\right)^{2}} + \\frac{1}{\\left(C^{2} R^{2} \\omega^{2} + 1\\right)^{2}}$"
],
"text/plain": [
" 2 2 2 \n",
" C ⋅R ⋅ω 1 \n",
"─────────────── + ───────────────\n",
" 2 2\n",
"⎛ 2 2 2 ⎞ ⎛ 2 2 2 ⎞ \n",
"⎝C ⋅R ⋅ω + 1⎠ ⎝C ⋅R ⋅ω + 1⎠ "
]
},
"execution_count": 199,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sympy.re(rzc)**2 + sympy.im(rzc)**2"
]
},
{
"cell_type": "code",
"execution_count": 200,
"id": "0436eb4f",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAFMAAAAfCAYAAACbKPEXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAADpklEQVR4nO2YT2hcVRTGf4mB0lpFiwgVFIpGwSI2GVGKaEVQULpQ8Q8KRV1URCwWTRWL8PkpaKlKigUx6CLYjeJCqVDFooLGqCS0ppa6SaXEhSIYpMaqJXZc3Dvy+jqZuUleMlN8Pxje3DNnvntycu6fOR3VapWSYuhqdQD1sH090AdUgAuAByUNtjSoBDpbHcAMLAcOAo8Bf7Y4lmQ62n2Z254CHi0r839GmcwCKZNZIGUyC6RMZoG05WluezlwSRwOA9uA3cCkpImWBdaEdq3Mq4D98bUUcHz/XCuDakZbVubpSrtW5mlJmcwC6QKwXa71eSKpo9wzC2RWLTjbFwK7gPOBaeB5Se8utsZCaBXBbPfMaWCzpMuBm4Edts9sgcZCaM2beS1z22PAekk/tlJjIbTmwinL3PYaYAuwDjgP+AkYBbZLGsn4VYAz8oHb/gS4MQ6ngSPxu2/UmauuxlwoUiunm9z1P2mZ236AkLi/gXuAS4H74/jhjN8K4C3goTqavcBWYCXhJ+HbwIDtntxcjTRmxVy0bA/afjbBNbnr/19l2l4LvAlskdSf8ZkAPo8BY3sJ8D6wTdJwLsCLgXOAjyT9HG0DwDPAasJPwoYa8fN+4Drgakkncp+NAkOSNqdozRdJe4A9ca7BRr7ZZf4K8E0ukVnRSdsdwCDwqaRdddwqwFFgLE6+EngZOAHsi7aGGrYvAzYBN+UTGfke6EnRWmxql/ZuYC1wbxP/awnL/4Dt26Jtg6Tv4vsKYVkctd1JaFIcB56QdChRow8Yk/TZDDFMAtckai0qtcrsjc/RRs6Shmh8neolbBUvAWcDLwDjknakaMR/wJ3A9oytH/hB0s5oOgv4IzGerPZWwl5eYwlQtd2Xsd0i6YsUvXrUAlkWn1NzFYr0AsOSxiXtIxxaj9i+IvH7qwh7bray7gaOZcZXAoeYPa8DazKv3XVsDYupGbXKPBif64B38k62l0k6lrfnfFYBK8gkQtIR2/uBDcCTCfGcG59TUfMGwnXkeBx3E/7oFxO0TkLSJGGLqMX7O6HZPD5brZnoihON2P4Q2Gl7KfAlUCVU2kZCc3aoiVaFcNDkq2YvcAdpyZyIGvfZ/g14FfgAWB8v5K8BB4D3ErQKIdf17wQuinfxU7r+2f3mdsLJ+zjwLTACPAV8RVr5V4DDkv7K2fcC3bZXNxOQ9AvwNHAX8DEwQDiQeoCvgV+BWyX9kxBPUSR3/cuuUYGUzeEC+Rfmr4kfdXoELQAAAABJRU5ErkJggg==",
"text/latex": [
"$\\displaystyle \\frac{1}{C^{2} R^{2} \\omega^{2} + 1}$"
],
"text/plain": [
" 1 \n",
"────────────\n",
" 2 2 2 \n",
"C ⋅R ⋅ω + 1"
]
},
"execution_count": 200,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# This is the square of the magnitude of voltage dividing impedance across R\n",
"c3_2 = cancel(_)\n",
"c3_2"
]
},
{
"cell_type": "code",
"execution_count": 201,
"id": "225bcd4b",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAH4AAAAUCAYAAABLTIm0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAGA0lEQVR4nO2ae4xV1RXGfwNqRUnFdy2WV0BoQgiiNdgWxYCg6YvWVzClPNRobUoNtbEmxm8+0Zao4aFRCNEWpFpFkaho1X+k2lpHUUGNWCspSqqtJr5tfTAd/1j7wHHPucPAvXptOl8yWfestffaa5+199pr7TMtHR0d9OD/D72abUAPmoPdmm3A5xW2lwMnAoMlvddse3YFto8A1gFnSbquLGtpZqi3PQj4O7Bc0oymGZLB9teANuB8SfNrtBkGzAImAQOAfsCbwAbgdmCZpH+X2t8PHJ+peQ14Hlgk6dbGzmLbuKuBscAwSe8W/J4dX43LgLeBxbnAdgtwCXABsDvwMHAb8BYwkFgIE4CpwLhS1yOADmBuorsBI4ApwDdsz5G04FOYy6+JRTwb+FXB7HF8BtuHAROB6yT9p6LJb4AZwLPA6ZI2ZP37AHOAoSXeEGA/4K+SlLU/h1hgPwMa7nhJj9p+Djjb9jxJ/4UGO972DOA7wOHAIcBHwNPAYkm/y9q2AsVLmG57ekk8U9KyndGXdA4iHR1AKzCPcGJf4BmgVdKaHUxjFtAC3FKhfw7h9I3AWEnv5G3SYrksLYACRyb6eMV49yZ6UJUxts8GlgDzJf28ltG2NwFDgC9J+lcmvpl4H8cD90Hjs/rFRLh7EFiYBhwIrLA9N2u7FliUfm8AXPpbvwv6yhgIPAoMAlYQThwJ3GH7uB3MYSLQDjxSZto+hDgCtgKnVjm9jCxadOX4IjJszAW2DwYuB/7J9k1SC4Xur1fI/pzothyj0aF+pKRNZYbtPYA/AL+0vUTSPwAkrbW9mQhx6yW11qMvw3hid7vU7yZid/0CeKDKeNt7A6OBjRWZ/HnAnkTS9kxV/y5QOH5dNt4BwJXpcV5Fv4uBLwIXlROzGtic6IgK2WOJHlMwGrrjcycl3ofANcQim/AZ6XsRuDTrdx/wEnBUF0P2B3oDr1TIpiR6Q5dGZ0jJ4Jj0+F3brbbn2r4BeIEIz+fmWX1aFGcQSeb13RiqWKj75gJJbwHvE9UHkO34tAMHdmdCCTdK+mGp/wAi252QBumTte+/E7rr0bdeUnsFfwtwdBdD7p/oG5kdfYHDiGy8bQdm5xgG7JN+52f0e8DJku6lM04FvgCszMrCo4jk8SpJD5fa75XoBzXseB04uHjIQ/0mYmV0Fy+XDBpCnKv7Ag8B9xMlTjtx1k5PE+kW6tT3Zg3+VrqOcsW5vGfGPzDRt8tO6CaKMP9bSbMAbO9H2D8f+L3twZJym8cn+seM/23gNOCKjF/kCn+rYUcfts/vk46XtFOhOMMcYsfMlLSsLLA9lZhoM/V1B68mun/GL8JoH9u9a0STWuh0vkt6HVhg+2jgFGAacHXWb3iiz2X8yYm+VDBs9wK+mR7zhVLI+xEVD9DYM75YcasqZMfW6FO8wN4N0lcvXiFu04aXmZJeJfKGPdi+EyuRXnIZXWX0xTXq1ApZcTxsS+psf5XtOUo5pE8kysE2SS9W6BpOlKjrC0YjHb850fFlpu3JwJk1+rxBnJsDKmS7oq8uSOogSscDbA/NxMXlyrW2O2XOtltsn0iUnAWvF3EHsZUoWXM8QBxLY21/OZO9luioQj9R2j2R+MMTf6/Eh7ilq8LY0nhAY8u5a4GZwK22byPO/5HACcBK4lz6BCS9a7sNGGf7RuLeuh24c1f0NQirgJOIkPpCiX8V4YRZwNPp7v154lLpK0SoPRS4qdRnBHF5tEFSp9xJ0ke27wFOB75PVCsFVhPRYqHt0cQCOpKoxdcCy23fBXyPWARLJd1RY06TiPe6Td6wHS/pKeA44u76W8CPiRr0B8TNUy1MA+4mHCriLntMHfrqxSrirP9RmSmpQ9IZyZY1RL3/EyL6jAL+QtzqzS516yrMF1id6EkZ/wri0qodOIfYpJMktaXnvYk7kA+BcxOvE2zvQ5SiayRtKfhN/Tr3eYXtC4kPGmMkPdlse+qB7Z8S0WqcpD8V/J5/xKjGAiJrvqTZhtSD9L3gQmBV2enQ4/hKpPN4GrAuXeP+r2IQsBQ4Pxd8DFJEJqq+3vTWAAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle - \\operatorname{atan}{\\left(C R \\omega \\right)}$"
],
"text/plain": [
"-atan(C⋅R⋅ω)"
]
},
"execution_count": 201,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"phase = atan(sympy.im(rzc)/sympy.re(rzc))\n",
"phase"
]
},
{
"cell_type": "code",
"execution_count": 202,
"id": "26cdf8e7",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAD0AAAAkCAYAAAA6uzK6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAABJ0AAASdAHeZh94AAAC60lEQVR4nO2ZX2hOYRzHP+8ohGJKWSgipZatiSKSIpYL5V+54sId2cVckPr6kiY3k5W4W+RKodES4cIsF8qGuJELyiSWMlbCXJwznZ295rzv3p0tZ586ved5nvf9/X7f93ee3/N0nlxfXx9pYHstUA/UABXAXknNqTiPUZair2nAc+Ag0Jui30Hk0sp0FNs9wP4sZHrMMC46K4yLzgqpVW/b04BFYbMdOAW0AN2S3qQSREiamV4OPAmvKYDD++MpxgCM0jo92mRyTo+LzgoTAWxnZmJLyo0XsqyQSdETk3zJ9lzg7QjHkgqScolEA7VAhaSukQwoLZI+3nP+F8GQ4PG2PZlhvNOyPQ+4BMwGfgAnJF0p1l4pSJLp9cD9Yfj4AdRJWgpsBM7YnjoMe8Mmiega4HGxDiR1SeoI798DH4HyYu2VgiSic5JKsoOxXQNMkDSqK8GQc9p2JfCsFI5slwMXgX2lsBezXdBBwp9M215g+2RsfANwpwRBTQKuA6cktSf8TbPtYwldFHSQEM10JbDHdoOknn5jkftoQI3AGmCFpF+xscdAm6S6sJ0DmoF7ki4lFFEQklqB1tBf87++/yfTklqAmwQVFtuzCIrOAGwvAQ4Ah+KCQ14C1ZH2amAXsNV2R3hVJhU0EsTn9A1gG3AV2ATcyvObeqBT0t+WsW5gZX9DUhtjbI8fF30XaLJdBiyUdDk6GPZvB05H+hqB15Kawq7pwNdCA7F9BDgS6ZoE9Nmuj/RtlvSgUNtxBmRAUi9BQVhFsKmIswCYwcCKvhP4FmkvA14UEct5oCpyteTpK3q/ECXfknUDaACO5hmbGX72ANheR7BEfA/bi8PgGgoNRFI3wdQgtPWF4J34q0Jt/Yt8om8SBP0wz9gb4Bew2/Zn4CzBn7TFdidwDngKXCt1oEMRO0goA+bbruIvBwmDCoykdwR75UGPt6QPwGFgB3AbuEBQ2KqBR8AnoFbSz5KoSU5BBwmZfEf2G1l//7wdGFt8AAAAAElFTkSuQmCC",
"text/latex": [
"$\\displaystyle \\frac{1}{\\sqrt{\\omega^{2} + 1}}$"
],
"text/plain": [
" 1 \n",
"───────────\n",
" ________\n",
" ╱ 2 \n",
"╲╱ ω + 1 "
]
},
"execution_count": 202,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"u = sqrt(c3_2).subs([(A,1), (C,1), (R,1)])\n",
"u"
]
},
{
"cell_type": "code",
"execution_count": 203,
"id": "75116894",
"metadata": {},
"outputs": [],
"source": [
"f1 = lambdify(w, u)"
]
},
{
"cell_type": "code",
"execution_count": 204,
"id": "25585a9d",
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABDYAAAHNCAYAAADlvvsxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACrZElEQVR4nOzdeVhUZf/H8ffMsImKC6sLirviAi5JaJrlVpppq6mlUdlTSlnUU9GiaSXVU2aLaZmm2aJl2aahhFma+77iLriB4IYCwsDM7w9/UoQL0sAZ4PO6Lq7nmTPn3PP5zhjefuec+5jsdrsdEREREREREZEyyGx0ABERERERERGR4lJjQ0RERERERETKLDU2RERERERERKTMUmNDRERERERERMosNTZEREREREREpMxSY0NEREREREREyiw1NkRERERERESkzFJjQ0RERERERETKLDU2RERERERERKTMUmNDRERERERERMosNTZEREREREREpMxSY0PkEtasWUOnTp2oXLkyJpOJjRs3Gh1JSsDLL7+MyWQiLS3N6CgiIiIXpTlJxaA5iUjxqbEhchFWq5W77rqLEydO8M477zBr1izq169vdCwRACIiIvDw8CAvL++S+9x88814enpy6NChUkwmIiKOpjmJODPNScRZuBgdQMQZ7d27l8TERKZOncpDDz1kdByRAlq0aEF2djb79++ncePGhZ5funQpsbGxPPvss9StW9eAhCIi4iiak4gz05xEnIXO2BC5iGPHjgFQvXr1y+6XkZFRCmlECgoODgYgISHhos9HR0dTs2ZNnnvuudKMJSIiJUBzEnFmmpOIs1BjQ+Qf7r//fq6//noA7rrrLkwmE926dcu/7nH79u0MHjyYGjVqcN111+Ufd/jwYR544AH8/f1xd3enZcuWTJ8+vdD4y5Yt45prrsHDw4NGjRrx0Ucf5Y/9zxxBQUGFjr/YvkV9/QvH7tmzh/vvv5/q1atTrVo1IiIiyMzMLDTegw8+SO3atXF3d6dBgwY8+uij5OTk8Ntvv2EymZg3b16hHF9++SUmk4kVK1Zc8j2eO3cuJpOJ33//vdBzH330ESaTia1bt3LmzBmeeOIJgoKCcHd3x8/Pj549e7J+/fpLjv33OhMSErj77rvx8vLC29ubUaNGce7cuYsec+rUqcu+J4mJiYwYMYJmzZpRqVIlvL29ueuuuzhw4EChsYqSu6h/Xi7mwiRix44dhZ6bP38+f/75J9HR0VecBIuIiHPTnOSv8TQn0ZxE5HJ0KYrIP/znP/+hTp06jB8/nscff5xrrrkGf39//vzzT+D8xKJJkyaMHz8eu90OQEpKCtdeey0mk4nIyEh8fX355ZdfePDBB0lPT+eJJ54AYMuWLfTq1QtfX19efvllcnNzGTNmDP7+/v8qc1Ff/4K7776bBg0aEBMTw/r16/nkk0/w8/PjjTfeAODIkSN07NiRU6dO8fDDD9O8eXMOHz7M3LlzyczMpFu3bgQGBvLFF19w2223FRj7iy++oFGjRoSHh18yb9++falSpQpff/11/oTtgjlz5tCyZUtatWrFkCFDmDt3LpGRkQQHB3P8+HGWLVvGjh07aNeu3RXfl7vvvpugoCBiYmJYuXIl7733HidPnuSzzz676L6Xe0/WrFnD8uXLueeee6hbty4HDhxg8uTJdOvWje3bt+Pp6Zk/1iOPPHLZ3Ff7ef1TUFAQlSpVKvTtiN1u58UXXyQwMJDIyMgrvj8iIuLcNCfRnERzEpEisotIIb/99psdsH/zzTf528aMGWMH7IMGDSq0/4MPPmivVauWPS0trcD2e+65x16tWjV7Zmam3W632wcMGGD38PCwJyYm5u+zfft2u8Visf/zP8dhw4bZ69evX+i1LuQozutfOPaBBx4osN9tt91m9/b2zn88dOhQu9lstq9Zs6bQ69tsNrvdbrdHR0fb3d3d7adOncp/7tixY3YXFxf7mDFjCh33T4MGDbL7+fnZc3Nz87cdPXrUbjab7ePGjbPb7XZ7tWrV7CNHjrziWP90oc5bb721wPYRI0bYAfumTZsK7Xul9+TCe/h3K1assAP2zz77rMD2K+Uu6ud1OW3btrWHh4cX2PbVV1/ZAfunn356xeNFRKRs0JxEcxLNSUSuTJeiiFylRx55pMBju93Ot99+S79+/bDb7aSlpeX/9O7dm9OnT7N+/Xry8vJYuHAhAwYMoF69evnHt2jRgt69exc7T1Ff/3I1dOnShePHj5Oeno7NZuP777+nX79+dOjQodDrXTjldOjQoWRnZzN37tz85+bMmUNubi733nvvFXMPHDiQY8eOsWTJkvxtc+fOxWazMXDgQOD89cSrVq3iyJEjRX4//m7kyJEFHj/22GMALFiwoNC+l3tPACpVqpT/nNVq5fjx4zRu3Jjq1asXen8vl7s4n9fFBAcHs3PnzvzHubm5jB49mtatWzN06NArHi8iImWf5iSak2hOInKeGhsiV6lBgwYFHqempnLq1Ck+/vhjfH19C/xEREQA5xf+Sk1NJSsriyZNmhQas1mzZsXOU9TX/7u/T2IAatSoAcDJkydJTU0lPT2dVq1aXfZ1mzdvzjXXXMMXX3yRv+2LL77g2muvveiq2P900003Ua1aNebMmZO/bc6cOYSGhtK0aVMA3nzzTbZu3UpgYCAdO3bk5ZdfZt++fVcc+4J/vteNGjXCbDZf9BrUy70nAFlZWYwePZrAwEDc3d3x8fHB19eXU6dOcfr06QLHXi53cT6vi2nRogUnTpzI3/fTTz9l9+7dxMTEYDbrV7uISEWgOcl5mpOUjTnJgQMHMJlMVKlShcqVK9OyZcuLrm0iUhxaY0PkKv29Sw5gs9kAuPfeexk2bNhFj2nTpk3+fkV1scW4gEL3CS/q6/+dxWK56H72/78+t6iGDh3KqFGjOHToENnZ2axcuZIPPvigSMe6u7szYMAA5s2bx4cffkhKSgp//vkn48ePz9/n7rvvpkuXLsybN49Fixbxv//9jzfeeIPvvvuOm2+++aqywqXfU7jye/LYY4/x6aef8sQTTxAeHk61atUwmUzcc889hT7by+Vu27YtcHWf18X8fbGuatWq8corr9C1a1f69u17xWNFRKR80JzkL5qTOP+cZNOmTbRs2ZKtW7dit9t54YUXePjhhwuc7SFSXGpsiPxLvr6+VK1alby8PHr06HHJ/fLy8qhUqRK7d+8u9NzFfqHXqFGDU6dOFdqemJhYrNcvKl9fX7y8vNi6desV973nnnuIioriq6++IisrC1dX1/xTNoti4MCBzJw5k/j4eHbs2IHdbi90fK1atRgxYgQjRozg2LFjtGvXjtdee61Ik4jdu3cX+DZrz5492Gy2i67sfiVz585l2LBhvP322/nbzp07d9HP6HK5f//9d4d8Xn+/vdr69es5ePAg33zzTaH97HY7U6dO5Y033iA5OZlGjRoxf/58AgMDi/3aIiLinDQn0ZzkYpxlTrJp06b8ZorJZKJz58589NFHxX5dkb/T+coi/5LFYuGOO+7g22+/vehfvKmpqfn79e7dm++//56kpKT853fs2MHChQsLHdeoUSNOnz7N5s2b87cdPXq00O3Mivr6RWU2mxkwYAA//fQTa9euLfT8379B8fHx4eabb+bzzz/niy++4KabbsLHx6fIr9WjRw9q1qzJnDlzmDNnDh07dsz/Sz8vL6/Q6ZR+fn7Url2b7OzsIo0/adKkAo/ff/99gGJ9s2KxWAp9e/T+++8X+rbqSrkd9Xk1btwYNzc31qxZQ0xMDLfffjthYWGF9nvllVeYNm0aCxYsID09nffffx9vb+8ivYaIiJQtmpNoTvJ3zjYn2bRpU/4dZA4fPswbb7zBXXfdVaTXELkSnbEh4gCvv/46v/32G2FhYQwfPpzg4GBOnDjB+vXr+fXXXzlx4gQAY8eOJTY2li5dujBixAhyc3N5//33admyZYHJApz/5uHZZ5/ltttu4/HHHyczM5PJkyfTtGnTQgs5FfX1i2r8+PEsWrSI66+/nocffpgWLVpw9OhRvvnmG5YtW1bgXuRDhw7lzjvvBM7/I/pquLq6cvvttzN79mwyMjJ466238p87c+YMdevW5c477yQkJIQqVarw66+/smbNmgLfUFzO/v37ufXWW7nppptYsWIFn3/+OYMHDyYkJOSqcgLccsstzJo1i2rVqhEcHMyKFSv49ddfCzUJipLbEZ+XxWKhadOmzJgxA5PJVOB02QuSk5N5++23WbduXf41xv+8lZ2IiJQvmpNoTnI1uUtrTgLnGxuLFi3ipZdeIiMjg0ceeYR33333qusXuajSuwGLSNlxuVurpaamXvSYlJQU+8iRI+2BgYF2V1dXe0BAgL179+72jz/+uMB+v//+u719+/Z2Nzc3e8OGDe1Tpky56O3S7Ha7fdGiRfZWrVrZ3dzc7M2aNbN//vnnl9y3KK9/qRo+/fRTO2Dfv39//rbExET70KFD7b6+vnZ3d3d7w4YN7SNHjrRnZ2cXODY7O9teo0YNe7Vq1exZWVmXflMvIS4uzg7YTSaT/eDBgwXG/e9//2sPCQmxV61a1V65cmV7SEiI/cMPP7zimBfq3L59u/3OO++0V61a1V6jRg17ZGRkoYxFfU9Onjxpj4iIsPv4+NirVKli7927tz0hIcFev359+7Bhw646d1H/vFzO3XffbQfsDz/88EWf/+yzz+y9evUq8ngiIuJ8NCfRnKQ8zEnOnDljN5lM9pMnT9rz8vLsb7zxhj00NLTI44tcicluv8qVeUTE4V5++WXGjh171QtlOYPc3Fxq165Nv379mDZtmtFxgL/ez9TU1Ks6DbW8effdd1m+fHmBVd5FREQuR3MSx9Kc5Lzly5dz9913c+jQIQCys7Px9fVl2bJlRVqgVORKtMaGiPwr33//PampqbpPuRNq06YNv/32G7t378Zms7F+/XqOHj1qdCwREZESoTmJ87pwR5QL3N3d6datGz///LOBqaQ8UWNDRIpl1apVTJ06laioKNq2bau1G5zQDTfcwMiRI+natSvVqlXjkUcewdXV1ehYIiIiDqU5ifPbtGkTrVq1KrCtd+/eamyIw2jxUBEplsmTJ/P5558TGhrKjBkzjI4jlzBmzBjGjBljdAwREZESozmJ85syZUqhbSNHjmTkyJEGpJHySGtsiIiIiIiIiEiZpUtRRERERERERKTMUmNDRERERERERMqsCrfGhs1m48iRI1StWhWTyWR0HBEREadit9s5c+YMtWvXxmzW9x8lTfMSERGRSyvqvKTCNTaOHDlCYGCg0TFERESc2sGDB6lbt67RMco9zUtERESu7ErzkgrX2KhatSpw/o3x8vJyyJhWq5VFixbRq1evcnErRdXj3FSPc1M9zk31XFl6ejqBgYH5f19KydK85MpUj3NTPc5N9Tg31XNlRZ2XVLjGxoXTPL28vBw6gfD09MTLy6vc/IFUPc5L9Tg31ePcVE/R6bKI0qF5yZWpHuemepyb6nFuqqforjQv0cWzIiIiIiIiIlJmqbEhIiIiIiIiImWWGhsiIiIiIiIiUmapsSEiIiIiIiIiZZYaGyIiIiIiIiJSZqmxISIiIiIiIiJllhobIiIiIiIiIlJmqbEhIiIiIiIiImWWGhsiIiIiIiIiUmapsSEiIiIiIiIiZZahjY0//viDfv36Ubt2bUwmE99///0Vj1myZAnt2rXD3d2dxo0bM2PGjBLPKSIiIiIiIiLOydDGRkZGBiEhIUyaNKlI++/fv5++fftyww03sHHjRp544gkeeughFi5cWMJJRURERERERMQZuRj54jfffDM333xzkfefMmUKDRo04O233wagRYsWLFu2jHfeeYfevXuXVMwrSjyRyalsOHMul2oWFyxmk2FZRERERERERErbmXO5HDxrzGsb2ti4WitWrKBHjx4FtvXu3ZsnnnjiksdkZ2eTnZ2d/zg9PR0Aq9WK1Wp1SK7bJ68k/ZwLY9YvxmyC2tUrUb+mJy1rV6VD/Rp0qF+dqh6uDnmt0nDhfXHU+2M01ePcVI9zUz3OrSTqKS/vjYiIiJSs01lW1uw/war9x1m1/wRbD5/Gw2JhuM1e6lnKVGMjOTkZf3//Atv8/f1JT08nKyuLSpUqFTomJiaGsWPHFtq+aNEiPD09HZIrL9eCCbBjwmaHQyezOHQyiz/3HufjpQewmOw0rWYn1NtOW2877haHvGyJi4uLMzqCQ6ke56Z6nJvqcW6OrCczM9NhY4mIiEj5cTrLyur9J1ix9zir9h9n+9F07P/oYVSyQOrZbOq6u5VqtjLV2CiO6OhooqKi8h+np6cTGBhIr1698PLycshr9OxpZdGiOK6/8UbOWuHgiSz2p2Ww4eBp1hw4SeKJTHacMrHjFPx82IU729XhvmsDCazhmMaKo1mtVuLi4ujZsyeurmXnTJNLUT3OTfU4N9Xj3EqingtnNoqIiEjFlpWTx9rEEyzfe5zle9LYcvg0/zwZo6FPZcIa1iSsgTftAr3Y8Odi/L08Sj1rmWpsBAQEkJKSUmBbSkoKXl5eFz1bA8Dd3R13d/dC211dXR06qTWZoEolD2p4uRLoXZVOTWBI+Pnn9hw7y4ItR5m34TD70zL4dHkis1Ymcfc1gYzq3sSQD74oHP0eGU31ODfV49xUj3NzZD3l6X0RERGRosvJtbHx4CmW701j+d7jbEg6iTWvYCejoU9lrm3kzbUNvbm2QU38/vZvWavVyobSDv3/ylRjIzw8nAULFhTYFhcXR3h4uEGJiqaxXxUe796EyBsa8/vuVKYv28/S3Wl8uSqJb9cd4tFujXi0WyPcXcrINSoiIiIiIiJSpuXZ7Gw7cpo/9xxn+d401h44SZY1r8A+tap50KmRD50bexPeyJta1S5+QoHRDG1snD17lj179uQ/3r9/Pxs3bqRmzZrUq1eP6OhoDh8+zGeffQbAI488wgcffMAzzzzDAw88wOLFi/n666+ZP3++USVcFbPZxA3N/LihmR+r9h3nfwt3sjbxJBN/3c2Pm47w2oDWhDfyNjqmiIiIiIiIlEMHT2Tyx+5Ulu5KY/neNNLP5RZ43ruyG+GNvOnUyIdOjbyp7+2JyeT8d/00tLGxdu1abrjhhvzHF9bCGDZsGDNmzODo0aMkJSXlP9+gQQPmz5/Pk08+ybvvvkvdunX55JNPDL3Va3GFNfTmm0fC+XnzUcb9vJ19qRkMmrqSh65rwH9vaqazN0RERERERORfOZudy8q9x883M3ansT8to8DzVd1dCGvoTadG3nRq7E0z/6plopHxT4Y2Nrp164b9n8uo/s2MGTMuesyGDUZdueNYJpOJfiG16drUlzdiE/hyVRKfLNvP8r3HeW9QWxr7VTE6ooiIiIiIiJQRNpudrUdOs3R3Gn/sSmX9P9bJsJhNtKtXnS5NfOnSxIfWdarhYjEbmNgxytQaG+VVtUqujL+tNTc28+O/czex/Wg6/T9YxsR72tIz2P/KA4iIiIiIiEiFlJJ+jj92pfLH7jSW7U7lZKa1wPP1anrStakPXZr4Et7IGy+P8rdQuBobTqRHsD+xT3Tl8a82sGr/CR6etZanejZl5A2Ny+TpQCIiIiIiIuJYeTY7mw6d4reEYyxOOMa2IwVv1V7F3YVOjbzp0tSXrk18qO9d2aCkpUeNDSfj7+XB5w+F8crP2/lsRSJvLdrFnmNnefPOENxcyv4pQiIiIiIiInJ1Tmda+X13Kr8lHOP3XamcyMjJf85kgjZ1qtG1qS9dm/oSGlgd13JwecnVUGPDCblazIzr34oWtbx46futfL/xCCcyrUwe0o7K7vrIREREREREyjO73c7OlDMsTjjGkoRU1iWdJM/211oZVT1c6NrUlxub+XF9M198qrgbmNZ4+leyExvUsR61qnnw6Ofr+WNXKoM/WcWn919DzcpuRkcTERERERERBzpnzWPF3uP8uiOF3xKOceT0uQLPN/Wvwg3N/LihuR/t69eocGdlXI4aG06uWzM/vhweRsSMNWw6eIp7Pl7BV8OvxbuCd+RERERERETKusxc+GHjERbvSmPJzlQyc/Lyn3N3MdOpkTc3NvejWzM/Amt6GpjUuamxUQa0rVeDuY+EM3jqKnalnGXIJ6v4cvi1OnNDRERERESkjDl8Kou4bcks2pbMyv0WbGu25j8X4OVB9xZ+dG/hR3hDHyq5WQxMWnaosVFGNParylcPX8s9H68kIfnM+ebGQ2HUUHNDRERERETEadntdhKSz7BoWwqLtif/4y4mJpr6VaFXywB6BvvTuk41zGbdEfNqqbFRhjTyrcJXw883N3YcTee+6av4avi1VC2H9yEWEREREREpq2w2OxsOnmTBlmQWbkvm0Mms/OfMJuhQvybdm/vgkrKdobd3wtVV/6b7N9TYKGMa+1Vh9sNh3PPxSrYeTuc/s9bxacQ1uLvoFCURERERERGj5NnsrEs8yYItR/ll61FS0rPzn/NwNdOliS89g/3p3twP7yruWK1WFizYbmDi8kONjTKosV9VZkR0ZOBHK1i+9zhRczbx3qC2WHTKkoiIiIiISKnJs9lZvf8EC7YcJXZbMqln/mpmVHV3oWewP71bBdC1ia/WyyhBamyUUa3qVOPjoR24/9PVzN9yFO8qboy9tSUmk5obIiIiIiIiJSU3z8aq/29mLNyWTNrZnPznvDxc6BkcQN82AXRu7KMz60uJGhtlWOfGPky4O5THZ2/gsxWJ1K1RiYe7NjI6loiIiIiISLlis9lZtf8EP246wsJtyZzI+KuZUd3TlV7B/tzcuhadG/ng5mI2MGnFpMZGGdcvpDbHzmTzys/bifklgUa+Vejewt/oWCIiIiIiImWa3W5n6+F0fth4mJ83HyU5/Vz+czU8XbmpVQA3t6pFeCNvXC1qZhhJ73458EDnIAaH1cNuh8e/2kBCcvqVDxIREZFCJk2aRFBQEB4eHoSFhbF69epL7tutWzdMJlOhn759+5ZiYhERcbS9qWd5J24XN779O/0+WMYny/aTnH6Oqh4uDOwQyOcPhrHmhR7E3N6Grk191dRwAjpjoxwwmUyMvbUlB9IyWL73OA/OWMsPkZ3xqeJudDQREZEyY86cOURFRTFlyhTCwsKYOHEivXv3ZufOnfj5+RXa/7vvviMn569TkY8fP05ISAh33XVXacYWEREHOHo6i583HeWHTYfZevivL4o9XM10b+FP/5DaXN/MV2tmOCk1NsoJV4uZD4e047YPl7M/LYNHZq3jy+HX6vouERGRIpowYQLDhw8nIiICgClTpjB//nymT5/Oc889V2j/mjVrFng8e/ZsPD091dgQESkjzpyzsmDLUb5bf5jVB05gt5/fbjGb6NLEh/6htekZHEAVd/2z2dnpEypHqnu6MW1YB/pP+pO1iScZv2AHL9/a0uhYIiIiTi8nJ4d169YRHR2dv81sNtOjRw9WrFhRpDGmTZvGPffcQ+XKlS+5T3Z2NtnZf90KMD39/LeCVqsVq9VazPQFXRjHUeMZTfU4N9Xj3FRPYXk2O8v3HWfehiPE7TjGOast/7kO9atzS5ta3NTSH+/Kbv+/1V5i758+n6KPeSVqbJQzDX2rMHFgKA/OXMuM5QdoW686/UPrGB1LRETEqaWlpZGXl4e/f8EFuP39/UlISLji8atXr2br1q1MmzbtsvvFxMQwduzYQtsXLVqEp6fn1YW+gri4OIeOZzTV49xUj3NTPZCcCatTzaxNNXHaasrf7l/JzjW+Ntr72KnpngZpaaz6fYsj416RPp9Ly8zMLNJ+amyUQ91b+PPYjY15f/Eenvt2C80DvGgWUNXoWCIiIuXWtGnTaN26NR07drzsftHR0URFReU/Tk9PJzAwkF69euHl5eWQLFarlbi4OHr27Imrq6tDxjSS6nFuqse5VfR6Tmbm8PPmZOZtPMKWv62bUa2SC7e0rsVtbWvTpo4XJpPpMqOUnIr++RTFhTMbr0SNjXLqiR5N2XjwFEt3p/HI5+v4IbIzXh5l/z8WERGRkuDj44PFYiElJaXA9pSUFAICAi57bEZGBrNnz2bcuHFXfB13d3fc3Qsv7u3q6urwSW1JjGkk1ePcVI9zq0j15Nns/LErlTlrDhKfkII17/zCGS5mE92a+XJHu7rc2MLPqRYBrUifT3HGKgo1Nsopi9nEu/e0pd/7y9iflsF/v9nElHvbG9aNFBERcWZubm60b9+e+Ph4BgwYAIDNZiM+Pp7IyMjLHvvNN9+QnZ3NvffeWwpJRUTkYg6dzOTrNQf5Zt0hjp4+l789uJYXd7SvS//Q2rprZDmmxkY5VrOyGx8OacddU1awcFsKs1YmMjQ8yOhYIiIiTikqKophw4bRoUMHOnbsyMSJE8nIyMi/S8rQoUOpU6cOMTExBY6bNm0aAwYMwNvb24jYIiIVVk6ujV93pPDV6iSW7UnLv6tJdU9Xbm9bl7s61KVFLcdc5ifOTY2Nci4ksDrP3dyccT9v59X5O7gmqKb+4xYREbmIgQMHkpqayujRo0lOTiY0NJTY2Nj8BUWTkpIwmwveRn3nzp0sW7aMRYsWGRFZRKRC2peawbcbj/LtukMcz8jJ3965sTcDr6lH75b+TnWpiZQ8NTYqgIjOQSzbk8bihGM89tUGfozsjKebPnoREZF/ioyMvOSlJ0uWLCm0rVmzZtgvfEUoIiIl5pw1j583HmHyVgt7V/yZv92vqjt3dajL3R0Cqe996dttS/mmf91WACaTif/d2Yab313KnmNnGffTdl6/o43RsURERERERC7r4IlMvlydxJw1BzmRkQOYMJvgxuZ+DLymHjc088XFYr7iOFK+qbFRQXhXcWfiwFCGTFvF7DUH6dzYh34htY2OJSIiIiIiUoDNZueP3anMWpHI4p3H8tfOqFXNg7ZeGUTfcwOB3lWNDSlORY2NCqRTYx9GdGvEpN/28vx3WwgNrE5gTU+jY4mIiIiIiHAyI4dv1h3ki1VJJB7PzN/epYkP911bny6NarBoYSwBXh4GphRnpMZGBfNEj6as2Huc9UmnePqbTXw1/FrMZt0CVkREREREjLH50Ck+W5HIT5uOkJ1rA6Cqhwt3tQ/k3mvr0dC3CgBWq9XImOLE1NioYFwtZt4ZGMrN7y5l1f4TTP9zPw91aWh0LBERERERqUBy82ws2p7CtGX7WZd4Mn97y9peDA2vT7+Q2rrhgRSZ/qRUQPW9K/Ni32Cen7eFNxfupGtTX5r66xo1EREREREpWaezrHy95iAzlh/g8KksAFwtJm5pU5v7wuvTNrA6JpPOKJero8ZGBTWoYyBx25P5bWcqT87ZyLwRnXFz0WrCIiIiIiLieAfSMpix/ADfrD1IRk4eADUru3FvWD3uvbY+flo3Q/4FNTYqKJPJxBt3tKHXxD/YdiSd9+J383TvZkbHEhERERGRcsJut7Ni33GmLztAfEJK/t1NmvpX4cHrGtA/tA4erhZjQ0q5YPhX9JMmTSIoKAgPDw/CwsJYvXr1Jfe1Wq2MGzeORo0a4eHhQUhICLGxsaWYtnzx8/LgtQGtAfhwyR7WJ528whEiIiIiIiKXl5tn44eNh+n73jIGT13FrzvONzVuaObL5w+GsfCJrgy8pp6aGuIwhp6xMWfOHKKiopgyZQphYWFMnDiR3r17s3PnTvz8/Art/+KLL/L5558zdepUmjdvzsKFC7nttttYvnw5bdu2NaCCsq9vm1rEba/N9xuPEDVnIwtGdcFVl7SJiIiIiMhVysrJ4+u1B5m6dB+HTp5fP6OSq4U729fl/s5BNPr/u5uIOJqhZ2xMmDCB4cOHExERQXBwMFOmTMHT05Pp06dfdP9Zs2bx/PPP06dPHxo2bMijjz5Knz59ePvtt0s5efky9tZWBHh5cOB4Jm8v2mV0HBERERERKUNOZuTw7q+76fzGYsb8uI1DJ7OoWdmNqJ5NWRF9I68MaKWmhpQow87YyMnJYd26dURHR+dvM5vN9OjRgxUrVlz0mOzsbDw8Ci4qU6lSJZYtW3bJ18nOziY7Ozv/cXp6OnD+shZH3Qf5wjhl9b7Knq7wav8WPDRrA9P/3E/3JjWAslvPP5X1z+efVI9zUz3OTfUUfUwREZErOXQyk0+W7mfOmoNkWc8vCBpYsxIPd2nIne0DqeSmS02kdBjW2EhLSyMvLw9/f/8C2/39/UlISLjoMb1792bChAl07dqVRo0aER8fz3fffUdeXt4lXycmJoaxY8cW2r5o0SI8PT3/XRH/EBcX59DxSltHXzOrU808OXsd/21T9uv5J9Xj3FSPc1M9zs2R9WRmZjpsLBERKZ92pZxh8pK9/LjpCHm28yuCBtfy4pFujejTKgAXi+FLOUoFU6buivLuu+8yfPhwmjdvjslkolGjRkRERFzy0hWA6OhooqKi8h+np6cTGBhIr1698PLyckguq9VKXFwcPXv2xNXV1SFjGqFTppU+7/9JytkcYg+Zee/B7mW6ngvKy+dzgepxbqrHuameK7twZqOIiMg/bT+Szge/7WbBluT8bZ0aefPI9Y3o0sQHk0mL9YkxDGts+Pj4YLFYSElJKbA9JSWFgICAix7j6+vL999/z7lz5zh+/Di1a9fmueeeo2HDhpd8HXd3d9zd3Qttd3V1dfiktiTGLE2+1Vx59bbW/GfWOhYfNrHzWBZtgxx7VouRyvrn80+qx7mpHuemei4/loiIyN9tOXSa9xbvJm77X/92u6llACNuaESbutWNCyby/ww7R8jNzY327dsTHx+fv81msxEfH094ePhlj/Xw8KBOnTrk5uby7bff0r9//5KOW2H0bhlA31YB2DDx3Lyt5OTajI4kIiIiIiIGWJ90kohPV9Pvg2XEbU/BZIJb2tQi9okuTLmvvZoa4jQMvRQlKiqKYcOG0aFDBzp27MjEiRPJyMggIiICgKFDh1KnTh1iYmIAWLVqFYcPHyY0NJTDhw/z8ssvY7PZeOaZZ4wso9x56ZbmLEk4ys6Us3y4ZA9P9GhqdCQRERERESklq/ef4P3Fu1m6Ow0Aswn6h9Zh5A2NaOxX1eB0IoUZ2tgYOHAgqampjB49muTkZEJDQ4mNjc1fUDQpKQmz+a+TSs6dO8eLL77Ivn37qFKlCn369GHWrFlUr17doArKJ+/KbtzZwMbM3RY+WLyH3i0DaFHLMeuRiIiIiIiIc1qXeJK3F+1k+d7jALiYTdzWtg4jb2hMkE9lg9OJXJrhi4dGRkYSGRl50eeWLFlS4PH111/P9u3bSyGVtPW2c8TFj7gdx3hm7mbmjeik1Y1FRERERMqhrYdP8/ainfy2MxUAV4uJO9sHMqJbIwJrlp8196T8MryxIc7JZIKX+7Vg1f4TbDl8mpkrEnnwugZGxxIREREREQfZnXKGd37dlX+XE4vZxJ3t6vJY98bUraGGhpQdamzIJflVdSe6Twuiv9vC24t2clOrAOpUr2R0LBERERER+RcSj2cw8dfdfL/xMHb7+S81bw2pzRM9mtJAl5xIGaTGhlzWwA6BfLf+EGsOnOSl77cybVgH3Z9aRERERKQMOno6i/fi9/DN2oPk2uzA+du2PtmzKc0CtCiolF1qbMhlmc0mYm5vzc3vLmVxwjEWbEmmb5taRscSEREREZEiSs+y8kn8XqYv2092rg2A65v68nSvZrSuW83gdCL/nhobckWN/aryaLfGvBe/m5d/2sZ1TXyoVsnV6FgiIiIiInIZ2bk2lhw1MeadZZzKsgLQMagm/72pGdcE1TQ4nYjj6DYXUiQjujWioW9lUs9k80ZsgtFxRERERETkEmw2Oz9sPMxN7/3JvAMWTmVZaexXhU+GdmDOf65VU0PKHZ2xIUXi4Wph/G2tuefjlXy5Konb2tbRL0QRERERESezfE8aMb8ksOXwaQC8XO0826clAzvWx8Wi77WlfNKfbCmyaxt6M7BDIADR320hOzfP4EQiIiIiIgLnb916/6erGfzJKrYcPk0Vdxee7N6YF9vmcXeHumpqSLmmP91yVaL7NMeniht7jp3lo9/3GR1HRERERKRCO5WZw5gftnLTu0tZsjMVF7OJ+zsF8ft/uzGiW0PcLUYnFCl5uhRFrkp1TzdG92vJ419t4IPFe+jbphaNfKsYHUtEREREpELJzbPxxaokJsTt4vT/LwzaK9if6D4taOBTGQCr1WpkRJFSo8aGXLV+bWrx7bpD/L4rlee/28Lsh6/FZDIZHUtEREREpEL4Y1cqr/y8nd3HzgLQPKAqo28JplNjH4OTiRhDjQ25aiaTiVcHtKLnO7+zav8Jvlt/mDva1zU6loiIiIhIubYv9Syvzd9BfMIxAGp4uhLVqxmDrgnUGhpSoamxIcUSWNOTx7s34c3YnYxfsIPuLfyo7ulmdCwRERERkXLnbHYu78Xv5tM/92PNs+NiNjE0PIhR3ZtQzdPV6HgihlNjQ4rtoesaMm/9YXYfO8ubC3cy/rbWRkcSERERESk37HY787cc5dWfd5Ccfg6Abs18ebFvMI39tM6dyAU6X0mKzc3FzCsDWgHw1eokNiSdNDiRiIjIvzNp0iSCgoLw8PAgLCyM1atXX3b/U6dOMXLkSGrVqoW7uztNmzZlwYIFpZRWRMqzfalnGTp9NZFfbiA5/Rz1anoy/f4OzIjoqKaGyD+osSH/yrUNvbmjXV3sdnhh3lZy82xGRxIRESmWOXPmEBUVxZgxY1i/fj0hISH07t2bY8eOXXT/nJwcevbsyYEDB5g7dy47d+5k6tSp1KlTp5STi0h5kpWTx1sLd3LTxKUs3Z2Gm4uZUd2bsOjJrtzY3N/oeCJOSZeiyL/2fJ/m/Lojhe1H05m5IpEHr2tgdCQREZGrNmHCBIYPH05ERAQAU6ZMYf78+UyfPp3nnnuu0P7Tp0/nxIkTLF++HFfX89e4BwUFlWZkESln4ran8PKP2zh8KguA65v6MvbWlgT9/+1bReTidMaG/GveVdx59qbmAExYtJPk0+cMTiQiInJ1cnJyWLduHT169MjfZjab6dGjBytWrLjoMT/++CPh4eGMHDkSf39/WrVqxfjx48nLyyut2CJSThw+lcVDM9cw/LO1HD6VRe1qHky5tx0zIq5RU0OkCHTGhjjEPdcE8s26g2xIOsUrP29n0pB2RkcSEREpsrS0NPLy8vD3L3iat7+/PwkJCRc9Zt++fSxevJghQ4awYMEC9uzZw4gRI7BarYwZM+aix2RnZ5OdnZ3/OD09HQCr1YrVanVILRfGcdR4RlM9zk31/Dt5NjtfrD7IhLjdZOTk4WI28UDn+ozs1hBPNxdyc3P/1fj6fJyb6in6mFeixoY4hNls4rUBren3wTLmbznK3btSub6pr9GxRERESozNZsPPz4+PP/4Yi8VC+/btOXz4MP/73/8u2diIiYlh7NixhbYvWrQIT09Ph+aLi4tz6HhGUz3OTfVcvSOZMHuvhcSzJgAaVLVzT8NcAnL3sOTXPQ59LX0+zk31XFpmZmaR9lNjQxwmuLYX93cKYtqy/Yz+YSsLn+iKh6vF6FgiIiJX5OPjg8ViISUlpcD2lJQUAgICLnpMrVq1cHV1xWL56++6Fi1akJycTE5ODm5uboWOiY6OJioqKv9xeno6gYGB9OrVCy8vL4fUYrVaiYuLo2fPnvlrf5Rlqse5qZ6rl23N48Pf9/Pxqv3k2uxUdrfw315NGdShLmazyaGvpc/HuameK7twZuOVqLEhDvVkz6bM33yUxOOZfLhkL1E9mxodSURE5Irc3Nxo37498fHxDBgwADh/RkZ8fDyRkZEXPaZz5858+eWX2Gw2zObzy5bt2rWLWrVqXbSpAeDu7o67u3uh7a6urg6f1JbEmEZSPc5N9RTNqn3HiZ63hX2pGQD0DPbnlf6tCKjm4fDX+jt9Ps5N9Vx+rKLQ4qHiUFXcXRjdLxiAKUv2si/1rMGJREREiiYqKoqpU6cyc+ZMduzYwaOPPkpGRkb+XVKGDh1KdHR0/v6PPvooJ06cYNSoUezatYv58+czfvx4Ro4caVQJIuKkzpyz8vy8LQz8eCX7UjPwrerO5CHt+Pi+9iXe1BCpCHTGhjjcza0CuL6pL7/vSuWlH7by+YNhmEyOPa1ORETE0QYOHEhqaiqjR48mOTmZ0NBQYmNj8xcUTUpKyj8zAyAwMJCFCxfy5JNP0qZNG+rUqcOoUaN49tlnjSpBRJzQst1pPPvt5vxbuA7qGMhzN7egWqXy8w29iNHU2BCHM5lMjOvfkl7v/MGfe47z46Yj9A+tY3QsERGRK4qMjLzkpSdLliwptC08PJyVK1eWcCoRKYsysnOJ+WUHn69MAqBeTU/euKMN4Y28DU4mUv7oUhQpEfW9KxN5Q2MAXp2/g/Rz5eMWRiIiIiIiV7Ji73F6T/wjv6kxNLw+v4zqoqaGSAlRY0NKzMPXN6Shb2VSz2Tz9sKdRscRERERESlRmTm5vPzjNgZNXcmhk1nUqV6JLx8KY1z/VlR218nyIiVFjQ0pMe4uFl7t3wqAz1YmsvnQKWMDiYiIiIiUkDUHTnDzu0uZsfwAAIPD6rHwya50auxjbDCRCkCNDSlRnRr70D+0NnY7vDBvK3k2u9GRREREREQcJifXxpuxCdz90QoSj2dSu5oHnz3QkfG3taaKztIQKRVqbEiJe6FvC6p6uLDl8Gm+WJVodBwREREREYfYm3qWOyYv58Mle7Hb4c72dYl9sitdm/oaHU2kQlFjQ0qcX1UPnundDID/xe7k2JlzBicSERERESk+u93O5ysT6fveUrYcPk21Sq5MHtKOt+4KwctDt3EVKW1qbEipGBxWnzZ1q3EmO5dXf95hdBwRERERkWJJO5vN8M/W8uL3WzlntXFdYx8WPtGVm1vXMjqaSIWlxoaUCovZxGsDWmM2wY+bjrBsd5rRkURERERErspvCce4aeIf/LrjGG4WMy/2bcFnD3QkoJqH0dFEKjTDGxuTJk0iKCgIDw8PwsLCWL169WX3nzhxIs2aNaNSpUoEBgby5JNPcu6cLm0oC1rXrcbQ8CAAXvphK+esecYGEhEREREpguzcPF7+cRsRM9aQdjaHZv5V+SGyMw91aYjZbDI6nkiFZ2hjY86cOURFRTFmzBjWr19PSEgIvXv35tixYxfd/8svv+S5555jzJgx7Nixg2nTpjFnzhyef/75Uk4uxRXVqym+Vd3Zn5bBR7/vMzqOiIiIiMhlHUjL4I7Jy/Nv4xrROYgfIjvTopaXscFEJJ+hjY0JEyYwfPhwIiIiCA4OZsqUKXh6ejJ9+vSL7r98+XI6d+7M4MGDCQoKolevXgwaNOiKZ3mI8/DycOWlW4IBmLRkDwfSMgxOJCIiIiJycT9tOsIt7y9j6+F0ani6Mv3+Dozp1xIPV4vR0UTkbwxrbOTk5LBu3Tp69OjxVxizmR49erBixYqLHtOpUyfWrVuX38jYt28fCxYsoE+fPqWSWRyjX5tadGniQ06ujdE/bsNutxsdSUREREQk3zlrHtHfbeGxrzZwNjuXa4JqsGBUF25s7m90NBG5CBejXjgtLY28vDz8/Qv+cvD39ychIeGixwwePJi0tDSuu+467HY7ubm5PPLII5e9FCU7O5vs7Oz8x+np6QBYrVasVqsDKiF/HEeNZ7TSqGd032b0/eAEf+xK5aeNh7i5VUCJvZY+H+emepyb6nFuJVFPeXlvRESKKyUL7vxoFTtTzmIywchujXmiRxNcLIYvTygil2BYY6M4lixZwvjx4/nwww8JCwtjz549jBo1ildeeYWXXnrposfExMQwduzYQtsXLVqEp6enQ/PFxcU5dDyjlXQ9NwaYiT1k5sXvNpG1bz0eJfynUZ+Pc1M9zk31ODdH1pOZmemwsUREypp5G47w1mYLObaz+FRx452BoXRp4mt0LBG5AsMaGz4+PlgsFlJSUgpsT0lJISDg4t/ev/TSS9x333089NBDALRu3ZqMjAwefvhhXnjhBczmwl3U6OhooqKi8h+np6cTGBhIr1698PJyzII/VquVuLg4evbsiaurq0PGNFJp1dPdmseOD1aQeCKT7S4NebFP8xJ5HX0+zk31ODfV49xKop4LZzaKiFQk2bl5jP1pO1+uSgJMhDesybuD2uJXVbdxFSkLDGtsuLm50b59e+Lj4xkwYAAANpuN+Ph4IiMjL3pMZmZmoeaFxXJ+4Z5LrdPg7u6Ou7t7oe2urq4On9SWxJhGKul6XF1defW2Vtw3bTWzViZxV4d6tKpTrURfT5+P81I9zk31ODdH1lOe3hcRkaI4fCqLEZ+vY9Oh05hM0LtOHhOHtcfD3c3oaCJSRIZeKBYVFcXUqVOZOXMmO3bs4NFHHyUjI4OIiAgAhg4dSnR0dP7+/fr1Y/LkycyePZv9+/cTFxfHSy+9RL9+/fIbHFK2dGniyy1tamGzwwvfbyXPpoVERURERKR0/LknjX7vL2PTodNUq+TKJ/e14+ZAOxazyehoInIVDF1jY+DAgaSmpjJ69GiSk5MJDQ0lNjY2f0HRpKSkAmdovPjii5hMJl588UUOHz6Mr68v/fr147XXXjOqBHGAl24J5vedqWw6eIqvVidx77X1jY4kIiIiIuWY3W5n8u97eWvhTmx2aFXHi8lD2hNQ1ZUFu41OJyJXy/DFQyMjIy956cmSJUsKPHZxcWHMmDGMGTOmFJJJafH38uCpXk15+aftvBmbQO+WAfhWLXz5kIiIiIjIv5V+zsrTX29i0fbza/3d3aEu4/q3wsPVojtDiZRRumeROIX7woNoVceL9HO5jF+ww+g4IiIiIlIO7U45Q/8P/mTR9hTcLGZev701b94ZgoerLmsXKcvU2BCnYDGbeG1Aa0wmmLfhMMv3phkdSURERETKkfgdKdz24XL2p2VQp3olvnkknHs61jM6log4gBob4jRCAqtzb9j59TVe/H4r2bl5BicSERERkbLObrczecleHvpsLWezcwlrUJMfIzsTEljd6Ggi4iBqbIhTebp3M3yquLMvNYOpf+wzOo6IiIiIlGHnrHk8MWcjb8QmYLfDvdfW4/OHwvCuovXcRMoTNTbEqVSr5MqLfVsA8P7iPSQdzzQ4kYiIiIiURUdPZ3HXlBX8sPEILmYTrwxoxasDWuNq0T+BRMob/VctTqd/aG06NfImO9fG6B+3YrfbjY4kIiIiImXI+qST3PrBn2w5fJoanq7MejCM+66tb3QsESkhamyI0zGZznfU3SxmluxMJXZrstGRRERERKSMmLfhEPd8tJLUM9k086/Kj5HXEd7I2+hYIlKC1NgQp9TItwr/ub4hAGN/2s7Z7FyDE4mIiIiIM7Pb7Uz8dRdPztlETp6NXsH+fDuiE4E1PY2OJiIlTI0NcVojb2hMvZqeJKefY2LcLqPjiIiIiIiTys7N46mvNzHx190A/Of6hky5tz1V3F0MTiYipUGNDXFaHq4WxvVvCcCnyw+w/Ui6wYlERERExNmcysxh6LTVfLfhMBazifG3tSb65haYzSajo4lIKVFjQ5xat2Z+9GkdQJ7Nzgvfb8Fm00KiIiIiInJe4vEMbp+8nFX7T1DF3YVP77+GwWH1jI4lIqVMjQ1xeqNvaUllNwsbkk7x5eoko+OIiIiIiBNYl3iC2z5czr7UDGpX82Duo+F0beprdCwRMYAaG+L0Aqp58HTvZgC88UsCyafPGZxIRERERIz0y5ajDJq6ihMZObSuU43vR3ameYCX0bFExCBqbEiZMDQ8iJDA6pzJzuXlH7cZHUdEREREDDJrxQFGfLmenFwbPVr4M+c/1+Ln5WF0LBExkBobUiZYzCZev701LmYTsduSWbgt2ehIIiIiIlKK7HY7by/ayUs/bMNuhyFh9fjovvZ4uunOJyIVnRobUma0qOXFw10bAjDmh22cOWc1OJGIiJQ3kyZNIigoCA8PD8LCwli9evUl950xYwYmk6nAj4eHvjUWKQm5eTaiv9vC+4v3APBkj6a8OqAVFt35RERQY0PKmMe7N6G+tyfJ6ef438KdRscREZFyZM6cOURFRTFmzBjWr19PSEgIvXv35tixY5c8xsvLi6NHj+b/JCYmlmJikYohKyePRz5fz+w1BzGbYPxtrRnVowkmk5oaInKeGhtSpni4Whh/W2sAZq1MZF3iSYMTiYhIeTFhwgSGDx9OREQEwcHBTJkyBU9PT6ZPn37JY0wmEwEBAfk//v7+pZhYpPw7lZnDvdNW8euOFNxczEy+t71u5yoiheiCNClzOjf24c72dZm77hDR323m58e64OaiHp2IiBRfTk4O69atIzo6On+b2WymR48erFix4pLHnT17lvr162Oz2WjXrh3jx4+nZcuWl9w/Ozub7Ozs/Mfp6ekAWK1WrFbHXGJ5YRxHjWc01ePcSrKeo6fP8cDMdexJzcDLw4UpQ9pyTVCNEn3v9Pk4N9Xj3EqinqKOpcaGlEkv9GnBbwnH2JVylo//2EvkjU2MjiQiImVYWloaeXl5hc648Pf3JyEh4aLHNGvWjOnTp9OmTRtOnz7NW2+9RadOndi2bRt169a96DExMTGMHTu20PZFixbh6en57wv5m7i4OIeOZzTV49wcXU/aOZi03cKJbBPV3Ow80uwcqdtXsGC7Q1/mkvT5ODfV49wcWU9mZmaR9lNjQ8qkGpXdGN0vmFGzN/Le4j30aV2Lhr5VjI4lIiIVSHh4OOHh4fmPO3XqRIsWLfjoo4945ZVXLnpMdHQ0UVFR+Y/T09MJDAykV69eeHl5OSSX1WolLi6Onj174urq6pAxjaR6nFtJ1LP72Flem7GOE9nZ1K/pycyI9tSpXskhY1+JPh/npnqcW0nUc+HMxitRY0PKrFtDavPt+sP8sSuV6O+2MPvha7WIlIiIFIuPjw8Wi4WUlJQC21NSUggICCjSGK6urrRt25Y9e/Zcch93d3fc3d0veqyjJ7UlMaaRVI9zc1Q9Ww6dZuj0NZzMtNLMvyqzHuqIX9XSv9uQPh/npnqcmyPrKeo4WphAyiyTycRrA1pRydXCqv0n+HrtQaMjiYhIGeXm5kb79u2Jj4/P32az2YiPjy9wVsbl5OXlsWXLFmrVqlVSMUXKtTUHTjB46kpOZloJqVuNOf+51pCmhoiUPWpsSJkWWNOTqJ5NAXht/g5Sz2Rf4QgREZGLi4qKYurUqcycOZMdO3bw6KOPkpGRQUREBABDhw4tsLjouHHjWLRoEfv27WP9+vXce++9JCYm8tBDDxlVgkiZtXR3KvdNW8WZ7Fw6NqjJ5w+FUd3TzehYIlJG6FIUKfMiOgfxw6bDbD2cztiftvHB4HZGRxIRkTJo4MCBpKamMnr0aJKTkwkNDSU2NjZ/QdGkpCTM5r++Ezp58iTDhw8nOTmZGjVq0L59e5YvX05wcLBRJYiUSQu3JfPYlxvIybPRrZkvk4e0p5KbxehYIlKGqLEhZZ6Lxczrt7eh/6Q/+XnzUW4NSaZXy6JdDy0iIvJ3kZGRREZGXvS5JUuWFHj8zjvv8M4775RCKpHy66dNR3hizkbybHZubhXAu/e0xc1FJ5WLyNXRbw0pF1rVqcbwLg0BePH7rZzOLB/3ghYREREpr37YeJhRszeQZ7Nze7s6vD9ITQ0RKR795pBy44keTWjoW5ljZ7J5dX4p3eRcRERERK7aDxsP8+ScjdjscHeHurx1ZwguFv3TRESKR789pNzwcLXw5h1tMJngm3WH+H1XqtGRREREROQf5m04lN/UuOeaQF6/vQ1ms8noWCJShqmxIeVKh6Ca3N8pCIDobzdz5pwuSRERERFxFt+uO0TU15uw2WFQx0DG39ZaTQ0R+dfU2JBy57+9m1GvpidHTp/jjdgEo+OIiIiICDB33SGenrsJux0GdazHawPU1BARx1BjQ8odTzcXXr+jNQCfr0xi5b4TBicSERERqdi+XnuQ//5/U2NIWD1eG9BKTQ0RcRg1NqRc6tTIhyFh9QB4/vttZOcZHEhERESkgpq34RDPfrsZux3uu7Y+r6qpISIOpsaGlFvP3dyc2tU8OHgyi/kH9UddREREpLQt2HKUp77+60yNcf1bYjKpqSEijuUU/9qbNGkSQUFBeHh4EBYWxurVqy+5b7du3TCZTIV++vbtW4qJpSyo6uHK+NvPX5Lyx1ET65NOGRtIREREpAJZnJDC419twGaHO9vX5ZX+rdTUEJESYXhjY86cOURFRTFmzBjWr19PSEgIvXv35tixYxfd/7vvvuPo0aP5P1u3bsVisXDXXXeVcnIpC7o18+P2trWxYyJ63lbOWXVNioiIiEhJW7Y7jUc+X0+uzU6/kNq8cYdu6SoiJcfwxsaECRMYPnw4ERERBAcHM2XKFDw9PZk+ffpF969ZsyYBAQH5P3FxcXh6eqqxIZf0/M3N8HK1sy8tk4m/7jY6joiIiEi5tnr/CYZ/tpacXBu9gv2ZcHcIFjU1RKQEuRj54jk5Oaxbt47o6Oj8bWazmR49erBixYoijTFt2jTuueceKleufNHns7Ozyc7Ozn+cnp4OgNVqxWq1/ov0f7kwjqPGM1p5q8fTBe5uaOOTnRY+/mMvNzb1pm296kbHKrby9vmoHuemepxbSdRTXt4bETHGxoOneGDGGrKseVzf1Jf3B7fF1WL4d6kiUs4Vu7GRlJREYmIimZmZ+Pr60rJlS9zd3a9qjLS0NPLy8vD39y+w3d/fn4SEhCsev3r1arZu3cq0adMuuU9MTAxjx44ttH3RokV4enpeVd4riYuLc+h4RitP9bSuCdf42FiTZmbkrFU80yYPN4vRqf6d8vT5gOpxdqrHuTmynszMTIeNVdJOnTrFvHnzWLp0aYE5Sdu2benduzedOnUyOqJIhbL9SDpDp63ibHYu4Q29+ei+9ri7lPEJl4iUCVfV2Dhw4ACTJ09m9uzZHDp0CLvdnv+cm5sbXbp04eGHH+aOO+7AbC75zuy0adNo3bo1HTt2vOQ+0dHRREVF5T9OT08nMDCQXr164eXl5ZAcVquVuLg4evbsiaurq0PGNFJ5ree9iK4M+GgNKenZbDY3ZHSf5kZHK5by+vmoHuekepxbSdRz4cxGZ3bkyBFGjx7NF198Qe3atenYsSOhoaFUqlSJEydO8Ntvv/HWW29Rv359xowZw8CBA42OLFLuJR7PZOj01aSfy6Vdvep8MqwDHq5qaohI6ShyY+Pxxx9n5syZ9O7dm1dffZWOHTtSu3bt/EnE1q1bWbp0KaNHj2bs2LF8+umnXHPNNZcd08fHB4vFQkpKSoHtKSkpBAQEXPbYjIwMZs+ezbhx4y67n7u7+0XPJHF1dXX4pLYkxjRSeavHx8uTN+8MYdj01cxamcTNrWrRqbGP0bGKrbx9PqrHuake5+bIesrC+9K2bVuGDRvGunXrCA4Ovug+WVlZfP/990ycOJGDBw/y9NNPl3JKkYrjdA7cP3MdaWdzCK7lxacRHansbugV7yJSwRT5N07lypXZt28f3t7ehZ7z8/Pjxhtv5MYbb2TMmDHExsZy8ODBKzY23NzcaN++PfHx8QwYMAAAm81GfHw8kZGRlz32m2++ITs7m3vvvbeoJYhwfVNfhoTV44tVSfx37mZin+hCVQ/nn8SLiMhftm/fftH5yN9VqlSJQYMGMWjQII4fP15KyUQqntNZVibvsHA0M4v63p7MfKAj1SppbiUipavI14vExMRccRJxwU033cTtt99epH2joqKYOnUqM2fOZMeOHTz66KNkZGQQEREBwNChQwssLnrBtGnTGDBgQJEziVzwfJ8WBNasxOFTWbz68w6j44iIyFW62r/7NVcQKRlZOXn85/MNHM004VvFjVkPhOFb9erW3BMRcYRiL4SRm5vLr7/+ykcffcSZM2eA89e8nj179qrGGThwIG+99RajR48mNDSUjRs3Ehsbm7+gaFJSEkePHi1wzM6dO1m2bBkPPvhgceNLBVbZ3YW37wrFZII5aw+yOCHlygeJiIjTmjVrFp07d6Z27dokJiYCMHHiRH744QeDk4mUX9Y8GyO/XM+6pFNUstiZPqw99bwduzC/iEhRFauxkZiYSOvWrenfvz8jR44kNTUVgDfeeKNY17BGRkaSmJhIdnY2q1atIiwsLP+5JUuWMGPGjAL7N2vWDLvdTs+ePYsTX4SODWry0HUNAHj22y2czMgxOJGIiBTH5MmTiYqKok+fPpw6dYq8vDwAqlevzsSJE40NJ1JO2Wx2np27mcUJx3B3MTO8eR7NA6oaHUtEKrBiNTZGjRpFhw4dOHnyJJUqVcrffttttxEfH++wcCIl6alezWjsV4XUM9mM/nGb0XFERKQY3n//faZOncoLL7yAxfLXHRg6dOjAli1bDEwmUj7Z7XZeW7CD7zYcxmI28f49ITRyzI0GRUSKrViNjaVLl/Liiy/i5uZWYHtQUBCHDx92SDCRkubhamHC3SFYzCZ+2nSEnzcfMTqSiIhcpf3799O2bdtC293d3cnIyDAgkUj5NnXpPqYt2w/A/+5sww3NfA1OJCJSzMaGzWbLP9Xz7w4dOkTVqjoNTcqONnWrM/KGxgC8+P1Wkk+fMziRiIhcjQYNGrBx48ZC22NjY2nRokXpBxIpx37adITxCxIAeKFPC25vV9fgRCIi5xWrsdGrV68C162aTCbOnj3LmDFj6NOnj6OyiZSKyBsa06qOF6cyrTz9zSZsNrvRkUREpIiioqIYOXIkc+bMwW63s3r1al577TWio6N55plnjI4nUm6s3n+Cp77eBMD9nYJ4qEsDgxOJiPzFpTgHvf322/Tu3Zvg4GDOnTvH4MGD2b17Nz4+Pnz11VeOzihSotxczEwc2JZb3l/Ksj1pTP9zPw91aWh0LBERKYKHHnqISpUq8eKLL5KZmcngwYOpXbs27777Lvfcc4/R8UTKhT3HzjD8s7Xk5Nno3dKfl24JxmQyGR1LRCRfsRobdevWZdOmTcyZM4dNmzZx9uxZHnzwQYYMGVJgMVGRsqKxXxVeuiWYF+Zt5c3YnXRu7EOLWloJS0SkLBgyZAhDhgwhMzOTs2fP4ufnZ3QkkXLj2JlzDJu+htNZVtrWq86797TFYlZTQ0ScS7EaGwAuLi75EwmR8mBwx3r8lpDKrztSGDV7Az9GXoeHq+XKB4qIiGGysrKw2+14enri6elJamoqEydOJDg4mF69ehkdT6RMy8jO5YEZazh8Kosgb08+GdpBcyMRcUrFWmNj5syZzJ8/P//xM888Q/Xq1enUqROJiYkOCydSmkwmE2/c0RqfKu7sSjnL678kGB1JRESuoH///nz22WcAnDp1io4dO/L222/Tv39/Jk+ebHA6kbIrN89G5Jfr2Xo4nZqV3ZgR0RHvKu5GxxIRuahiNTbGjx+ff8nJihUr+OCDD3jzzTfx8fHhySefdGhAkdLkXcWdt+5qA8CM5QdYsvOYwYlERORy1q9fT5cuXQCYO3cuAQEBJCYm8tlnn/Hee+8ZnE6kbLLb7Yz+cRu/7UzF3cXMJ8M6EORT2ehYIiKXVKzGxsGDB2nc+PwtMr///nvuvPNOHn74YWJiYli6dKlDA4qUtm7N/Li/UxAAT3+zmeNns40NJCIil5SZmZl/q/lFixZx++23Yzabufbaa3UWqUgxTf/zAF+uSsJkgnfvaUu7ejWMjiQiclnFamxUqVKF48ePA+cnET179gTAw8ODrKwsx6UTMchzNzenqX8V0s5m8+y3W7DbdQtYERFn1LhxY77//nsOHjzIwoUL89fVOHbsGF5eWgRa5Gr9lnCM1+ZvB+D5m1twU6sAgxOJiFxZsRobPXv25KGHHuKhhx5i165d9OnTB4Bt27YRFBTkyHwihvBwtTBxYFvcLGZ+3ZHCl6uTjI4kIiIXMXr0aJ5++mmCgoIICwsjPDwcOP/FS9u2bQ1OJ1K27Ew+w2NfbcBmh4EdAnmoSwOjI4mIFEmxGhuTJk0iPDyc1NRUvv32W7y9vQFYt24dgwYNcmhAEaME1/bimZuaAfDKz9vZlXLG4EQiIvJPd955J0lJSaxdu5bY2Nj87d27d+edd94xMJlI2ZJ2NpsHZ67hbHYuYQ1q8sqAVphMuq2riJQNxbrda/Xq1fnggw8KbR87duy/DiTiTB7o3IDfd6WydHcakV+u54eR11HJTbc5ExFxJgEBAQQEFDxdvmPHjgalESl7snPzeGTWOg6dPH9b1yn3tsfNpVjff4qIGOJf/cbKzMwkISGBzZs3F/gRKS/MZhMT7g7Ft+r5W8CO+3m70ZFEROQf1q5dyzPPPMM999zD7bffXuDnak2aNImgoCA8PDwICwtj9erVRTpu9uzZmEwmBgwYcNWvKWIku91O9LdbWJt4kqoeLnwy7BpqVHYzOpaIyFUpVmMjNTWVvn37UrVqVVq2bEnbtm0L/IiUJ75V3Zk4MBSTCb5ancTPm48YHUlERP7f7Nmz6dSpEzt27GDevHlYrVa2bdvG4sWLqVat2lWNNWfOHKKiohgzZgzr168nJCSE3r17c+zY5W/9feDAAZ5++un8286KlCUfLtnLdxsOYzGbmDykPY39qhgdSUTkqhWrsfHEE09w+vRpVq1aRaVKlYiNjWXmzJk0adKEH3/80dEZRQzXubEPI7udv8Vx9LdbSDqeaXAiEREBGD9+PO+88w4//fQTbm5uvPvuuyQkJHD33XdTr169qxprwoQJDB8+nIiICIKDg5kyZQqenp5Mnz79ksfk5eUxZMgQxo4dS8OGDf9tOSKlauG2ZP63cCcAL9/akuua+BicSESkeIq1xsbixYv54Ycf6NChA2azmfr169OzZ0+8vLyIiYmhb9++js4pYrgnejRh5b7jrE08SeRX65n7SCddfyoiYrC9e/fmzzvc3NzIyMjAZDLx5JNPcuONNxZ5/a+cnBzWrVtHdHR0/jaz2UyPHj1YsWLFJY8bN24cfn5+PPjggyxduvSKr5OdnU12dnb+4/T0dACsVitWq7VIWa/kwjiOGs9oqqdk7D52lqg5GwG4LyyQe9rXLlYmZ6nHUVSPc1M9zq0k6inqWMVqbGRkZODn5wdAjRo1SE1NpWnTprRu3Zr169cXZ0gRp+diMfPuoLb0eXcpmw+d5s3YBF68JdjoWCIiFVqNGjU4c+b8Xavq1KnD1q1bad26NadOnSIzs+hn16WlpZGXl4e/v3+B7f7+/iQkJFz0mGXLljFt2jQ2btxY5NeJiYm5aLNl0aJFeHp6FnmcooiLi3PoeEZTPY6TmQtvb7GQkWOiiZeNtqb9LFiw/1+Nqc/Huake56Z6Lq2of5cXq7HRrFkzdu7cSVBQECEhIXz00UcEBQUxZcoUatWqVZwhRcqEOtUr8dZdIQz/bC2fLNtPp8be3Njc/8oHiohIiejatStxcXG0bt2au+66i1GjRrF48WLi4uLo3r17ib3umTNnuO+++5g6dSo+PkU/fT86OpqoqKj8x+np6QQGBtKrVy+8vLwcks1qtRIXF0fPnj1xdXV1yJhGUj2OlWez85/PN5B2Lo061T2Y9ci1eP+LxUKNrsfRVI9zUz3OrSTquXBm45UUq7ExatQojh49CsCYMWO46aab+OKLL3Bzc2PGjBnFGVKkzOgZ7M/9nYKYsfwAT329iV9GdSWgmofRsUREKqQPPviAc+fOAfDCCy/g6urK8uXLueOOO3jxxReLPI6Pjw8Wi4WUlJQC21NSUgrdShbOXwJz4MAB+vXrl7/NZrMB4OLiws6dO2nUqFGh49zd3XF3dy+03dXV1eGT2pIY00iqxzHeiU3g991peLia+ei+DgRUr+yQcfX5ODfV49xUz+XHKopiNTbuvffe/P/fvn17EhMTSUhIoF69elf1rYVIWRXdpzlrE0+w9XA6j321ni+HX4urRettiIiUtpo1a+b/f7PZzHPPPVescdzc3Gjfvj3x8fH5t2y12WzEx8cTGRlZaP/mzZuzZcuWAttefPFFzpw5w7vvvktgYGCxcoiUpPmbj/Lhkr0AvHFHG1rVubo7B4mIOKtiNTb+ydPTk3bt2jliKJEywd3FwvuD2tHv/WWsOXCS/y3cyfN9WhgdS0SkQrLZbOzZs4djx47lnzVxQdeuXYs8TlRUFMOGDaNDhw507NiRiRMnkpGRQUREBABDhw6lTp06xMTE4OHhQatWrQocX716dYBC20WcQUJyOk9/swmA4V0a0D+0jsGJREQcp1iNjby8PGbMmEF8fPxFJxGLFy92SDgRZ9bApzJv3dWGRz5fz8d/7KNdvRrc1Krw6coiIlJyVq5cyeDBg0lMTMRutxd4zmQykZeXV+SxBg4cSGpqKqNHjyY5OZnQ0FBiY2PzFxRNSkrCbNbZeVL2nMrM4eHP1pFlzaNzY2+evam50ZFERByq2GtszJgxg759+9KqVStMJpOjc4mUCTe1qsVD1zXgk2X7+e83m2gWUJUGPo65VlVERK7skUceoUOHDsyfP59atWr96zlJZGTkRS89AViyZMllj9U6Y+KM8mx2HvtqA0knMqlboxIfDGqHiy6fFZFypliNjdmzZ/P111/Tp08fR+cRKXOevbk5mw6dYs2Bkzz6+TrmjehMJTeL0bFERCqE3bt3M3fuXBo3bmx0FBGnNPHXXSz9/8VCP76vAzX+xR1QREScVbHatW5ubppAiPw/V4uZDwa3w6eKGwnJZ3jph62FTocWEZGSERYWxp49e4yOIeKUfks4xvuLz//38frtbQiu7ZhbCouIOJtinbHx1FNP8e677/LBBx/oMhQRwN/Lg/cGteXeT1Yxd90hrgmqwcBr6hkdS0SkXNq8eXP+/3/sscd46qmnSE5OpnXr1oVuC9emTZvSjifiFA6eyOSJORsBuPfaegxoq8VCRaT8KnJj4/bbby/wePHixfzyyy+0bNmy0CTiu+++c0w6kTKkUyMfnurVjP8t3MlLP2yjZe1quo2aiEgJCA0NxWQyFTg77oEHHsj//xeeu9rFQ0XKi+zcPEZ+uZ7TWVZC6lbjpVuCjY4kIlKiitzYqFat4D/QbrvtNoeHESnrHr2+EesTTxKfcIwRX6znp8jrqObpeuUDRUSkyPbv3290BBGn9srP29l86DTVPV2ZNKQd7i5a+0tEyrciNzY+/fTTkswhUi6YzSYm3B1K3/eXknQik1FzNjBt2DVYzLpkS0TEUerXr290BBGn9f2Gw3y+MgmTCd4ZGErdGp5GRxIRKXFXvXjoypUreeGFF/jvf/9LbGxsSWQSKdOqeboy5d72eLiaWbIzlbcX7TQ6kohIubZz504iIyPp3r073bt3JzIykp079btXKp5dKWeI/m4LAI/d0JgbmvkZnEhEpHRcVWNj7ty5dO7cmXfffZdPPvmEvn378tZbb5VUNpEyq1Wdarxxx/kF6z5cspf5m48anEhEpHz69ttvadWqFevWrSMkJISQkBDWr19Pq1at+Pbbb42OJ1Jqzmbn8sjn68iy5tGliQ+jejQ1OpKISKm5qsZGTEwMw4cP5/Tp05w8eZJXX32V8ePH/6sAkyZNIigoCA8PD8LCwli9evVl9z916hQjR46kVq1auLu707RpUxYsWPCvMoiUhP6hdRjepQEAT3+ziYTkdIMTiYiUP8888wzR0dGsWLGCCRMmMGHCBJYvX87zzz/PM888Y3Q8kVJht9t57tvN7EvNoFY1DyYODNVlsCJSoVxVY2Pnzp08/fTTWCznFyB66qmnOHPmDMeOHSvWi8+ZM4eoqCjGjBnD+vXrCQkJoXfv3pccLycnh549e3LgwAHmzp3Lzp07mTp1KnXq6PZV4pyevak5nRt7k2XN4+HP1nEqM8foSCIi5crRo0cZOnRooe333nsvR4/qbDmpGL5afZCfNx/FxWzig8Ht8K7ibnQkEZFSdVWNjczMTLy8vPIfu7m54eHhwdmzZ4v14hMmTGD48OFEREQQHBzMlClT8PT0ZPr06Rfdf/r06Zw4cYLvv/+ezp07ExQUxPXXX09ISEixXl+kpLlYzHwwqB11a1Qi6UQmj321gTyb/coHiohIkXTr1o2lS5cW2r5s2TK6dOliQCKR0pWQnM7Yn7YB8N/ezWhfv4bBiURESl+R74pywSeffEKVKlXyH+fm5jJjxgx8fHzytz3++ONXHCcnJ4d169YRHR2dv81sNtOjRw9WrFhx0WN+/PFHwsPDGTlyJD/88AO+vr4MHjyYZ599Nv8skn/Kzs4mOzs7/3F6+vnLAaxWK1ar9Yo5i+LCOI4az2iqx7GquJn4cFAod09dxdLdaby+YDvP9C7+da9G1+Noqse5qR7nVhL1lLX35tZbb+XZZ59l3bp1XHvttcD5hc6/+eYbxo4dy48//lhgX5HyJDMnl8gvN5Cda6NbM1+Gd2lodCQREUNcVWOjXr16TJ06tcC2gIAAZs2alf/YZDIVqbGRlpZGXl4e/v7+Bbb7+/uTkJBw0WP27dvH4sWLGTJkCAsWLGDPnj2MGDECq9XKmDFjLnpMTEwMY8eOLbR90aJFeHo69vZXcXFxDh3PaKrHsQYGmZi528LUZQfISdlLO59/d+aG0fU4mupxbqrHuTmynszMTIeNVRpGjBgBwIcffsiHH3540efg/PwkLy+vVLOJlLSxP25nz7Gz+FV15627QjBrXQ0RqaCuqrFx4MCBEopRNDabDT8/Pz7++GMsFgvt27fn8OHD/O9//7tkYyM6OpqoqKj8x+np6QQGBtKrV68Cl9X8G1arlbi4OHr27Imrq6tDxjSS6ikZfQC3hbuYuuwAcw640r/7NbSuU+2qx3GWehxF9Tg31ePcSqKeC2c2lhU2m83oCCKG+GHjYeasPYjJBBMHhuKjdTVEpAK76ktRHMXHxweLxUJKSkqB7SkpKQQEBFz0mFq1auHq6lrgspMWLVqQnJxMTk4Obm5uhY5xd3fH3b3wL3pXV1eHT2pLYkwjqR7He65PMLtTM1iyM5VHv9zIDyOvI6CaR7HGcoZ6HEn1ODfV49wcWU95el9EyqsDaRk8/90WAB67oTGdGvtc4QgRkfKtyIuHzp49u8iDHjx4kD///POy+7i5udG+fXvi4+Pzt9lsNuLj4wkPD7/oMZ07d2bPnj0Fvp3ZtWsXtWrVumhTQ8TZWMwm3hvUliZ+VUhJz2b4Z2vJytGp0SIiV8PRcxKRsiQ7N4/Ir9aTkZNHx6CaPN69idGRREQMV+TGxuTJk2nRogVvvvkmO3bsKPT86dOnWbBgAYMHD6Zdu3YcP378imNGRUUxdepUZs6cyY4dO3j00UfJyMggIiICgKFDhxZYXPTRRx/lxIkTjBo1il27djF//nzGjx/PyJEji1qGiOG8PFyZNuwaalZ2Y8vh00R9vRGb7pQiIlJkJTEnESkrXv8lga2H06nu6cq7g0JxsVzVTQ5FRMqlIl+K8vvvv/Pjjz/y/vvvEx0dTeXKlfH398fDw4OTJ0+SnJyMj48P999/P1u3bi20KOjFDBw4kNTUVEaPHk1ycjKhoaHExsbmH5uUlITZ/Ncv68DAQBYuXMiTTz5JmzZtqFOnDqNGjeLZZ58tRukixqnn7cmUe9sz5JOV/LI1mXd+3cVTvZoZHUtEpEwoiTmJSFnw6/YUPv3zAABv3RlCrWqVjA0kIuIkrmqNjVtvvZVbb72VtLQ0li1bRmJiIllZWfj4+NC2bVvatm1boBFRFJGRkURGRl70uSVLlhTaFh4ezsqVK6/qNUScUccGNYm5vQ1Pf7OJ9xfvoZFvFQa0rWN0LBGRMqEk5iQizuzYmXM88+1mAB7o3IAewWrYiYhcUKzFQ318fBgwYICDo4hUPHe2r8ueY2eZ8vtenvl2M4E1PWlfv4bRsUREygzNSaQisNnsPP3NZk5k5NCilhfP3qyzPEVE/q5YX2UcPHiQQ4cO5T9evXo1TzzxBB9//LHDgolUFM/0bkavYH9ycm38Z9ZaDp3MNDqSiEiZoTmJVAQzVxzgj12puLuYefeeUNxdLFc+SESkAilWY2Pw4MH89ttvACQnJ9OjRw9Wr17NCy+8wLhx4xwaUKS8M5tNvDMwlBa1vEg7m0PEp2s4nWU1OpaISJmgOYmUdzuTzxDzSwIAz/dpQVP/qgYnEhFxPsVqbGzdupWOHTsC8PXXX9O6dWuWL1/OF198wYwZMxyZT6RCqOzuwrRhHfD3cmf3sbP8Z9ZasnN1G1gRkSvRnETKs+zcPEbN3kBOro1uzXwZGl7f6EgiIk6pWI0Nq9WKu7s7AL/++iu33norAM2bN+fo0aOOSydSgdSuXolP7+9IFXcXVu47wTNzN2O36zawIiKXozmJlGf/i91JQvIZalZ2480722AymYyOJCLilIrV2GjZsiVTpkxh6dKlxMXFcdNNNwFw5MgRvL29HRpQpCIJru3F5Hvb4WI28cPGI/xv4U6jI4mIODXNSaS8Wro7lU+W7QfgzTva4FfVw+BEIiLOq1iNjTfeeIOPPvqIbt26MWjQIEJCQgD48ccf808HFZHi6dLEl5jbWwPw4ZK9fLEq0eBEIiLOS3MSKY9OZuTw9DebABgSVk+3dhURuYJi3e61W7dupKWlkZ6eTo0af92a8uGHH8bT09Nh4UQqqrs6BHL4VBYTf93NS99vJcDLg+4tNKkREfknzUmkvLHb7Tz33WZS0rNp6FuZF/sGGx1JRMTpFauxAWCxWMjNzWXZsmUANGvWjKCgIEflEqnwRnVvwuGTWXyz7hCRX25gzn+upU3d6kbHEhFxOpqTSHnyzdpDLNyWgqvFxHv3tKWSm27tKiJyJcW6FCUjI4MHHniAWrVq0bVrV7p27Urt2rV58MEHyczMdHRGkQrJZDIx/vbWdGniQ5Y1jwdmrCHxeIbRsUREnIrmJFKeHDyRybiftwPwZM+mtKpTzeBEIiJlQ7EaG1FRUfz+++/89NNPnDp1ilOnTvHDDz/w+++/89RTTzk6o0iF5Wox8+GQdgTX8iLtbA73TVvNsTPZRscSEXEampNIeWGz2Xlm7mbOZufSvn4N/tO1kdGRRETKjGI1Nr799lumTZvGzTffjJeXF15eXvTp04epU6cyd+5cR2cUqdCqergy44FrqFfTk6QTmTw4cx2ZuUanEhFxDpqTSHkxc8UBVuw7TiVXC2/fFYLFrFu7iogUVbEaG5mZmfj7F17I0M/PT6d9ipQAv6oezHqwIz5V3ElIOcsnCRbOWfOMjiUiYjjNSaQ82Jt6ltd/SQDg+T7NCfKpbHAiEZGypViNjfDwcMaMGcO5c+fyt2VlZTF27FjCw8MdFk5E/lLfuzKfPdCRqh4u7D1jYtSczeTm2YyOJSJiKM1JpKzLzbPx9DebyM61cV1jH4aE1Tc6kohImVOsu6JMnDiRm266ibp16+bfL37Tpk24u7uzaNEihwYUkb8E1/bioyFtGTZ9NYt3pvLst1v4351tMOt0VRGpoDQnkbLuoz/2sSHpFFXdXXhTf6eLiBRLsc7YaN26Nbt37yYmJobQ0FBCQ0N5/fXX2bNnDy1btnR0RhH5m2uCanB/UxsWs4lv1x8i5pcd2O12o2OJiBjC0XOSSZMmERQUhIeHB2FhYaxevfqS+3733Xd06NCB6tWrU7lyZUJDQ5k1a9a/KUcqmB1H05n46y4AxtzaktrVKxmcSESkbCrWGRsxMTH4+/szfPjwAtunT59Oamoqzz77rEPCicjFtappZ/yAYJ79bhtTl+6nRmU3RnRrbHQsEZFS58g5yZw5c4iKimLKlCmEhYUxceJEevfuzc6dO/Hz8yu0f82aNXnhhRdo3rw5bm5u/Pzzz0RERODn50fv3r3/dW1SvuXk2oj6ehPWPDs9WvhzR7s6RkcSESmzinXGxkcffUTz5s0LbW/ZsiVTpkz516FE5Mpub1uHF/u2AODN2J3MXH7A2EAiIgZw5JxkwoQJDB8+nIiICIKDg5kyZQqenp5Mnz79ovt369aN2267jRYtWtCoUSNGjRpFmzZtWLZsWbFqkYrlgyV72XE0nRqeroy/vRUmky5BEREprmKdsZGcnEytWrUKbff19eXo0aP/OpSIFM1DXRqSnmXlvcV7GPPjNtxdzNzTsZ7RsURESo2j5iQ5OTmsW7eO6Ojo/G1ms5kePXqwYsWKKx5vt9tZvHgxO3fu5I033rjkftnZ2WRnZ+c/Tk9PB8BqtWK1Wouc93IujOOo8YxWHus5cAY+2rYfgLH9WlDDw1Jm6yuPn8/f/7esUz3OTfUUfcwrKVZjIzAwkD///JMGDRoU2P7nn39Su3bt4gwpIsX0ZM+mZFnzmLp0P9HztuDhamFAW53OKiIVg6PmJGlpaeTl5RW6day/vz8JCQmXPO706dPUqVOH7OxsLBYLH374IT179rzk/jExMYwdO7bQ9kWLFuHp6VnkvEURFxfn0PGMVl7qsdrgy70WbHZo523DnrSeBUlGp/r3ysvnc4HqcW6qx7k5sp6i3rq9WI2N4cOH88QTT2C1WrnxxhsBiI+P55lnnuGpp54qzpAiUkwmk4nn+7Qgy5rH5yuTeOqbTbi7mLm5deFvMEVEyhuj5yRVq1Zl48aNnD17lvj4eKKiomjYsCHdunW76P7R0dFERUXlP05PTycwMJBevXrh5eXlkExWq5W4uDh69uyJq6urQ8Y0Unmr583YBFKykvCu7MZHD3emumfZrqm8fT6qx7mpHudWEvVcOLPxSorV2Pjvf//L8ePHGTFiBDk5OQB4eHjw7LPPFjiFU0RKh8lkYtytrThntTF33SEen72Bj1zN3Njc/8oHi4iUYY6ak/j4+GCxWEhJSSmwPSUlhYCAgEseZzabadz4/OLNoaGh7Nixg5iYmEs2Ntzd3XF3dy+03dXV1eGT2pIY00jloZ4th04zfcVBAMbd2gLfao49S8dI5eHz+TvV49xUj3NzZD1FHadYi4eaTCbeeOMNUlNTWblyJZs2beLEiROMHj26OMOJiAOYzSbeuKMNt7SphTXPziOfr+fPPWlGxxIRKVGOmpO4ubnRvn174uPj87fZbDbi4+MJDw8v8jg2m63AGhoiF+Tk2vjv3E3k2ey09bbRK1hfPoiIOEqxzti4oEqVKlxzzTWOyiIi/5LFbOKdgaFk59qI257CQzPXMiPiGsIaehsdTUSkRDliThIVFcWwYcPo0KEDHTt2ZOLEiWRkZBAREQHA0KFDqVOnDjExMcD59TI6dOhAo0aNyM7OZsGCBcyaNYvJkyf/63qk/Jm8ZC8JyWeo4enKnQ2yjI4jIlKu/KvGhog4H1eLmQ8Gt2X4Z+v4Y1cqETPWMP3+a7hWzQ0RkcsaOHAgqampjB49muTkZEJDQ4mNjc1fUDQpKQmz+a+TXTMyMhgxYgSHDh2iUqVKNG/enM8//5yBAwcaVYI4qYTkdD74bTcAo/s2x3xog8GJRETKFzU2RMohdxcLH9/XnuGfrWXp7jQiPj3f3AhvpOaGiMjlREZGEhkZedHnlixZUuDxq6++yquvvloKqaQsy82z8czczVjz7PQM9qdv6wB+OWR0KhGR8qVYa2yIiPPzcLUwdWgHujb1JcuaR8SM1SzXmhsiIiKl6pNl+9l86DReHi68OqAVJpPJ6EgiIuWOGhsi5ZiH6/kzN65v6ss5q40HZq7RgqIiIiKlZG/qWSbE7QLgpVuC8ffyMDiRiEj5pMaGSDnn4Wrho/vac0Oz/29uzFjDst1qboiIiJSkPJudZ+ZuJifXRtemvtzZvq7RkUREyi01NkQqAA9XC1Pua8+Nzf3IzrXx4Mw1LN2danQsERGRcuuzFQdYl3iSym4WYm5vrUtQRERKkBobIhWEu4uFyfe2o0eLC82NtSxOSDE6loiISLmTdDyTN2N3AhDdpwV1qlcyOJGISPmmxoZIBeLuYuHDIe3pGexPTq6Nhz9bx/zNR42OJSIiUm7Y7Xaen7eFLGse1zasyeCO9YyOJCJS7qmxIVLBuLmY+XBIO24NqU2uzc5jX63n6zUHjY4lIiJSLny3/jDL9qTh7mLm9dvbYDbrEhQRkZLmFI2NSZMmERQUhIeHB2FhYaxevfqS+86YMQOTyVTgx8NDK0yLXA1Xi5l3BoYyqGMgNjs88+1mPv1zv9GxREREyrTjZ7N5df52AEb1aEKQT2WDE4mIVAyGNzbmzJlDVFQUY8aMYf369YSEhNC7d2+OHTt2yWO8vLw4evRo/k9iYmIpJhYpHyxmE+Nva81D1zUAYOxP2/lg8W7sdrvByURERMqmV+fv4GSmleYBVRnepaHRcUREKgzDGxsTJkxg+PDhREREEBwczJQpU/D09GT69OmXPMZkMhEQEJD/4+/vX4qJRcoPk8nEC31b8ESPJgC8tWgXr8cmqLkhIiJylf7Ylcq8DYcxmeD1O9rgajF8mi0iUmEY+hs3JyeHdevW0aNHj/xtZrOZHj16sGLFiksed/bsWerXr09gYCD9+/dn27ZtpRFXpFwymUw80aMpL/ZtAcBHv+/jpR+2kmdTc0NERKQoMnNyeeH7LQDc3ymI0MDqxgYSEalgXIx88bS0NPLy8gqdceHv709CQsJFj2nWrBnTp0+nTZs2nD59mrfeeotOnTqxbds26tatW2j/7OxssrOz8x+np6cDYLVasVqtDqnjwjiOGs9oqse5lVQ9w64NxN1iYvRP2/l8ZRJpZ7J5687WuLuUbP9Tn49zUz3OrSTqKS/vjUhpevfX3Rw8kUXtah481auZ0XFERCocQxsbxREeHk54eHj+406dOtGiRQs++ugjXnnllUL7x8TEMHbs2ELbFy1ahKenp0OzxcXFOXQ8o6ke51YS9XgBQxub+HyPmdhtKew5eJSHmtmoVAq/KfT5ODfV49wcWU9mZqbDxhKpCLYePs0ny84vwP3qba2o4l7mptciImWeob95fXx8sFgspKSkFNiekpJCQEBAkcZwdXWlbdu27Nmz56LPR0dHExUVlf84PT2dwMBAevXqhZeXV/HD/43VaiUuLo6ePXvi6urqkDGNpHqcW0nX0we4ce9xRny1kT3pMONgNaYNbYdfVXeHvxbo83F2qse5lUQ9F85sFJEry82zEf3dFvJsdvq2qcWNzbXum4iIEQxtbLi5udG+fXvi4+MZMGAAADabjfj4eCIjI4s0Rl5eHlu2bKFPnz4Xfd7d3R1398L/IHN1dXX4pLYkxjSS6nFuJVnP9c0DmPNwOPd/uoaE5DMMnLqaWQ+G0aAEb1unz8e5qR7n5sh6ytP7IlLSZiw/wJbDp/HycGFMv2Cj44iIVFiGL9ccFRXF1KlTmTlzJjt27ODRRx8lIyODiIgIAIYOHUp0dHT+/uPGjWPRokXs27eP9evXc++995KYmMhDDz1kVAki5VKrOtX47tFOBHl7cuhkFndMXs6mg6eMjiUiIuIUDp7I5O1FuwB4vk8L/Kp6GJxIRKTiMvwiwIEDB5Kamsro0aNJTk4mNDSU2NjY/AVFk5KSMJv/6r+cPHmS4cOHk5ycTI0aNWjfvj3Lly8nOFhdchFHq+ftydxHOxHx6Rq2HD7NoKkrmXxve65v6mt0NBEREcPY7XZe/H4rWdY8whrUZOA1gUZHEhGp0AxvbABERkZe8tKTJUuWFHj8zjvv8M4775RCKhEB8KnizlcPX8ujn69j6e40HpyxhlcHtOKejvWMjiYiImKIHzcd4fddqbi5mBl/e2tMJpPRkUREKjTDL0UREedXxd2FacOu4ba2dci12Xnuuy28EZuAzWY3OpqIiEipOpWZw7iftgPw2A2NaeRbxeBEIiKixoaIFImbi5kJd4cwqnsTACYv2ctjX23gnDXP4GQiIiKl543YBI5n5NDErwr/ub6R0XFERAQ1NkTkKphMJp7s2ZS37wrB1WJi/pajDJ66kuNns42OJiIiUuLWJZ7gq9UHARh/e2vcXDSVFhFxBvptLCJX7Y72dfnsgTC8PFxYn3SK2z5czp5jZ42OJSIiUmJy82y8MG8rAHd3qMs1QTUNTiQiIheosSEixRLeyJvvRnSmXk1Pkk5kcsfk5azYe9zoWCIiIiVixvIDJCSfobqnK8/d3MLoOCIi8jdqbIhIsTX2q8K8EZ1oW686p7Os3DdtFV+uSjI6loiIiEMdOZXFhLhdAETf3Jyald0MTiQiIn+nxoaI/CveVdz5avi13NKmFrk2O8/P28LoH7ZizbMZHU1ERMQhxv20ncycPDrUr8Fd7QONjiMiIv+gxoaI/GserhbeH9SW//ZuBsBnKxIZOm01JzNyDE4mIiLy7yxOSCF2WzIWs4lXb2uF2WwyOpKIiPyDGhsi4hAmk4mRNzTm4/vaU9nNwop9x7l10jJ2Jp8xOpqIiEixZOXkMfqHbQA8eF0Dmgd4GZxIREQuRo0NEXGoXi0D+G5EZwJrVuLgiSxu//BP4ranGB1LRETkqn3w224OncyidjUPRnVvYnQcERG5BDU2RMThmgVU5ceR1xHe0JuMnDwenrWWDxbvxm63Gx1NRESkSPYcO8PHf+wDYMytLans7mJwIhERuRQ1NkSkRNSo7MZnD3ZkWHh97HZ4a9EuHvl8HennrEZHExERuSy73c6L32/Fmmene3M/egX7Gx1JREQuQ40NESkxrhYzY/u34vXbW+NmMbNwWwr9P/hT626IiIhTm7fhMCv3ncDD1czLt7bEZNKCoSIizkyNDREpcfd0rMc3j4RTu5oH+9MyGDDpT37YeNjoWCIiIoWczrTy2vwdADzevQmBNT0NTiQiIleixoaIlIqQwOr8/HgXujTxIcuax6jZGxn70zaseTajo4mIiOR7Y2ECxzNyaOJXhYeua2h0HBERKQI1NkSk1NSs7MaMiI5E3tAYgE//PMB909dyOsfgYCIi/2/SpEkEBQXh4eFBWFgYq1evvuS+U6dOpUuXLtSoUYMaNWrQo0ePy+4vzm9D0km+Wp0EwCsDWuHmoqmyiEhZoN/WIlKqLGYTT/duxtShHajq7sK6pFP8b7OFVftPGB1NRCq4OXPmEBUVxZgxY1i/fj0hISH07t2bY8eOXXT/JUuWMGjQIH777TdWrFhBYGAgvXr14vBhXWpXFuXm2Xhh3lbsdrijXV2ubehtdCQRESkiNTZExBA9g/358bHraOpXhTNWE0M/XcvEX3eRZ9MtYUXEGBMmTGD48OFEREQQHBzMlClT8PT0ZPr06Rfd/4svvmDEiBGEhobSvHlzPvnkE2w2G/Hx8aWcXBxh5opEth9Np1olV57v09zoOCIichV0Q24RMUwDn8p885+OPDzlV1almpn4625W7TvBxHtC8ffyMDqeiFQgOTk5rFu3jujo6PxtZrOZHj16sGLFiiKNkZmZidVqpWbNmpfcJzs7m+zs7PzH6enpAFitVqxWx9wO+8I4jhrPaKVRT3L6OSYs2gnA0z2b4OVuLrHX0+fj3FSPc1M9zq0k6inqWGpsiIihPN1cGNzYxl1d2zD6px2s2HecPu8uZcLAUK5v6mt0PBGpINLS0sjLy8Pf37/Adn9/fxISEoo0xrPPPkvt2rXp0aPHJfeJiYlh7NixhbYvWrQIT0/H3n0jLi7OoeMZrSTr+XSXmYwcM0FV7FQ5tpkFCzaX2GtdoM/Huake56Z6nJsj68nMzCzSfmpsiIhT6B9am7ZB3kR+uYEdR9MZNn01j3ZrRFTPprhadNWciDi3119/ndmzZ7NkyRI8PC59xll0dDRRUVH5j9PT0/PX5vDy8nJIFqvVSlxcHD179sTV1dUhYxqppOv5Y3caG1esx2I28d7QcFrUqurw1/g7fT7OTfU4N9Xj3EqingtnNl6JGhsi4jQa+VZh3ohOvDZ/B7NWJjJ5yV5W7z/Be4PaUqd6JaPjiUg55uPjg8ViISUlpcD2lJQUAgICLnvsW2+9xeuvv86vv/5KmzZtLruvu7s77u7uhba7uro6fFJbEmMaqSTqOWfNY+zP58/Iub9TEG3qXfoyIkfT5+PcVI9zUz3OzZH1FHUcfQ0qIk7Fw9XCKwNa8eGQdufvmpJ4kpsn/sHPm48YHU1EyjE3Nzfat29fYOHPCwuBhoeHX/K4N998k1deeYXY2Fg6dOhQGlHFgT78bQ9JJzIJ8PLgyZ5NjY4jIiLFpMaGiDilPq1rMf/xLoQEVif9XC6RX24gas5GzpwrH4sriYjziYqKYurUqcycOZMdO3bw6KOPkpGRQUREBABDhw4tsLjoG2+8wUsvvcT06dMJCgoiOTmZ5ORkzp49a1QJchX2pp5lyu/7ABjTL5gq7jqRWUSkrFJjQ0ScVj1vT+Y+Es5jNzbGbILvNhymz3tLWXvghNHRRKQcGjhwIG+99RajR48mNDSUjRs3Ehsbm7+gaFJSEkePHs3ff/LkyeTk5HDnnXdSq1at/J+33nrLqBKkiOx2Oy99v5WcPBvdmvlyU6vLX24kIiLOTa1pEXFqrhYzT/VqxvVNfXlizkYOnsji7o9WMPKGxjzevYkWFhURh4qMjCQyMvKizy1ZsqTA4wMHDpR8ICkRP246wvK9x3F3MTPu1laYTCajI4mIyL+gfxGISJnQIagmv4zqwu3t6mCzw/uL93DnlBXsT8swOpqIiJQhp7OsvPLzDgAib2hMPW/H3mZXRERKnxobIlJmVPVwZcLdoXwwuC1eHi5sOniKvu8t5YtVidjtdqPjiYhIGfDWwp2knc2moW9lHr6+odFxRETEAdTYEJEy55Y2tYl9oivhDb3JzMnjhXlbuW/aag6fyjI6moiIOLFNB0/x+apEAF7t3wp3F4vBiURExBHU2BCRMql29Up88VAYo28JxsPVzLI9afR+5w/mrEnS2RsiIlJIns3Oi99vxW6HAaG16dTYx+hIIiLiIGpsiEiZZTabeOC6Bix4vAvt69fgbHYuz367hfs/XcPR0zp7Q0RE/vL5ykS2HD5NVQ8XXugbbHQcERFxIDU2RKTMa+hbha//E84LfVrg5mLm912p9HrnD75Ze1Bnb4iICMfSz/HWwp0APHNTc3yruhucSEREHEmNDREpFyxmE8O7NmTB410ICazOmXO5/HfuZh6cuVZnb4iIVHCvzN/BmexcQupWY3DHekbHERERB1NjQ0TKlcZ+Vfj2kXCevak5bhYzixOO0XPCH8xamYjNprM3REQqmqW7U/lp0xHMJnjtttZYzCajI4mIiIM5RWNj0qRJBAUF4eHhQVhYGKtXry7ScbNnz8ZkMjFgwICSDSgiZYqLxcyj3Rrx8+PX0bZedc5m5/LS91u5+6MV7E45Y3Q8EREpJeeseYz+YRsAQ8ODaFWnmsGJRESkJBje2JgzZw5RUVGMGTOG9evXExISQu/evTl27Nhljztw4ABPP/00Xbp0KaWkIlLWNPWvytxHOjH21pZUdrOwNvEkfd5bysRfd5Gdm2d0PBERKWEf/b6P/WkZ+FV1J6pXU6PjiIhICTG8sTFhwgSGDx9OREQEwcHBTJkyBU9PT6ZPn37JY/Ly8hgyZAhjx46lYcOGpZhWRMoai9nEsE5BxEVdT/fmfljz7Ez8dTd931vGusQTRscTEZESciAtg0lL9gDw0i3BeHm4GpxIRERKiouRL56Tk8O6deuIjo7O32Y2m+nRowcrVqy45HHjxo3Dz8+PBx98kKVLl172NbKzs8nOzs5/nJ6eDoDVasVqtf7LCsgf6+//W9apHuemeorHt7ILkweHsGBrCq/MT2DPsbPcOWUFg68J5KmejanqoAmvPh/npnqKPqZIWWa32xn94zZycm10aeLDLW1qGR1JRERKkKGNjbS0NPLy8vD39y+w3d/fn4SEhIses2zZMqZNm8bGjRuL9BoxMTGMHTu20PZFixbh6el51ZkvJy4uzqHjGU31ODfVUzwm4KkW8EOimVWpZr5YfZAfNyTRv76NDj52TA5aU06fj3NTPZeWmZnpsLFEjLJgSzJ/7ErFzcXMuP6tMDnql7uIiDglQxsbV+vMmTPcd999TJ06FR8fnyIdEx0dTVRUVP7j9PR0AgMD6dWrF15eXg7JZbVaiYuLo2fPnri6lv3THFWPc1M9jnEXsGLfcV7+aQf70jL5fI+FXbk1ePmWFjTxr1LscfX5ODfVc2UXzmwUKavOnLMy7ufzC4Y+en0jGvhUNjiRiIiUNEMbGz4+PlgsFlJSUgpsT0lJISAgoND+e/fu5cCBA/Tr1y9/m81mA8DFxYWdO3fSqFGjAse4u7vj7u5eaCxXV1eHT2pLYkwjqR7npnr+va7NAvilkS+fLN3P+4t3s/rASW79cAUPXNeAUd2bUNm9+L8i9fk4N9Vz+bFEyrIJcbtISc8myNuTR7s1uvIBIiJS5hm6eKibmxvt27cnPj4+f5vNZiM+Pp7w8PBC+zdv3pwtW7awcePG/J9bb72VG264gY0bNxIYGFia8UWkHHB3sTDyhsbEPXk9PYP9ybXZ+fiPffSY8DsLthzFbrcbHVFERIpo6+HTzFx+AIBXBrTCw9VibCARESkVhl+KEhUVxbBhw+jQoQMdO3Zk4sSJZGRkEBERAcDQoUOpU6cOMTExeHh40KpVqwLHV69eHaDQdhGRqxFY05OpQzuwOCGFMT9u4+CJLEZ8sZ4uTXx4+daWNPIt/uUpIiJS8mw2Oy9+vxWbHW5pU4suTXyNjiQiIqXE8MbGwIEDSU1NZfTo0SQnJxMaGkpsbGz+gqJJSUmYzYbflVZEKogbm/vTqZEPHy7Zy5Qle1m6O43e7/zBsE5BPN69CdUq6TR9ERFn9NWaJDYePEUVdxdeuiXY6DgiIlKKDG9sAERGRhIZGXnR55YsWXLZY2fMmOH4QCJSoXm4Wojq2ZTb29Zh3M/bWZxwjGnL9jNvw2Ge6tWUe66ph8WsFfZFRJxF2tls3vjl/B31nu7VFH8vD4MTiYhIadKpECIilxDkU5np91/DzAc60tivCicycnhh3lb6vreU5XvTjI4nIiL/b/z8HaSfy6VVHS/uCw8yOo6IiJQyNTZERK7g+qa+/DKqCy/3C6ZaJVcSks8weOoqHpm1jqTjmUbHExGp0JbtTuO7DYcxmeC1Aa11Rp2ISAWkxoaISBG4Wszc37kBS57uxtDw+ljMJmK3JdNjwu+8/ksC6eesRkcUEalwsnLyeH7eFgCGhQcREljd2EAiImIINTZERK5CjcpujOvfil9GdaFLEx9y8mxM+X0v17/5G9OX7Sc712Z0RBGRCuO9xbtJOpFJrWoePN27mdFxRETEIGpsiIgUQ1P/qnz2QEemDetAY78qnMy0Mu7n7dz03p+sTzNhs9mNjigiUq7tOJrOx3/sA2Bc/1ZUcXeKNfFFRMQAamyIiBSTyWSiewt/Ykd1Ieb21vhVdefQySxm7rZw58ertMCoiEgJybPZif5uC3k2Oze3CqBnsL/RkURExEBqbIiI/EsuFjODOtZjyX+78UT3xrhb7Gw5nM7gqauI+HQ1CcnpRkcUESlXPl+ZyMaDp6jq7sLLt7Y0Oo6IiBhM5+yJiDiIp5sLI7s1xOd0AjstDfhqzSF+25nKkl2p3Na2Dk90b0o9b0+jY4qIlGlHT2fxZmwCAM/c3Bx/Lw+DE4mIiNF0xoaIiINVdYXRt7QgLup6+rauhd0O360/zI1vL+GFeVs4ejrL6IgiImXWmB+2kZGTR/v6NRjSsZ7RcURExAmosSEiUkIa+FRm0pB2/DCyM12a+JBrs/PFqiSu/98SXvl5O2lns42OKCJSpsRuTWbR9hRczCbG39Yas9lkdCQREXECamyIiJSwkMDqzHowjDkPX0vHoJrk5NqYtmw/Xd/8jTdjEzidaTU6ooiI0ztzzsqYH7cC8Mj1jWgWUNXgRCIi4izU2BARKSVhDb2Z859r+eyBjrSpW43MnDw+XLKX695czHvxuzlzTg0OEZFLeStuNynp2QR5exJ5Y2Oj44iIiBNRY0NEpBSZTCa6NvXlh5Gd+fi+9jQPqMqZc7lMiNvFdW/8xnvxuzmdpQaHiMjf7T5t4svVhwAYf1trPFwtBicSERFnosaGiIgBTCYTvVoGsODxLrw3qC0NfStzOst6vsHx+mImLNrJqcwco2OKiBguMyeXr/aen7IODqtHp8Y+Bif6v/buPCyqev8D+HtmmBl2kB0BRRZFXABRFDVBRanMtF+31BZJy5tdedIoS1q0rhnaYrSYdLvXzHzMpVIrvCqhuG+BKOKOC8oOIiAo23x/f3idGtkVmDPwfj0Pz71z+J5zPp++ncvnfuac7yEiIqlhY4OISI/kchke9euKhFdC8PmUAHg7mKOssgaf7ziPYYt3YMnW0yjiIqNE7WbZsmVwd3eHsbExBg8ejMOHDzc4Nj09HY8//jjc3d0hk8kQGxvbfoF2IrGJGSiqlMHJUo3oh3z0HQ4REUkQGxtERBKg+F+DY9ucEVj+9AD0drZEeVUtlidlYPiSnVgUfxL5Zbf0HSZRh7Zu3TpERUVhwYIFSElJgZ+fH8LDw5Gfn1/v+IqKCnh4eGDx4sVwcnJq52g7h+TLxVh54DIA4P0JvrAwVuo5IiIikiI2NoiIJEQul+Ghfs7Y8vJwfDN1IPq7WuFmdS2+2XMRDyzZiXd/ScfV4gp9h0nUIS1duhQzZszAtGnT4Ovri7i4OJiammLFihX1jh80aBA++ugjTJ48GWq1up2j7fhuVdfi9R+PQQggyF6DkJ72+g6JiIgkio0NIiIJkslkGOPriM2zhuHbaYMQ0M0alTUarNx/CSEfJWHO2qM4lVOq7zCJOoyqqiokJycjLCxMu00ulyMsLAwHDhzQY2Sd1+eJ55BRUA57cxUmdtfoOxwiIpIwI30HQEREDZPJZBjZywGhPe2xP6MIy5MysPd8ITalZmNTajZCetpjZognhnjYQCaT6TtcIoNVWFiI2tpaODo66mx3dHTE6dOnW+08lZWVqKz8c92c0tLbDcrq6mpUV7fOG5HuHKe1jqcPJ7JK8fXuCwCA+eN6QpOZatD5/FVHmJ+/Yj7Sxnykjfk0/5hNYWODiMgAyGQyDPOywzAvO5zIKkHcrgxsScvBrrMF2HW2AH5u1ngpxANjfJ2gkLPBQSRVMTExeO+99+ps3759O0xNTVv1XAkJCa16vPZSowE+TlOgViPDAFsNNJmpAAw3n4YwH2ljPtLGfKStNfOpqGjeI9hsbBARGZi+Llb48qkBuFxUjm/2XMCGP67i2JXrmLk6BR52ZpgxwgOPBbjAWKnQd6hEBsPOzg4KhQJ5eXk62/Py8lp1YdDo6GhERUVpP5eWlsLNzQ1jx46FpaVlq5yjuroaCQkJGDNmDJRKw1ts89PfzyOn4gK6mCrx1YxhsFTJDDqfuxn6/NyN+Ugb85E25tO0O3c2NoWNDSIiA9Xd1gzvT+yHOWE9sXLfJaw6cAkXCssR/XMaPt52Bk8P6Y5nhnSDg4WxvkMlkjyVSoXAwEAkJiZi4sSJAACNRoPExERERka22nnUanW9C40qlcpWL2rb4phtLSWzGHH/ewRl0WP94GRtpr0N2RDzaQzzkTbmI23MR9paM5/mHoeNDSIiA2dnrsZr4b0wM9QTaw9nYsXei8guuYXPE88hLikD4/26Yvpwd/TpaqXvUIkkLSoqChERERg4cCCCgoIQGxuL8vJyTJs2DQAwdepUuLi4ICYmBsDtBUdPnjyp/e9ZWVlITU2Fubk5vLy89JaHoaqoqsGr649BI4DHAlzwcD9nfYdEREQGgo0NIqIOwlxthBce8MBzQ92xLT0P/9l7ASmZ1/FTylX8lHIVQzxsMH1YD4zu7ch1OIjqMWnSJBQUFGD+/PnIzc2Fv78/tm7dql1QNDMzE3L5ny+Uy87ORkBAgPbzxx9/jI8//hghISFISkpq7/ANXsyW07hYWA4nS2O8+2gffYdDREQGhI0NIqIOxkghx7j+zhjX3xlHM4uxYt8lbEnLwcEL13DwwjV0tzXFc0Pd8cRAN5ir+WeA6K8iIyMbfPTk7maFu7s7hBDtEFXHt+tsAb4/eBkA8PETfrAy6Ti3ZBMRUduTNz2EiIgMVUC3LvhiSgD2vjESL4V6wspEictFFXjv15MI/iAR7/6SjvP5N/QdJhF1YtcrqvD6j8cAAM8Ndcdwbzs9R0RERIaGjQ0iok7A2coEbzzogwPRo/D+xL7wsDdDWWUNVu6/hLClu/DUNwfx37Qc1NRq9B0qEXUy8zenI6+0Eh72ZnjjQR99h0NERAaI9yATEXUipiojPDOkO54K6oZ9GYVYdeAyEk/lYX9GEfZnFMHJ0hhTgrphSpAbHCz5NhUialsbj17FL8eyoZDLsPRJf5io+JpqIiJqOTY2iIg6Iblchge87fGAtz2yrt/EmkOXsfbwFeSW3sKnv5/FFzvOIbyvE6YMdAGXECCitnCpsBxvbzwBAHh5lDf83az1GxARERksNjaIiDo5F2sTzA33wcujvbH1RC5WH7yMI5eKEX88B/HHc+BkokChzWX8bWA3WJuq9B0uEXUAVTUavLz2KMqrahHUwwaRo/h6XCIiundsbBAREQBAbaTABH8XTPB3wcnsUqw+dBmbjmYh92Yt3t9yBh9uP4eH+zph0qBuGOJhA5mMr4wlonvz0bbTOH61BNamSnw22Z+voCYiovvCxUOJiKgO366W+OCxftg7dwT+1qMWPk4WqKrRYFNqNqZ8cxAjP07C8qQMFJRV6jtUIjIwO8/k45s9FwEAHz7eH85WJnqOiIiIDB3v2CAiogZZGCvxgJPABw8Nwen8Cqw9cgW/pGbjUlEFlmw9jU+2n8Ho3g6YHNQNI7zt+a0rETUqv/QWXlt/+9WuU4O7Y2wfJz1HREREHYEk7thYtmwZ3N3dYWxsjMGDB+Pw4cMNjv35558xcOBAWFtbw8zMDP7+/vj+++/bMVoios5HJpOhv6s1PnisHw69ORofPt4fA7pZo0YjsC09D9O+PYLhS3ZgacJZXC4q13e4RCRBNbW319UoKq+Cj5MF3ny4t75DIiKiDkLvd2ysW7cOUVFRiIuLw+DBgxEbG4vw8HCcOXMGDg4Odcbb2Njgrbfego+PD1QqFX777TdMmzYNDg4OCA8P10MGRESdi5naCE8OcsOTg9xwJrcM645cwc9HryKn5BY+TzyHzxPPYZB7Fzw+wBUP93eGpbFS3yETkQR8tP0MDl64BjOVAl8+FQBjJV/tSkRErUPvd2wsXboUM2bMwLRp0+Dr64u4uDiYmppixYoV9Y4PDQ3FY489ht69e8PT0xOzZ89G//79sXfv3naOnIiIejlZYP54XxyMHo3PpwRgRE97yGXAkUvFmPdzGga9/zte/uEodp0tQK2G740l6qy2nsjB17suAAA+/JsfvBws9BwRERF1JHq9Y6OqqgrJycmIjo7WbpPL5QgLC8OBAwea3F8IgR07duDMmTNYsmRJvWMqKytRWfnn4nalpaUAgOrqalRXV99nBtAe66//aeiYj7QxH2nrrPkoADzka4+HfO2RW3oLvxzLwcaj2ThfUI5fjmXjl2PZcLBQ41E/Z/yff1d4O5q3Q/R1ddb5uZdjErWWjIIbeG3DcQDA88N7YFx/Zz1HREREHY1eGxuFhYWora2Fo6OjznZHR0ecPn26wf1KSkrg4uKCyspKKBQKfPXVVxgzZky9Y2NiYvDee+/V2b59+3aYmpreXwJ3SUhIaNXj6RvzkTbmI22dPR9XAJGewBUn4HCBHCmFMuSXVeLfey/h33svwc1MYJC9BgG2Apaqtom5MZ19fhpTUVHRasciqqiqwUurk3GjsgaD3Ltg3kM++g6JiIg6IL2vsXEvLCwskJqaihs3biAxMRFRUVHw8PBAaGhonbHR0dGIiorSfi4tLYWbmxvGjh0LS0vLVomnuroaCQkJGDNmDJRKw3+WnPlIG/ORNuZT10wAVTUaJJ0twMaj2Ug6W4gr5cCVcgU2XQaCPWzxSH8nhPs6wKKN1+Pg/DTtzp2NRPdLoxF4bcMxnM27AXsLNZY9NQBKhd6fgiYiog5Ir40NOzs7KBQK5OXl6WzPy8uDk1PDr/+Sy+Xw8vICAPj7++PUqVOIiYmpt7GhVquhVqvrbFcqla1e1LbFMfWJ+Ugb85E25nP3/sA4P1eM83NF0Y1K/HIsG5tTs5F65Tr2ZRRhX0YRFvx6CiN72WOCvwtG+Ti06cKCnJ/Gj0XUGmJ/P4stablQKmRY9tQAOFga6zskIiLqoPTa2FCpVAgMDERiYiImTpwIANBoNEhMTERkZGSzj6PRaHTW0SAiIumyNVdj2rAemDasBy4XlePX/zU5zuXfwLb0PGxLz4O52ghj+zjiUb+uGO5lByN+y0tkUDanZuHzHecBAB881g9BPWz0HBEREXVken8UJSoqChERERg4cCCCgoIQGxuL8vJyTJs2DQAwdepUuLi4ICYmBsDtNTMGDhwIT09PVFZWYsuWLfj++++xfPlyfaZBRET3oLutGSJHeWPWSC+czi3D5tRs/HosG1nXb+LnlCz8nJIFWzMVHu7njHH9nTHI3QYKuUzfYRNRI45mFmPuj7cXC31xhAeeGOim54iIiKij03tjY9KkSSgoKMD8+fORm5sLf39/bN26VbugaGZmJuTyP7+pKy8vxz/+8Q9cvXoVJiYm8PHxwerVqzFp0iR9pUBERPdJJpOht7Mlejtb4vXwXkjJLMYvx7IRfzwHReVV+P7gZXx/8DLszNV4sK8jHu7njCB3G97JQSQxV65V4O/fJ6OqRoOw3o54/UEuFkpERG1P740NAIiMjGzw0ZOkpCSdz++//z7ef//9doiKiIj0QS6XYaC7DQa622D+I77Yl1GEX1KzkXAyF4U3KrH6YCZWH8yErZkK4X2d8HBfZwzxYJODSN+KblQiYsVhFJRVwsfJArGT/XmHFRERtQtJNDaIiIjqY6SQI6SnPUJ62qOqph/2ZxRiS1oOtp/MQ1F5FdYcysSaQ5mwMVMhvI8jHurrjGBPW755gaidlVfWYPrKI7hQWA4XaxN8Nz0I5mqWmURE1D74F4eIiAyCykiO0F4OCO3lgEW1GhzIKMJ/T+RgW3oerpVX4YfDV/DD4SuwNlVirK8jxvo6Ybi3XZu+XYWIbr/OeebqZBy7WoIupkp8Nz0IjnwDChERtSM2NoiIyOAoFXKM6GmPET3tsXCCBocuXsOWtBxsS89F4Y0qrP/jKtb/cRUmSgVG9LTDWF8njPJxgLmKt8UTtaaaWg1eWZeKPecKYaJUYMVzg+DlYK7vsIiIqJNhY4OIiAyakUKOYV52GOZlh39O6IvDF69h64kcJJzMQ3bJLe0rZBVyGQK7WcMFMvQrroCHg5W+QycyaDW1GsxZl4r4tBwoFTJ89cwABHTrou+wiIioE2Jjg4iIOgyFXIZgT1sEe9ri3Uf7ID27FNtP5mF7ei5O55bh8KViAApsXLoXPk4Wtx9Z6eOEPl0tIZPxbg6i5qrVCLy64Rh+O367qbH86UCM7OWg77CIiKiTYmODiIg6JJlMhr4uVujrYoWoMT1x5VoF/puWjfX7TuFCmRync8twOrcMn+84j65WxhjV2wGjfBwQ7GEHExXX5SBqSFWNBq9uOIZfj2XDSC7DsqcGIMzXUd9hERFRJ8bGBhERdQpuNqaYNrQ7HK+nIzh0FPacL8b2k7nYfbYQ2SW3tK+RVRvJMdTTFqN8bi9U6mZjqu/QiSSjvLIGM1cnY8+5QigVMnwxZQDG9nHSd1hERNTJsbFBRESdThdTFR4PdMXjga64VV2LfecLseN0Pnaezkd2yS3sPFOAnWcKAKTD28Eco3wcMNLHAYHdu/BVstRpXSuvwrSVR3DsynWYqhSIeyYQI3ra6zssIiIiNjaIiKhzM1YqMLq3I0b3doQQAmfyyrDzdAF2ns5HcmYxzuXfwLn8G/h69wVYGBthRE97jOrlgNBe9rA1V+s7fKJ2cTavDDNW/YHLRRXoYqrEiucGcaFQIiKSDDY2iIiI/kcmk8HHyRI+TpZ4KdQTJRXV2HXudpMj6Uw+iiuqEX88B/HHcyCTAX27WmFETzs84G2PAd26QGXEuzmo4/n9ZB5mrz2K8qpauFib4Lvpg+DlYKHvsIiIiLTY2CAiImqAlakSj/p1xaN+XVGrETh29Tp2ns7HjtP5SM8uRVpWCdKySrBsZwbMVAoEe9piRE97POBtD3dbU75phQxaTa0Gnyeewxc7z0MIYIiHDb56OhA2Zip9h0ZERKSDjQ0iIqJmUMhlGNCtCwZ064JXx/ZCfukt7DlXiD3nCrDnXCGKyqvw+6l8/H4qHwDg2sUEI3raY4S3HYZ62cHSWKnnDIia78q1CsxeexQpmdcBAM8O6Y754325xgwREUkSGxtERET3wMHSWLsAqUYjcDKnFLvPFWDP2UL8cfkarhbfxJpDmVhzKBMKuQz+btYY4W2P4d626O9qzf+DSJKk0Qj8cCQTi7ecRlllDSzURlj0f/3wqF9XfYdGRETUIDY2iIiI7pNcLkNfFyv0dbHCP0K9UF5Zg0MXi7D7bCF2nyvAhYJyJF8uRvLlYnz6O2CmUiCohw2Getoh2NMWvs6WkMv52Arp16mcUry1MU17l0Zg9y6IneTPVx4TEZHksbFBRETUyszURhjl44hRPo4AgKvFFdh77naT40BGEYorqv/ySlnA2lSJIT1sMdTLFkM9beFpb871OajdZBZVIPb3s9iYmgUhbjfeXgvvhanB7lCw4UZERAaAjQ0iIqI25trFFJODumFyUDdoNAKncktxIKMI+zOKcOhCEa5XVGNrei62pucCABws1Bjqaau9o4PfmLefZcuW4aOPPkJubi78/PzwxRdfICgoqMHxGzZswDvvvINLly7B29sbS5YswcMPP9yOEd+71CvX8d3+S/j1WDZqNAIAMK6fM95+pDecrUz0HB0REVHzsbFBRETUjuRyGfp0tUKfrlZ44QEPVNdqkJZV8r9GRyH+uFSM/LJKbErNxqbUbACAm40Jgj1sMbiHLQZ72MC1CxsdbWHdunWIiopCXFwcBg8ejNjYWISHh+PMmTNwcHCoM37//v2YMmUKYmJi8Mgjj2DNmjWYOHEiUlJS0LdvXz1k0LTLReXYkpaL345nIz27VLt9RE97zB3bC/1crfQYHRER0b1hY4OIiEiPlAq59m0rs0Z64VZ1LVIyi7V3dBy7ch1Xrt3ElWtXsf6PqwAAF2sTDPGwxcDuVqi4BQgh9JxFx7B06VLMmDED06ZNAwDExcUhPj4eK1aswLx58+qM/+yzz/Dggw9i7ty5AICFCxciISEBX375JeLi4to19jtuVtUiv+QmciuAY1dLUFhejYuFFTidW4ojF68hu+SWdqxKIccjfs54bqg7+rta6yVeIiKi1sDGBhERkYQYKxUY6mmHoZ52eBXAjcoaHLl0DQcvFOHQhWtIyypB1vWb+CnlKn5KuQrACDlm5/D2I330HbpBq6qqQnJyMqKjo7Xb5HI5wsLCcODAgXr3OXDgAKKionS2hYeHY9OmTQ2ep7KyEpWVldrPpaW375qorq5GdXX1fWRw25pDmVgYfxqAEXDsUJ3fK+QyDHbvgof6OmGsrwNszFTa80vVndikHGNLMB9pYz7SxnykrS3yae6x2NggIiKSMHO1EUb2csDIXrcfhbhRWYPky8U4dKEIBy8U4diVYvg6W+g5SsNXWFiI2tpaODo66mx3dHTE6dOn690nNze33vG5ubkNnicmJgbvvfdene3bt2+Hqen9P2J0Pl8GI5kcagWgVgDmRoC9iYCDsUAPC8DdQkCtyAcK8nFw132frl0lJCToO4RWxXykjflIG/ORttbMp6Kiolnj2NggIiIyIOZqI4T0tEdIT3tUV1dj069bMKZ33fUfSJqio6N17vIoLS2Fm5sbxo4dC0tLy/s+/kNC4J2aGiQkJGDMmDFQKpX3fUx9q66uZj4SxnykjflIG/Np2p07G5vCxgYREZEBUyluP75C98fOzg4KhQJ5eXk62/Py8uDk5FTvPk5OTi0aDwBqtRpqtbrOdqVS2WpF4J1XBbfmMaWA+Ugb85E25iNtzKfxYzWHvFXORkRERGTAVCoVAgMDkZiYqN2m0WiQmJiI4ODgevcJDg7WGQ/cvv22ofFERETUNnjHBhERERGAqKgoREREYODAgQgKCkJsbCzKy8u1b0mZOnUqXFxcEBMTAwCYPXs2QkJC8Mknn2DcuHFYu3Yt/vjjD/zrX//SZxpERESdDhsbRERERAAmTZqEgoICzJ8/H7m5ufD398fWrVu1C4RmZmZCLv/zZtehQ4dizZo1ePvtt/Hmm2/C29sbmzZtQt++ffWVAhERUafExgYRERHR/0RGRiIyMrLe3yUlJdXZ9sQTT+CJJ55o46iIiIioMVxjg4iIiIiIiIgMFhsbRERERERERGSw2NggIiIiIiIiIoPFxgYRERERERERGSw2NoiIiIiIiIjIYLGxQUREREREREQGi40NIiIiIiIiIjJYbGwQERERERERkcFiY4OIiIiIiIiIDJaRvgNob0IIAEBpaWmrHbO6uhoVFRUoLS2FUqlstePqC/ORNuYjbcxH2phP0+78fbzz95LaFuuSpjEfaWM+0sZ8pI35NK25dUmna2yUlZUBANzc3PQcCRERkXSVlZXByspK32F0eKxLiIiImtZUXSITnewrGY1Gg+zsbFhYWEAmk7XKMUtLS+Hm5oYrV67A0tKyVY6pT8xH2piPtDEfaWM+TRNCoKysDF27doVczidW2xrrkqYxH2ljPtLGfKSN+TStuXVJp7tjQy6Xw9XVtU2ObWlp2SH+hbyD+Ugb85E25iNtzKdxvFOj/bAuaT7mI23MR9qYj7Qxn8Y1py7hVzFEREREREREZLDY2CAiIiIiIiIig8XGRitQq9VYsGAB1Gq1vkNpFcxH2piPtDEfaWM+1Bl0tH8vmI+0MR9pYz7SxnxaT6dbPJSIiIiIiIiIOg7esUFEREREREREBouNDSIiIiIiIiIyWGxsEBEREREREZHBYmODiIiIiIiIiAwWGxvNtGzZMri7u8PY2BiDBw/G4cOHGx2/YcMG+Pj4wNjYGP369cOWLVvaKdLmaUk+K1euhEwm0/kxNjZux2gbt3v3bowfPx5du3aFTCbDpk2bmtwnKSkJAwYMgFqthpeXF1auXNnmcTZXS/NJSkqqMz8ymQy5ubntE3AjYmJiMGjQIFhYWMDBwQETJ07EmTNnmtxPqtfPveQj5etn+fLl6N+/PywtLWFpaYng4GD897//bXQfqc7NHS3NScrzc7fFixdDJpNhzpw5jY6T+hxR62BdIs3rljWJdGsSgHUJIO3rp6PVJR25JgGkV5ewsdEM69atQ1RUFBYsWICUlBT4+fkhPDwc+fn59Y7fv38/pkyZgueffx5Hjx7FxIkTMXHiRJw4caKdI69fS/MBAEtLS+Tk5Gh/Ll++3I4RN668vBx+fn5YtmxZs8ZfvHgR48aNw8iRI5Gamoo5c+bghRdewLZt29o40uZpaT53nDlzRmeOHBwc2ijC5tu1axdmzZqFgwcPIiEhAdXV1Rg7dizKy8sb3EfK18+95ANI9/pxdXXF4sWLkZycjD/++AOjRo3ChAkTkJ6eXu94Kc/NHS3NCZDu/PzVkSNH8PXXX6N///6NjjOEOaL7x7pEutcta5LbpFiTAKxL7pDq9dPR6pKOWpMAEq1LBDUpKChIzJo1S/u5trZWdO3aVcTExNQ7/sknnxTjxo3T2TZ48GDx4osvtmmczdXSfL799lthZWXVTtHdHwBi48aNjY55/fXXRZ8+fXS2TZo0SYSHh7dhZPemOfns3LlTABDFxcXtEtP9yM/PFwDErl27Ghwj9evnr5qTjyFdP0II0aVLF/Hvf/+73t8Z0tz8VWM5GcL8lJWVCW9vb5GQkCBCQkLE7NmzGxxrqHNELcO6RPrXrRCsSQwB6xLp62h1iaHXJEJIty7hHRtNqKqqQnJyMsLCwrTb5HI5wsLCcODAgXr3OXDggM54AAgPD29wfHu6l3wA4MaNG+jevTvc3Nya7DRKnZTn5374+/vD2dkZY8aMwb59+/QdTr1KSkoAADY2Ng2OMaT5aU4+gGFcP7W1tVi7di3Ky8sRHBxc7xhDmhugeTkB0p+fWbNmYdy4cXX+2dfH0OaIWo51yW1Sv26bS8pzcz8MoSYBWJdI+frpaHVJR6lJAOnWJWxsNKGwsBC1tbVwdHTU2e7o6Njg84K5ubktGt+e7iWfXr16YcWKFdi8eTNWr14NjUaDoUOH4urVq+0RcqtraH5KS0tx8+ZNPUV175ydnREXF4effvoJP/30E9zc3BAaGoqUlBR9h6ZDo9Fgzpw5GDZsGPr27dvgOClfP3/V3Hykfv2kpaXB3NwcarUaM2fOxMaNG+Hr61vvWEOZm5bkJPX5Wbt2LVJSUhATE9Os8YYyR3TvWJdI/7ptCdYk+sO6RJrXT0erSzpSTQJIuy4xavUjUocTHBys01kcOnQoevfuja+//hoLFy7UY2QE3P4fwV69emk/Dx06FBkZGfj000/x/fff6zEyXbNmzcKJEyewd+9efYfSKpqbj9Svn169eiE1NRUlJSX48ccfERERgV27djX4R9cQtCQnKc/PlStXMHv2bCQkJEh68TCi9ibl67azM5SaBGBdcofUrp+OVpd0lJoEkH5dwsZGE+zs7KBQKJCXl6ezPS8vD05OTvXu4+Tk1KLx7ele8rmbUqlEQEAAzp8/3xYhtrmG5sfS0hImJiZ6iqp1BQUFSeoPdWRkJH777Tfs3r0brq6ujY6V8vVzR0vyuZvUrh+VSgUvLy8AQGBgII4cOYLPPvsMX3/9dZ2xhjA3QMtyupuU5ic5ORn5+fkYMGCAdlttbS12796NL7/8EpWVlVAoFDr7GMoc0b1jXVKXlK7blmJNoh+sS/4kteuno9UlHaUmAaRfl/BRlCaoVCoEBgYiMTFRu02j0SAxMbHB56OCg4N1xgNAQkJCo89TtZd7yedutbW1SEtLg7Ozc1uF2aakPD+tJTU1VRLzI4RAZGQkNm7ciB07dqBHjx5N7iPl+bmXfO4m9etHo9GgsrKy3t9JeW4a01hOd5PS/IwePRppaWlITU3V/gwcOBBPP/00UlNT6xQPgOHOETUf65K6pHTdtpSU56a1SKUmAViX1Efq109Hq0sMtSYBDKAuafXlSDugtWvXCrVaLVauXClOnjwp/v73vwtra2uRm5srhBDi2WefFfPmzdOO37dvnzAyMhIff/yxOHXqlFiwYIFQKpUiLS1NXynoaGk+7733nti2bZvIyMgQycnJYvLkycLY2Fikp6frKwUdZWVl4ujRo+Lo0aMCgFi6dKk4evSouHz5shBCiHnz5olnn31WO/7ChQvC1NRUzJ07V5w6dUosW7ZMKBQKsXXrVn2loKOl+Xz66adi06ZN4ty5cyItLU3Mnj1byOVy8fvvv+srBa2XXnpJWFlZiaSkJJGTk6P9qaio0I4xpOvnXvKR8vUzb948sWvXLnHx4kVx/PhxMW/ePCGTycT27duFEIY1N3e0NCcpz0997l593BDniO4f6xLpXresSaRbkwjBukQIaV8/Ha0u6eg1iRDSqkvY2GimL774QnTr1k2oVCoRFBQkDh48qP1dSEiIiIiI0Bm/fv160bNnT6FSqUSfPn1EfHx8O0fcuJbkM2fOHO1YR0dH8fDDD4uUlBQ9RF2/O68Wu/vnTg4REREiJCSkzj7+/v5CpVIJDw8P8e2337Z73A1paT5LliwRnp6ewtjYWNjY2IjQ0FCxY8cO/QR/l/ryAKDzz9uQrp97yUfK18/06dNF9+7dhUqlEvb29mL06NHaP7ZCGNbc3NHSnKQ8P/W5u4AwxDmi1sG6RJrXLWsS6dYkQrAuEULa109Hq0s6ek0ihLTqEpkQQrT+fSBERERERERERG2Pa2wQERERERERkcFiY4OIiIiIiIiIDBYbG0RERERERERksNjYICIiIiIiIiKDxcYGERERERERERksNjaIiIiIiIiIyGCxsUFEREREREREBouNDSIiIiIiIiIyWGxsEBEREREREZHBYmODiDqtoqIiODg44NKlS/e0/+TJk/HJJ5+0blBERETU6bAmIbo/bGwQdQDPPfccZDJZnZ/z58/rOzRJW7RoESZMmAB3d/d72v/tt9/GokWLUFJS0rqBERERGSjWJPeGNQnR/WFjg6iDePDBB5GTk6Pz06NHjzrjqqqq9BCd9FRUVOA///kPnn/++Xs+Rt++feHp6YnVq1e3YmRERESGjTVJy7AmIbp/bGwQdRBqtRpOTk46PwqFAqGhoYiMjMScOXNgZ2eH8PBwAIBGo0FMTAx69OgBExMT+Pn54ccff9Q5Znl5OaZOnQpzc3M4Ozvjk08+QWhoKObMmaMd4+7ujtjYWJ39/P398e677zb7PKGhoXj55Zfx+uuvw8bGBk5OTtr979BoNPjwww/h5eUFtVqNbt26YdGiRVi1ahVsbW1RWVmpM37ixIl49tlnG/zntWXLFqjVagwZMkRn+0svvYThw4fXu4+rqysWL16ss238+PFYu3Ztg+chIiLqbFiTsCYham9sbBB1At999x1UKhX27duHuLg4AEBMTAxWrVqFuLg4pKen45VXXsEzzzyDXbt2afebO3cudu3ahc2bN2P79u1ISkpCSkpKi87dnPPcidHMzAyHDh3Chx9+iH/+859ISEjQ/j46OhqLFy/GO++8g5MnT2LNmjVwdHTEE088gdraWvzyyy/asfn5+YiPj8f06dMbjGvPnj0IDAzU2Zaeno5//etf+PDDD+vdp3fv3khNTdXZFhQUhMOHD9cpYoiIiKgu1iR1sSYhagWCiAxeRESEUCgUwszMTPvzt7/9TQghREhIiAgICNAZf+vWLWFqair279+vs/35558XU6ZMEUIIUVZWJlQqlVi/fr3290VFRcLExETMnj1bu6179+7i008/1TmOn5+fWLBgQbPOcyfG4cOH64wZNGiQeOONN4QQQpSWlgq1Wi2++eabevN/6aWXxEMPPaT9/MknnwgPDw+h0WjqHS+EEBMmTBDTp0/X2RYRESEGDx7c4D5PPvmkCAkJ0dl27NgxAUBcunSpwf2IiIg6C9YkrEmI9MFI340VImodI0eOxPLly7WfzczMtP/97m8Bzp8/j4qKCowZM0Zne1VVFQICAgAAGRkZqKqqwuDBg7W/t7GxQa9evZodU3POc0f//v11Pjs7OyM/Px8AcOrUKVRWVmL06NH1nmfGjBkYNGgQsrKy4OLigpUrV2oXL2vIzZs3YWxsrP1cU1ODn3/+Ge+8845224svvoigoCDtM69lZWUwMTHROc6dzxUVFQ2ei4iIqDNhTcKahKi9sbFB1EGYmZnBy8urwd/91Y0bNwAA8fHxcHFx0fmdWq1u0XnlcjmEEDrbqqurW3wepVKp81kmk0Gj0QBAnT/cdwsICICfnx9WrVqFsWPHIj09HfHx8Y3uY2dnh+LiYu3njIwMlJWVoV+/fgBuPz+7YcMGncLl+PHjmDRpks5xrl27BgCwt7dv9HxERESdBWsS1iRE7Y2NDaJOyNfXF2q1GpmZmQgJCal3jKenJ5RKJQ4dOoRu3boBAIqLi3H27Fmdfezt7ZGTk6P9XFpaiosXLzb7PM3h7e0NExMTJCYm4oUXXqh3zAsvvIDY2FhkZWUhLCwMbm5ujR4zICBAZ+Xw69evAwDMzc0BANu2bUNxcbH2G5SDBw8iKysLjz32mM5xTpw4AVdXV9jZ2d1rekRERJ0WaxLWJEStgY0Nok7IwsICr732Gl555RVoNBoMHz4cJSUl2LdvHywtLREREQFzc3M8//zzmDt3LmxtbeHg4IC33noLcrnumsOjRo3CypUrMX78eFhbW2P+/PlQKBTNPk9zGBsb44033sDrr78OlUqFYcOGoaCgAOnp6dpbMp966im89tpr+Oabb7Bq1aomjxkeHo7o6GgUFxejS5cu6N69O2QyGX744QeYmZnhtddew7hx47B582a4ublh5syZCAsLq7M6+Z49ezB27Nhm5UFERES6WJOwJiFqDWxsEHVSCxcuhL29PWJiYnDhwgVYW1tjwIABePPNN7VjPvroI9y4cQPjx4+HhYUFXn31VZSUlOgcJzo6GhcvXsQjjzwCKysrLFy4UPvtSHPP0xzvvPMOjIyMMH/+fGRnZ8PZ2RkzZ87U/t7KygqPP/444uPjMXHixCaP169fPwwYMADr16/Hiy++CCcnJyxatAiLFy/GTz/9hA8++ACBgYGYMGEC1q1bh/Hjx+Orr77SOcatW7ewadMmbN26tUW5EBER0Z9Yk7AmIbpfMnH3g2hERI0IDQ2Fv79/nffES8Ho0aPRp08ffP75580aHx8fj7lz5+LEiRN1vvVpjuXLl2Pjxo3Yvn17i/clIiKi+8Oa5E+sSaiz4x0bRGTwiouLkZSUhKSkpDrfYDRm3LhxOHfuHLKyspp8/rU+SqUSX3zxRYv3IyIioo6JNQmRfrCxQUQGLyAgAMXFxViyZEmLXv0GAHPmzLnn8za0aBgRERF1TqxJiPSDj6IQERERERERkcFq+QNcREREREREREQSwcYGERERERERERksNjaIiIiIiIiIyGCxsUFEREREREREBouNDSIiIiIiIiIyWGxsEBEREREREZHBYmODiIiIiIiIiAwWGxtEREREREREZLDY2CAiIiIiIiIig8XGBhEREREREREZLDY2iIiIiIiIiMhg/T/jZAN0xhwwBQAAAABJRU5ErkJggg==",
"text/plain": [
"