{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "french-jackson",
"metadata": {},
"outputs": [],
"source": [
"from sympy import Matrix, symbols, sin, cos, trigsimp, init_printing, I, \\\n",
" simplify, Eq, solve, expand, lambdify, diff, solveset, exp, factor, Sum"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "sunrise-accent",
"metadata": {},
"outputs": [],
"source": [
"init_printing()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "linear-bridal",
"metadata": {},
"outputs": [],
"source": [
"from scipy import optimize\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import os\n",
"import pandas as pd\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "annoying-junction",
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"attachments": {
"diode-measure-4.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAPgAAACuCAYAAAAbBsDhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAACAASURBVHic7d15WFNX3gfwb0JCIAkQEGSXRa2ItFXRYsW1BZVKi7bq1KpTrRVHbX21tWLVVsdai8uj0HHGB7upqPPUWqd1axXciku1YC0KQmVTVmWHEFkSfu8fDncISVgDgXA+z5PHcO/Nueci39zt3HN4w4YNo/Hjx2PXrl1oat68eXj48CHOnj2rMY9hmO6Pv2DBAkRHR6OmpkZtRkVFBY4dO4YFCxYYqGoMw3QUr7i4mJydnXH48GFMnz6dm/HFF18gLCwMeXl5MDMzQ0pKCiIjI5GZmQmxWIxRo0Zh9erVzRauUqlQUVHB/VxVVYXa2loAQH19PcrLy1s1T6FQcF9AbZlXV1cHuVyus361tbWoqqrSOb+mpgYKhQI8Hg8ymUzrMiKRCGKxGOHh4fD09NRZFsMYAo+I6PXXX4dCocDx48e5Gf7+/hg6dCj++c9/QqFQwN3dHW+++SYCAwNRVlaGa9euaT2sb2zHjh344IMPOnsbNJibm8PMzExjuqWlJUxMTHR+zsrKCnw+v8Xym35xFRcXw9/fHxKJBLNmzcKMGTPaV3GG0TMeEdHZs2cxdepU5OTkwN7eHqmpqfDy8kJ8fDx8fX2RmpoKb29vlJaWwtLSstWFX7lyBSdOnIBYLIZIJHqywiZ7w+bmNQ5qW+Z1tTVr1mDr1q0AgI0bN2LDhg0GqwvDNCYAgICAADg5OSE6OhqrVq3Cvn378Oyzz8LX1xcA4OnpiREjRmDgwIF47bXXMHnyZAQFBcHU1LTZwv39/eHv79/5W8EwjFZ8AODz+Zg/fz727dsHlUqF6OhotYtrQqEQcXFx2Lt3L1QqFRYuXAhfX99mz28ZhjE87oRz/vz5SE5OxqefforCwkLMmTNHbUFTU1OEhIQgKioK9+/fR2ZmJi5fvtzlFWYYpvUEDW88PDwwceJEbNq0CdOnT4etrS230K1bt/DDDz9g8uTJsLOzw6VLl6BSqeDl5WWQSjMM0zqCxj988MEH6NOnD5YvX662kI2NDbKysrBkyRI8fvwY/fv3x+nTp+Hu7t6VdWUYpo3UAj5lyhRMmTJFY6F+/fph3759XVUnhmH0pOWbvgzD9Fgs4AxjxFjAGcaIsYAzjBFjAWcYI8YCzjBGTNDyIgzTvRQVFSElJQU1NTVwcnKCl5cXeDyeoavVLbE9ONNjXLt2DYGBgXBwcMDYsWMREBAAb29vuLq6YuvWrRqdljAs4EwP8fnnn2Ps2LGIjY2FSqVSm5ebm4s1a9Zg/PjxKC4uNlANuyd2iK5n0dHR6NOnD+bNmwcrK6suW69SqURaWhru3LmDgoICvPPOO1227s529OhRrFixAkQEHo+HoKAgBAUFwcrKCn/88Qf27duH4uJiXL9+HdOnT8fFixdb1XFHr0BMh4WFhREAtZdEIqFFixbRzZs39b6+zMxMOnnyJIWHh9Nrr71G/fr1I1NTU7K0tCQTExN6/vnnqb6+Xu/rNYSamhpydnYmACQUCuno0aMayzx69Iiee+457ncfHR1tgJp2TyzgenD37l16++23SSKRaAQdAPn5+dE333xDCoWiTeWWlJRQXFwcRUVF0eLFi2nEiBEkkUhILBaTTCYjoVCoth4ej0cODg5UWFjYSVva9U6dOsVt3+rVq3Uul5WVRaampgSAAgMDu7CG3RsLuB6Vl5dTVFQUPfPMM1qDbmVlRaGhoXT79m2Nz9bU1NAXX3xBoaGhNHLkSLKwsCBzc3OysbEhsVistbymL6lUSikpKQbY8s4THh7ObV9CQkKzy44fP54AkL29fRfVrvtjAe8k8fHxFBoaSubm5lrD6O/vT0eOHKHa2loiIioqKiJvb2/i8XitCnPTl0gkopiYGANvtf5t2rSJ28bk5ORmlw0KCiIAJJPJuqh23R8LeCcrKCigLVu2kKurq9ZgOjk50ccff0zZ2dmkUqnoq6++IqlUSnw+v9XhFovFFBkZaehN7RQHDx7ktnP37t06l5PL5WRtbU0AaMSIEV1Yw+6NBVzPioqK6PLly/TFF1/QqlWr6KWXXiJPT88WA2tiYkLTpk2jn3/+mRITE8nGxqZVe3OxWEwLFy409GZ3mpKSEu4oSCaTUVpamsYy9fX19Pbbb3O/ky1bthigpt0Tj4ioddfbmQZEhPv37yM1NRXJyclISUlBSkoK7t69i8LCwjaXZ2trC29vb3h5eWHQoEEICgpCbW0t/Pz8mm28IRKJMGLECFy8eBECgXHe8YyNjcWcOXPw6NEjAE96F1q7di2mTp0KKysr3Lp1Czt27MD58+cBAC4uLkhOToaFhYUhq91tsIA3o66uDtnZ2UhKSkJycjIyMjKQlJSEP/74o109yjo6OmLIkCHw9PSEt7c3hgwZgiFDhsDR0VFtuXPnzmHlypW4ffu2zrL4fD6cnZ2RmJho0D7hO0tycjLee+89nDlzptWfsba2RmxsLIYPH96JNetZjPNrv43KysqQnp7OBTg5ORlJSUlITU3VaDXVElNTU7i4uHABbvjXy8sLEomk2c/eu3cP69atw3fffcdN4/F40PYdLJVKcf78eaMLd2lpKbZu3Ypdu3ZxQ1nx+Xy88cYbcHNzw+7du9WGp2owefJk/Otf/2LDRzXRK/fgmZmZ2LZtG3eI/fDhwzaXYWNjg8GDB2Pw4MEYNGgQ997d3b3NrajKysoQHh6OiIgI7pCcx+NhxowZ8PX1xebNm9WOGMRiMU6dOoUJEya0ud7dlVKpxNdff43169erneb4+fkhMjISfn5+AJ4Minn27FkkJSXh8ePHcHFxwYsvvojBgwcbqurdm+FO/w3nwoULbboFJZVKaerUqRQREUEXL16kR48e6aUeKpWK9u/fT/b29mrrGzlyJF29epWIiPLz88nMzEythVxUVJRe1t9dnDt3TqPtgIuLC+3fv99oWuQZSq8M+JUrV9p1rxkAmZmZkaenJwUEBNC8efMoLCyMoqKi6Pjx4xQfH0+5ubmt+qO8cOECPfvss2plOzs7a/2jlslkXLiXLl3aWb+WLnfv3j2aOXOmxl2BDRs20OPHjw1dPaPQKw/Rc3Jy8OmnnyInJwfZ2dnIy8tr19VvXSQSCfr16wcnJyc4OzvD1dUVTk5OcHV1hUAgwNdff42jR49yy4vFYrz77rtYv349pFKpRnleXl5IT0+Hv78/5s+fj5SUFG6eo6MjPDw8MGnSJK0jqmZlZSEhIQGJiYmoqanBli1bDP4ghlwux44dOxAeHq5xSrJjxw7069fPoPUzJr0y4NpUV1cjNzcXeXl5ePDgAfLy8pCTk4OcnBzk5eUhOzsbBQUFbb7o1hIbGxu8+OKLOHLkiM5lBg0ahNraWvzxxx/461//ip9++glPP/00gP9dIPTw8MCFCxfg5ubGfe7QoUOYO3cuAEAgEECpVKKurs5gt9Tq6+tx8OBBrF69Wu26x8iRIxEREYHRo0cbpF5GzbAHED2LUqmknJwcunbtGn3//fcUGRlJq1atojfeeIPGjh1Lnp6eJBKJ2nXY35zt27dTRkYGERGFhISQi4uL2vyjR48Sj8ejRYsWqU1PTk6m//znP/TgwQN6//33CQDV1dXp95fSSr/++iv5+flptOKLiooilUplkDr1BizgeqJUKiklJYW+++47WrJkCfXv37/VAefxeK2+mKQt4ERE7u7uNHLkSJ2fM1TAs7Ozad68eWqt8szNzSksLIwqKiq6tC69EbsP3g45OTm4c+cObt++jTt37uDOnTtITk5GdXV1q8swNTXl7pE//fTTqK+vh4mJSbvqo1QqUVlZCVdX13Z9vjMoFAps27YNW7duVfu9BAcH4/PPP4eHh4cBa9d7sIA3o7y8HGlpaUhKSkJCQgKSk5ORmJjINZtsLZFIBH9/f4wcOVKtBZu2i2KtUV9fj9LSUgBPvmx27dqF4uJizJ8/v13l6RMR4ejRo1i1ahUePHjATR8+fDgiIiIwduxYA9au92EB/6979+7h2rVranvmnJycNpVhYmKidhHO3d0dERERCAkJ0Wtd8/LyYGNjo7bePXv24K233tLretrqt99+w4oVK3D16lVumq2tLdavX4933nmn3UcoTAcY+hyhu5g9e3arz5ktLCzI19eX5s2bR++++y55e3urzbexsaGIiAhSKpV6r2dISAj17duX4uPj6fr163Tw4EFyc3MjHx+fZnuM6cxz8NzcXAoNDVV7Yk4oFNLy5cupvLxc7+tjWo8F/L+mT5/ebKhHjBhBX331FWVmZhIRUV5eHoWGhpKJiYnGH3VpaWmn1VPbRbbExEQSCAT04Ycf6vxcZwRcoVBQeHg4WVhYqP2ugoODtT7W2dmys7Pp9OnTdOzYMbp27ZrB7hh0Jyzg/7VgwYJWPX/t5eVFo0eP1uipJSAggO7cudPp9dR1FX3RokUkEonowYMHWj+n74AfP36cPDw8NH43p0+f1kv5bXHu3Dl6/vnnNf6vZDIZrV27luRyeZfXqbtgAW+kvLycYmJiKCwsjPz9/TU6NdT2EggENGbMGIqKijJowDMzM0koFNKSJUu4adXV1RQfH0/x8fE0d+5cAkDXr1+n+Ph4un//frvWn5CQQGPHjtV6SmKIPWZ4eHiLnWn4+PhQXl5el9etO2ABb0ZlZSXFxMTQsmXLqE+fPq06P3dwcKCZM2dSREQExcfH6/1hCV0BJ3qyFxcKhdxpRHp6us56Ll68uE3rLSwspOXLl2uckoSGhhqsF9dDhw5xdeHz+TRr1izav38/HTt2jP7+979z3S0DIF9f3155yM4C3oyioiKNP2oTExN67rnnaNy4cTo7VGz8srOzo+DgYAoPD6e4uDiuk8X2ys/P17n3lcvllJ6ezjUgqa2tpfT0dK2v1oaytraWIiIiyNLS0iCnJLpUV1eTg4MDAU86nDx16pTGMuXl5TRx4kSuznv37jVATQ2LBVyLhj9qKysrtT/qF154gRITE7nl6urqKD4+nsLDwyk4OJh76qu5l1QqpYCAANqwYQPFxMRQdXW1Abe0ecePH9dokffUU0/RiRMnDF01OnnyJFendevW6VwuPz+f+yIeN25cF9awe2APmzQRGxuLFStWICkpiZs2YMAAbNmyBTNnzmz2syqVCrdu3cLly5dx5coVnD9/vsWxssRiMYYNG4YxY8YgICAAY8aMaXcDGH1JSUnBypUr8fPPP3PTZDIZ1qxZg5UrV8LU1NSAtXti27ZtCAsLAwAkJCQ0201TYGAgYmNjIRQKMX78+E6v25QpU/D+++93+npaxdDfMN1FSkoKTZ06VWNvu2HDhnbvZVUqFd26dYsiIyPptddeo759+7b6XrshX1KpVO2UZMmSJd1utJTNmzdzddQ2kERjTf9fO/v11ltvddFvoWW9viWbrj7A5syZg+3bt8Pe3r7FMhQKBYqKivDo0SMUFhaiqKgIRUVFKCwsVJsmk8lQWFiotY+17mTw4MH47bffMHHiREREROCZZ54xdJU0DBw4kHt/5swZ+Pj4aF2usrISV65cAfCkybCzs3On183Ozq7T19FavfYQXVcfYOPHj8fWrVvh6uqK/Px85OXlobS0lHs1nZafn8+1C9cXmUyGWbNm6bXMtvDx8eFOG7qriooKODs7Qy6Xw9raGr/88otGyFUqFd566y0cOHAAABAeHs4d1uvb999/j7S0NJibm2P58uWdso726JUBP3/+PFasWKHWLbFQKIREIkFVVRXq6uo6vQ42Njaws7ODra0t97K3t4etrS0GDhyI4ODgTq9DT7d9+3asXr0aAGBhYYGVK1ciODgYlpaWSExMxM6dO/Hrr78CANzc3JCUlNRiz7bt9corr+DEiRPo06cPioqKOmUd7dGrAp6Wloa1a9eqdUusDwKBQGtQbW1tuRA3nmZra2u0AxV0JSLCggULsH///maXs7Ozw7lz57hecDpDdw14r/gr09UHmIuLC7Kzs9tcHp/Px4ABAzBy5Ej4+fnB19cXnp6ecHBw0HfVmWbweDx888038PPzw8aNGzUe4+XxeJg+fToiIiK61bPyXcmo9+At9QFWUFCAc+fOISMjA5mZmcjKymp2qKCWmJubw9PTEx4eHvD09FR77+Hh0WmHhwxQU1ODS5cuISkpCZWVlXBzc8PEiRO7rAPH7roHN9qAX7p0CStWrMCtW7e4ac7Ozvj444/x9ttv6+xZtLS0FBkZGVpfWVlZqK+vb3edrK2tueA3ffXr148dtvdgDQG3sbFpse1DVzK6gGdnZ2PdunU4ePAgdzuq4crmunXrOjQoXXV1NTIzM7k9ftN/Kysr2122UCiEm5ub2h6/Ify+vr7tLpfpGiEhITh+/Hi3C7jR7DKa6wPsH//4B9zd3Tu8DjMzM26IIm2a2/s/ePAASqVSZ9l1dXVIS0tDWlqa2nSBQNAlV/UZ49TjA07dqA8wa2tr+Pr6at3jVldXIy4uDj///DNOnz6tNnhBczpySsAwPTrg3bEPsNLSUvz555+4e/cu/vzzT6SmpiI1NRX37t3jWsq1hbW1NYgIBw4cwN27d7npYrEYAwYM4O77NpaVlYVjx47ht99+Q2FhIVxcXDBt2jRMmzatw9vH9Cw9MuC5ubkICwvD4cOHufNskUiEFStWdPg8uzWUSiUePHjAHX43Hj88IyOjzeUJBAL069dPbdzwxhfgAODYsWM4e/Ys17qssLAQiYmJcHR0xKVLlzBgwACuvBdeeAGlpaUYPXo0nnrqKdy8eRPTp0/H7NmzcfjwYf38EpgeoUcGvLy8HEeOHOHCHRwcjIiICPTv31+v62l8Tt04xMnJyXj8+HGby2u4it40xK3tQtnOzg4xMTHcz2fPnsWUKVPw2Wef4auvvuKmf/bZZ5g6daraOGdLly7Fnj178MEHH2DYsGFtrjvTPB6PBwDd7jmDHhlwb29vLF68GLGxsdi1axemTJnS7rLq6uqQnZ2tdU/cnr2xUCiEq6urRpB9fHz03hBm0qRJcHd3R2Jiotr0v/zlLxrLzp49G3v27EFycjILeC/SIwMOAFu3boVIJOrweba9vX27Hhaxt7eHl5cXBg0ahKeeeop77+7u3mX3s2tra1FaWqo24KAuDe3uGz+FxRi/HhtwsVisl3Lkcnmz86VSKQIDAzF48GC1QMtkMr2svy2USiV3VFFQUIDIyEiUl5dj8eLFzX7u4cOH+OSTTzBhwgSMHDmyK6rKdBM9NuD6oFKpWrzHLJfLERMTg0ePHkEul8PMzMxg42rl5+erXWcwMTHBN998g9dff13nZxQKBWbOnAmVSoUvv/ySO1fsiN9//x179+5Feno6VCoVnJycMGrUKMyYMQP29vY4f/48vv32W2zcuBGOjo5qdVm5ciXs7e2xadMmtTKvXr2K/fv3Y82aNfDw8EBtbS0SExORkJCA27dvQyAQICIiosN173W6tn+J7ic1NZUOHDhAS5cupaFDh5JAIGixxw4ej0eDBg2iN998k/bs2UO3bt3qlFFMGnvllVfI0dGR0tPTKSUlhX788UcaMGAADRw4kCorK7V+5vHjxxQYGEgymYxu3rypl3p8/vnnxOPx6Omnn6YVK1bQqlWrKCQkhMRiMe3bt4+IiK5cuUIA6MCBA2qfjYmJ4XqJKSsrU5u3bNkyMjU1paqqKiIiioiI4JYVi8VkZWWll/p3lpCQEAJA1tbWhq6Kml4f8KbkcjnFxcVRREQEzZw5k+zt7VvVTY9EIiF/f39avnw5HTlyhB4+fKjXer3yyivk6uqqNu3u3btkampKK1eu1Fi+urqaXnrpJbK0tKRff/1VL3VQqVRkZWVFAQEBGmN6l5eXU25uLhE96bRSIpHQwoUL1ZZZv349+fn5kYWFhUbHjUOGDKExY8ZwPycnJ9Ply5dJLpfTggULWMDbiQW8FXJzc+n48ePcgAgikajFwA8bNkyvddAWcKInez6hUEgZGRnctJqaGnr55ZfJwsKCrly5orc65OTkEADavHlzi8tOmjSJ+vfvrzZtzJgxtHbtWpo8eTKtWrWKm/7o0SPi8Xi0fv16rWX1pIDLZDJDV0WN9keqGDVOTk54+eWXER4ejsuXL6OkpAS//PILtm7dimnTpqmdZzZoz33y9lizZg34fD4+/fRTbtqcOXNw4sQJrFy5EgqFArGxsdwrKyur3euyt7eHRCLBt99+2+ItxAkTJiA9PZ173l6hUODGjRsYN24cxo0bh4sXL3LLXrp0CUSECRMmtLtuhqaPaxudwtDfMMYiMzOTIiMjuT24u7u7XsvXtQcn+t9ePD09nYhIYzDAxq/PPvusQ/X48ssvuSGdvL29aeHChXTkyBHu3LnB1atXCQBFR0cTEVFsbCwJBAKqrKykuLg4tfPwZcuWkUgk0jk6ak/Yg0+bNq1b7sFZwPUoIyODC5KDg4Ney66srNS4MNWgtraWSkpKuO6dS0tLqaSkROvr8ePHHa7L3bt36aOPPlIbhLF///6UlJSkViepVMqdh3/00Ufk5+dHRE+uD5ibm9PJkyeJiMjHx6fZQQlYwNuPHaLrkbm5Ofe+8SOr+iCVSmFlZaV1nlAohLW1NUQiEYAnvbJaW1trfeljUAUvLy9s2rQJV65cQXFxMaKionD//n0sWrRIrU7+/v7cofjFixe5QQdEIhFGjRqFixcvorCwEElJST368Lw7YwHXo8bh0XfAuytzc3OEhoZi2rRpuH79ulqXVw3n4X/++Sdu3LihNqpIw3n4L7/80uPPv7szFnA9ahzwmpoao3uWu7ntqa6uBp/PV+sKqyG04eHhUCqV8Pf35+aNGzcOv//+O44fPw4zMzM8//zznVbv3qxXt2TTN5FIBB6PB3pybQM1NTVqh+09XX5+PoKDg7Fs2TKMHTsWnp6eKCwsxP79+3Hq1CnMmDEDQqGQW37EiBGwsLBAdHQ0hg4dqnaKMWrUKJiYmODw4cNax2OrqKjAjRs3AAB5eXlQKpWIjY0FALi7u6s9HtvZiouLsWTJEsjlcq0tH5VKJdf3X2VlJUaMGMHN0/acg4+PD3744YeuufJu4GsARsfMzIy70FZSUmLo6uhVWVkZTZo0SW0b8d/WZrNmzdJ6ETAoKIgA0Hvvvacxz9/fnwDQxo0bNebduHFD552AtWvXdsr2NWfcuHF6G7vs/PnzXVZvo+t00dBsbGy4b+28vDyt98h7OoVCgczMTBQUFMDW1hbu7u46LwAqFArU1NRALBZzFwEbVFVVoba2FhKJRGPEUqVSqbMTSzMzsy4/Mjp69GiLo8u2xuuvv45///vfOuefPn0aP/74I/ezWCyGnZ0dhg8fjhdeeEHryK6ZmZmIj49HQkICSktLMXv27P9d0+iyr5JewtHRkfumbrgvzfR8SqWS3N3dO7TnFovFlJWV1ex6GkZNDQ4OppkzZ9KkSZPI29ub+Hw+2dnZ0aFDhzQ+I5FIuGayAGj37t3cPHaRTc9645X03sDExAShoaEdKmP9+vWtenYfAKKionDkyBGcOXMGSUlJSE1Nhbe3N+bOnYujR4+qLfvdd98hNzeXG4etMRZwPevMe+GMYS1atKjdpwYDBgzAe++91+51DxgwACdPnoSTkxNWr16t1jVUUFAQnJyctH6OBVzPGu/Bu6o9OtM1bG1tm332vjmRkZEa1yDaSiqV4o033kBmZqZaD7vNYQHXM3aIbtzaM/Z3SEgIXnrpJb2sf8iQIQCeXFhrDRZwPWMBN25Dhw7luq5uDZFIhO3bt+tt/Q1X0Vvbxz4LuJ6xc3Dj9+6777Z62bCwML12dJmXlwfgSRfarcECrmfsHNz4vfrqq3BxcWlxOTc3N4SFhel13WfOnIFIJMLw4cNbtTwLuJ6xQ3TjJxAI8Le//a3F5Xbu3Km33n8B4MCBA4iNjcWCBQtaXS5ri65n7BC9d1i8eDE2b96s8/84ICAAr776arvLj4uLQ58+faBUKnH//n2cOHECp0+fhr+/v8Y5/c2bN1FSUoKcnBwAQGpqKtdun7Vk07N33nmHa7m0bds2Q1eH6UTz58/X2mLN1NSU7t69264yG1qyNX45ODhQUFAQHThwQGvvvYGBgTpbz7E9uJ6xQ/TeY/ny5di3b5/G9P/7v/+Dl5dXu8p8//33sXTpUgAAn8/X2ca/sWPHjuns358FXM9YwHuPYcOGYfTo0WrDV5uYmGDdunXtLtPMzKzNve40HmSyKXaRTc9YwHuXprfMZDJZq/a6XYUFXM9YwHuXhuGaGujzqrk+sEN0PfPx8cGgQYPA5/O5ZoVMz1RQUIDc3Fzu58rKSiiVSu5nlUqFiooKDB8+HD/99BOAJ8+47927l1uGiFBWVqZWbnV1NddGYsqUKZ3aHx0LuJ5JpVKkpqYC6H6DwTNtc+DAgTY3VCkpKWlxtNfGLCwsOjXg7BCdYXTo6NjzraFSqTq1fLYHZxgdJk+eDAsLCwgEAlhYWKjNa9zNVEZGBrfXNjc3R1xcHPe+6RVxmUym1tmiPvqpbw4LOMPo4OPjAx8fnxaXS0xM5N7z+Xz4+vp2ZrXahB2iM4wRYwFnGCPGAs4wHdRthw4GCzjDGDUWcIYxYizgDGPEWMAZxoixgDOMEWMBZxgjxgLOMEaMBZxhjBgLOMMYMRZwhumgxi3ZulsfACzgDGPEWMAZxoixgDOMEWMBZxgjxgLOMEaMBZxhjBgLOMMYMRZwhjFiLOAMY8RYwBmmg/r168e9DwwMNGBNNLGAM0wHNR68wNra2oA10cQCzjBGjAWcYYwYCzjDGDEWcIYxYizgDGPEWMAZxoixgDOMEWMBZxgjxgLOMEaMBZxhjBgLOMMYMRZwhjFiLOAMY8RYwBnGiLGAM4wRYwFnGCPGAs4wRowFnGGMGAs4wxgxFnCGMWIs4AxjxFjAGcaIsYAzjBFjAWcYI8YCzjBGjAWcYYwYCzjDGDEWcIYxYizgDGPEQ9Bv3AAAAz1JREFUWMAZxoixgDOMEWMBZxgjxgLOMEaMBZxhjBgLOMMYMRZwhjFiLOAMY8RYwBnGiLGAM4wRYwFnGCMmMHQFepIffvgBu3fvho2NDdzc3GBlZQWpVAoLCwtYWlrCysoKJiYmiI6OBgA4ODggISEBZmZmMDc3VyvLxMQElpaWWucxjL6wgLfB2LFjoVQqkZaWhgcPHiA/Px+VlZWQy+UoLy9HeXk55HI5ampq1D5XXV2Nx48fay3zww8/xJYtW7qi+kwvxCMiMnQleiOVSoWKigq2B+/GLly4gB07dsDU1BQeHh5qR2wymQxSqRQSiQQSiQQpKSkAACsrKzg7O0Mmk2mUZ2FhAbFYDIlE0mXbwALOMDooFArExMQgLS0NmZmZ3NFaRUUFysrKIJfLUVVVBblcrvHZ0tJSrWXOnj0bhw8f7uyqc1jAm0FEOHToEHbv3o0+ffrA3t4effv2hUgkglgshlgshkgkgoWFBQQCAWQyGXg8Hng8ntZv8AbN7bVNTEzg5ubWWZvEGJBcLgePx2N78O6ksLAQly9fRk5ODgoKClBUVMSdU1dVVaG2thYVFRVQqVRq39q6vsEBoKamBgqFQus8R0dH5OXl6X07mN6JBZxhGjlx4gR27twJoVAIR0dH2NvbQygUwtLSEqamppBIJDA3N4eZmRmkUimEQiGA5o/KAHBHd9p4eHjonNdRLOAM04hcLseFCxeQm5uL/Px8PHz4EHV1daisrOSOvBQKBWpqalBZWQmlUgmg+TslAFBeXo76+nqt86qrqyESiTple1jAG1GpVDh06BC2b98OGxsb9OnTBzY2NrCxsQGfz+fOvYEnV0ubTtP1Ld14mZY03is01rdvX0il0g5sHdMbsYA3UVBQgOvXr6OkpAQlJSUoLi5GSUkJiEjt3LmsrEzntKZqa2tRVVXVqvU3nNc3FR0djblz53Zgy5jeiAWc6bXq6+tx6NAh7Ny5ExKJhDtis7a2hqmpKfh8PqysrAAAEolE5zRtdB2JaaPtyM/GxqbZOzGtxQLO9Grl5eWIi4tTO2IrKytDbW0t1xgJ+N+RlbZp2jScp7e2Dk3Pzz/55BOsX7++A1v2xP8DWw3aufBm3nMAAAAASUVORK5CYII="
}
},
"cell_type": "markdown",
"id": "mineral-detail",
"metadata": {},
"source": [
"![diode-measure-4.png](attachment:diode-measure-4.png)"
]
},
{
"cell_type": "markdown",
"id": "finnish-patient",
"metadata": {},
"source": [
"In this scenario we have a variable resistor pot R1 and a switch R1 (which is a push down switch non-toggle switch). We measure the voltage across the variable terminal of R1 with the switch open. This allows us to calculate the impedance of R1 with the switch open. Then we close the swith and measure the voltage across the diode $V_D$. Knowing the voltage across the diode and also knowing the resistance as established before we can easily calculate the voltage across the variable resister and also the current flowing through it. Because the resistor (at the middle terminal) and diode are in series this must also be the current flowing through the diode."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "religious-montgomery",
"metadata": {},
"outputs": [],
"source": [
"data = [(1.98, 0.66), (.93, 0.6), (1.2, 0.63), (2.51, 0.67), (0.31, 0.31), (0.51, 0.49), \n",
" (0.71, 0.58), (0.81, 0.59), (3.0, 0.68), (4.01, 0.71), (0.19, 0.19), (0.22, 0.22),\n",
" (4.53, 0.74)]"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "continued-parts",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" VR \n",
" VD \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 0.19 \n",
" 0.19 \n",
" \n",
" \n",
" 1 \n",
" 0.22 \n",
" 0.22 \n",
" \n",
" \n",
" 2 \n",
" 0.31 \n",
" 0.31 \n",
" \n",
" \n",
" 3 \n",
" 0.51 \n",
" 0.49 \n",
" \n",
" \n",
" 4 \n",
" 0.71 \n",
" 0.58 \n",
" \n",
" \n",
" 5 \n",
" 0.81 \n",
" 0.59 \n",
" \n",
" \n",
" 6 \n",
" 0.93 \n",
" 0.60 \n",
" \n",
" \n",
" 7 \n",
" 1.20 \n",
" 0.63 \n",
" \n",
" \n",
" 8 \n",
" 1.98 \n",
" 0.66 \n",
" \n",
" \n",
" 9 \n",
" 2.51 \n",
" 0.67 \n",
" \n",
" \n",
" 10 \n",
" 3.00 \n",
" 0.68 \n",
" \n",
" \n",
" 11 \n",
" 4.01 \n",
" 0.71 \n",
" \n",
" \n",
" 12 \n",
" 4.53 \n",
" 0.74 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VR VD\n",
"0 0.19 0.19\n",
"1 0.22 0.22\n",
"2 0.31 0.31\n",
"3 0.51 0.49\n",
"4 0.71 0.58\n",
"5 0.81 0.59\n",
"6 0.93 0.60\n",
"7 1.20 0.63\n",
"8 1.98 0.66\n",
"9 2.51 0.67\n",
"10 3.00 0.68\n",
"11 4.01 0.71\n",
"12 4.53 0.74"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1 = pd.DataFrame(data, columns=['VR', 'VD'])\n",
"df1 = df1.sort_values('VR', axis='rows').reset_index(drop=True)\n",
"df1"
]
},
{
"cell_type": "markdown",
"id": "narrow-consistency",
"metadata": {},
"source": [
"R1 = (VR/5volts)\\*1000 since we are using a 1K variable pot. The current is therefore the difference between the voltage drop across the diode and 5V divided by the variable resistor impedance."
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "bulgarian-helmet",
"metadata": {},
"outputs": [],
"source": [
"df1['R1'] = 1000-df1['VR']/5*1000\n",
"df1['R2'] = 1000 - df1['R1']\n"
]
},
{
"cell_type": "markdown",
"id": "liberal-crawford",
"metadata": {},
"source": [
"We can assume R1 is the resistance of the top half of the variable resistor and R2 is the bottom half."
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "expanded-bachelor",
"metadata": {},
"outputs": [],
"source": [
"vcc = 5\n",
"r2rd = df1['R1']*(df1['VD']/vcc)/(1-(df1['VD']/vcc))\n",
"df1['RD'] = r2rd * df1['R2']/(df1['R2']- r2rd)\n",
"df1['ID'] = df1['VD']/df1['RD']"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "valuable-spray",
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" VR \n",
" VD \n",
" R1 \n",
" R2 \n",
" RD \n",
" ID \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 0.19 \n",
" 0.19 \n",
" 962.0 \n",
" 38.0 \n",
" inf \n",
" 0.000000 \n",
" \n",
" \n",
" 1 \n",
" 0.22 \n",
" 0.22 \n",
" 956.0 \n",
" 44.0 \n",
" inf \n",
" 0.000000 \n",
" \n",
" \n",
" 2 \n",
" 0.31 \n",
" 0.31 \n",
" 938.0 \n",
" 62.0 \n",
" inf \n",
" 0.000000 \n",
" \n",
" \n",
" 3 \n",
" 0.51 \n",
" 0.49 \n",
" 898.0 \n",
" 102.0 \n",
" 2244.102000 \n",
" 0.000218 \n",
" \n",
" \n",
" 4 \n",
" 0.71 \n",
" 0.58 \n",
" 858.0 \n",
" 142.0 \n",
" 543.576000 \n",
" 0.001067 \n",
" \n",
" \n",
" 5 \n",
" 0.81 \n",
" 0.59 \n",
" 838.0 \n",
" 162.0 \n",
" 364.072909 \n",
" 0.001621 \n",
" \n",
" \n",
" 6 \n",
" 0.93 \n",
" 0.60 \n",
" 814.0 \n",
" 186.0 \n",
" 275.280000 \n",
" 0.002180 \n",
" \n",
" \n",
" 7 \n",
" 1.20 \n",
" 0.63 \n",
" 760.0 \n",
" 240.0 \n",
" 201.600000 \n",
" 0.003125 \n",
" \n",
" \n",
" 8 \n",
" 1.98 \n",
" 0.66 \n",
" 604.0 \n",
" 396.0 \n",
" 119.592000 \n",
" 0.005519 \n",
" \n",
" \n",
" 9 \n",
" 2.51 \n",
" 0.67 \n",
" 498.0 \n",
" 502.0 \n",
" 91.031152 \n",
" 0.007360 \n",
" \n",
" \n",
" 10 \n",
" 3.00 \n",
" 0.68 \n",
" 400.0 \n",
" 600.0 \n",
" 70.344828 \n",
" 0.009667 \n",
" \n",
" \n",
" 11 \n",
" 4.01 \n",
" 0.71 \n",
" 198.0 \n",
" 802.0 \n",
" 34.165200 \n",
" 0.020781 \n",
" \n",
" \n",
" 12 \n",
" 4.53 \n",
" 0.74 \n",
" 94.0 \n",
" 906.0 \n",
" 16.628327 \n",
" 0.044502 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" VR VD R1 R2 RD ID\n",
"0 0.19 0.19 962.0 38.0 inf 0.000000\n",
"1 0.22 0.22 956.0 44.0 inf 0.000000\n",
"2 0.31 0.31 938.0 62.0 inf 0.000000\n",
"3 0.51 0.49 898.0 102.0 2244.102000 0.000218\n",
"4 0.71 0.58 858.0 142.0 543.576000 0.001067\n",
"5 0.81 0.59 838.0 162.0 364.072909 0.001621\n",
"6 0.93 0.60 814.0 186.0 275.280000 0.002180\n",
"7 1.20 0.63 760.0 240.0 201.600000 0.003125\n",
"8 1.98 0.66 604.0 396.0 119.592000 0.005519\n",
"9 2.51 0.67 498.0 502.0 91.031152 0.007360\n",
"10 3.00 0.68 400.0 600.0 70.344828 0.009667\n",
"11 4.01 0.71 198.0 802.0 34.165200 0.020781\n",
"12 4.53 0.74 94.0 906.0 16.628327 0.044502"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "unlimited-kidney",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEWCAYAAAB8LwAVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAdFklEQVR4nO3dfZRddX3v8fdnJkMSGTBpghGSYJDEanAFxJSg2HZQek3QknrjahMVxIebUsFbHwm1Xq7W2iVUraKUGJWLuVqibXzIpVGs4lwuKMqDYSQCNUaQIagQE2RCEiaZ7/1j7wk7J7+ZOTNz9sw5Zz6vtc5a5+z92/v8vrNnzufs334YRQRmZmaVWsa7A2ZmVp8cEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCBsVSfMkhaRJ492XWpC0VVLHCJZ7vaRvl9Cfv5f0mKRf1Xrd9URSh6TuwusRbYd82ZA0v1Z9m8gcEE1K0o2S/i4xfbmkX6U+0Bv9D6sW/Y+IUyKic4j3OSIUI+JLEfFfRvPeifeZC7wbWBgRz07Mr/xQ7ZS0L1+uf9o5kh5ILLsgb/vFiumvkHSfpCclfU/ScwrzJOkKSTvzx5WSVJj/IUk/kXRA0gdGU3s128HK54BoXtcB5xf/gHPnA1+KiANj36XBjedeSJ3uAT0H2BkRvxnGMnuA/1FFu6uB24sTJM0Evpov/3vAHcCXC01WA38GnAosAl4N/GVh/jbgUuDfh9Ffq2MOiOb1dbI/8j/snyBpOtkf9frhrkzSVEkfk/SgpMcl3SJpaqHJ6yX9Mh8O+dvCcmdI+oGk3ZIekfRpSUcV5oekiyX9DPhZPu2Tkh6S9DtJd0oq1tAq6X2Sfi7piXz+XEk3503ultQj6S/y9q+WtCV//+9LWlRY1wOS1kjqAvZImpRPO6fQ9zvyfvxa0sfzRfvfa3f+Xi+RdKGkWwrrPkXSf0j6bb7s+wb4uT5T0npJj+Y/2/dLasn78B/ACfl7XFflproKWDXYnpSklcBu4LsVs/4rsDUi/jUi9gEfAE6V9Px8/huBj0VEd0Q8DHwMuLB/4Yj4QkR8E3hiqE7mv0/XSdol6afAH1TML26HyZI+IWlH/viEpMmFtu/Nf7d2SHpzxXomS/po/rv5a0lrK35vbRAOiCYVEXuBrwAXFCb/OXBfRNw9glV+FHgx8FKy4LkU6CvMfxnw+8ArgMslvSCffhB4JzATeEk+/20V6/4zYAmwMH99O3Ba/j7/AvyrpCn5vHcBq4BzgWOBNwNPRsQf5fNPjYj2iPiypNOBa8m+5c4APgNsKn645Ot6FTAtsVf1SeCTEXEscDLZzxOg/72m5e/1g+JCko4BvgN8CzgBmM+RH8b9PgU8E3gu8Mdk2+tNEfEdYBmwI3+PCwdYvtLDwGfJPtyPIOlY4O/Ihq4qnQIc+t2IiD3Az/PpR8zPn5/CyPxPsp/pycArycJnIH8LnEn2O3EqcAbwfgBJS4H3AH8CLADOqVj2CuB5+bLzgdnA5SPs88QTEX406YPsQ/txYGr++lbgnYO0D2B+YnoLsJfsw7dy3rx8uTmFaT8CVg7wHu8Avlbxni8foo5d/e8N3A8sr6b/wDXAhyra3A/8cf78AeDNFfMfAM7Jn98MfBCYOUDNkwrTLgRuyZ+vAn5cxfZpBfaTHWPon/aXQGf+vAPoHmT5w+YDncBbgePy7X4K2QfmA4U2nwTW5M8/AHyxMO/zwEcq3uNW4ML8+UHg+YV5C/KfgyqW+SLwgSFq3w4sLbxeXVFLcTv8HDi3MO+V/TWRfQH4SGHe8/p/DwCRDbmdXJj/EuAXo/3bmigP70E0sYi4BXgUWC7puWS78f8Ch84S6ckffzjYesi+/U8h+0MdSPEsmyeB9vx9nifpBmUHxn8H/EO+vqKHii8kvVvSvflQ1m6yb9j9y8wdoh9FzwHenQ8v7c7XNZfsW33yvSu8hewD5z5Jt0t6dZXvW20fZwJHAQ8Wpj1I9i13xCLiUeDTZHsKh0g6jSww/mmARXvI9sqKjuXpIaPK+ccCPZF/8g7TCRz+s39woIZ528qf0QmFeQOt5zjgGcCdhe3/rXy6VcEB0fzWkw1bnA98OyJ+DYfOEmnPH/9viHU8BuwjGw4YrmuA+4AFkQ3VvI/sm13RoQ+YPKzWkA2HTY+IaWTfhvuXeWgY/XgI+HBETCs8nhER16feu1JE/CwiVgHPIhuq+DdJRw+2zDD7+BjQSxZk/U4kGyYarX8EziYbFuzXQbb380tlp82+B1gh6a58/layIRwA8lpPzqcfMT9/vpWReYQsSPudOEjbHRz5M9pRxXoeI9vzPaWw/Z8ZEe0j7POE44BofuvJvjX+N+ALI1lBRPSR7cp/XNIJ+YHil1SM5Q/kGOB3QE9+sPOvqmh/gGzPZ5Kkyzn8W+vngA8pO01TkhZJmpHP+zXZWH6/zwIXSVqStz1a0qvyYwRDkvQGScfl9e/OJx/M+9ZX8V5FNwDPlvSO/CDpMZKWVDaKiINkxzU+nLd5Dtkxli9Wth2uiNhNdhD50sLkdWQf+Kflj7VkZxy9Mp//NeCFklbkx3wuB7oi4r58/nrgXZJmSzqB7DjGdf0rl9SWL9dCtu2mSGodoItfAf5G0nRJc4C3D1LO9cD7JR2n7Eyry3n6Z/QV4EJJCyU9g+zYRv/PoI/sd+CfJD0r7+NsSa/EquKAaHIR8QDwfeBoYNMoVvUe4CdkB5B/S/aNuprfn/cAryMbpvgsh582mXIj8E3gP8mGC/Zx+BDCx8k+FL5NFjyfB/rPSvkA8IV8OOHPI+IOsmD8NNlxjG0UzrqpwlJgq6QesrH7lRGxLyKeBD4M3Jq/15nFhSLiCbKDpn9KNvT2M7Jv8ylvJxsn3w7cQjYEeO0w+jiYT5IFWn+/noyIX/U/yIaM9uVDUv1DUyvy2naRnTiwsrC+zwD/h+z34B6ycPlMYf5nyb6xryI7sLyXbM815YNk2/cXZNvyfw9Sx9+TnXLblb/3Xfk0Ijtr6hPATWTb96aKZdfk02/Lhzi/Q3YyhVVBIxs+NDOzZuc9CDMzS3JAmJlZkgPCzMySHBBmZpZUjzcoG7GZM2fGvHnzara+PXv2cPTRR9dsffWmmetzbY2rmeurx9ruvPPOxyIiefFgUwXEvHnzuOOOO2q2vs7OTjo6Omq2vnrTzPW5tsbVzPXVY22SBryK3UNMZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IM7MGtrNnP3c/tJudPftrvu6mOs3VzGwi+caWh1mzsYu2lhZ6+/q4csUizjttVP9v6jDegzAza0A7e/azZmMX+3r7eGL/Afb19nHpxq6a7kk4IMzMGlD3rr20tRz+Ed7W0kL3rr01ew8HhJlZA5ozfSq9fX2HTevt62PO9KkDLDF8DggzswY0o30yV65YxJS2Fo6ZPIkpbS1cuWIRM9qr+U/A1fFBajOzBnXeabM5a/5MunftZc70qTUNB3BAmJk1tBntk2seDP08xGRmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkkoNCElLJd0vaZukyxLzJemqfH6XpNMr5rdK+rGkG8rsp5mZHam0gJDUClwNLAMWAqskLaxotgxYkD9WA9dUzP9r4N6y+mhmZgMrcw/iDGBbRGyPiKeADcDyijbLgfWRuQ2YJul4AElzgFcBnyuxj2ZmNoAy/x/EbOChwutuYEkVbWYDjwCfAC4FjhnsTSStJtv7YNasWXR2do6mz4fp6emp6frqTTPX59oaVzPX12i1lRkQSkyLatpIejXwm4i4U1LHYG8SEeuAdQCLFy+Ojo5Bmw9LZ2cntVxfvWnm+lxb42rm+hqttjKHmLqBuYXXc4AdVbY5CzhP0gNkQ1Mvl/TF8rpqZmaVygyI24EFkk6SdBSwEthU0WYTcEF+NtOZwOMR8UhE/E1EzImIeflyN0XEG0rsq5mZVShtiCkiDki6BLgRaAWujYitki7K568FNgPnAtuAJ4E3ldUfMzMbnjKPQRARm8lCoDhtbeF5ABcPsY5OoLOE7pmZ2SB8JbWZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzSyo1ICQtlXS/pG2SLkvMl6Sr8vldkk7Pp0+R9CNJd0vaKumDZfbTzMyOVFpASGoFrgaWAQuBVZIWVjRbBizIH6uBa/Lp+4GXR8SpwGnAUklnltVXMzM7Upl7EGcA2yJie0Q8BWwAlle0WQ6sj8xtwDRJx+eve/I2bfkjSuyrmZlVmFTiumcDDxVedwNLqmgzG3gk3wO5E5gPXB0RP0y9iaTVZHsfzJo1i87Ozpp0HqCnp6em66s3zVyfa2tczVxfo9VWZkAoMa1yL2DANhFxEDhN0jTga5JeGBH3HNE4Yh2wDmDx4sXR0dExmj4fprOzk1qur940c32urXE1c32NVluZQ0zdwNzC6znAjuG2iYjdQCewtOY9NDOzAZUZELcDCySdJOkoYCWwqaLNJuCC/GymM4HHI+IRScflew5ImgqcA9xXYl/NzKxCaUNMEXFA0iXAjUArcG1EbJV0UT5/LbAZOBfYBjwJvClf/HjgC/lxiBbgKxFxQ1l9NTOzI5V5DIKI2EwWAsVpawvPA7g4sVwX8KIy+2ZmZoPzldRmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzs6QhA0LSGyXdJWlP/rhD0gVj0TkzMxs/kwabmQfBO4B3AXcBAk4H/lESEbG+9B6amdm4GGoP4m3AayLiexHxeETsjoibgBX5PDMza1JDBcSxEfFA5cR82rFldMjMzOrDUAGxd4TzzMyswQ16DAJ4gaSuxHQBzy2hP2ZmVieGDIgx6YWZ2QS1s2c/3bv2Mmf6VGa0Tx7v7hxm0ICIiAfHqiNmZhPNN7Y8zJqNXbS1tNDb18eVKxZx3mmzx7tbhwx1musTQKRmARERPlBtZjYCO3v2s2ZjF/t6+9hHHwCXbuzirPkz62ZPYtCD1BFxTEQcm3gcU004SFoq6X5J2yRdlpgvSVfl87sknZ5Pnyvpe5LulbRV0l+PvEQzs/rTvWsvbS2HfwS3tbTQvat+zv8p7VYbklqBq4FlwEJglaSFFc2WAQvyx2rgmnz6AeDdEfEC4Ezg4sSyZmYNa870qfT29R02rbevjznTp45Tj45U5r2YzgC2RcT2iHgK2AAsr2izHFgfmduAaZKOj4hHIuIugIh4ArgXqJ+BOTOzUZrRPpkrVyxiSlsLx0yexJS2Fq5csahuhpcAFJE6xFCDFUuvBZZGxFvz1+cDSyLikkKbG4CPRMQt+evvAmsi4o5Cm3nAzcALI+J3ifdZTbb3waxZs168YcOGmtXQ09NDe3t7zdZXb5q5PtfWuJq5vlRtB/uCpw72cVRrC60tGvM+nX322XdGxOLUvKFOcx2NVKWVaTRoG0ntwEbgHalwAIiIdcA6gMWLF0dHR8eIOpvS2dlJLddXb5q5PtfWuJq5vkarrcwhpm5gbuH1HGBHtW0ktZGFw5ci4qsl9tPMzBLKDIjbgQWSTpJ0FLAS2FTRZhNwQX4205nA4xHxiCQBnwfujYiPl9hHMzMbQGlDTBFxQNIlwI1AK3BtRGyVdFE+fy2wGTgX2AY8CbwpX/ws4HzgJ5K25NPeFxGby+qvmZkdrsxjEOQf6Jsrpq0tPA/g4sRyt5A+PmFmZmPE/3LUzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJIcEGZmluSAMDOzJAeEmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCzMySHBBmZpbkgDAzsyQHhJmZJTkgzMwsyQFhZmZJDggzM0tyQJiZWZIDwszMkhwQZmaW5IAwM7OkUgNC0lJJ90vaJumyxHxJuiqf3yXp9MK8ayX9RtI9ZfbRzMzSSgsISa3A1cAyYCGwStLCimbLgAX5YzVwTWHedcDSsvpnZmaDK3MP4gxgW0Rsj4ingA3A8oo2y4H1kbkNmCbpeICIuBn4bYn9MzMblZ09+7n7od3s7Nk/3l0pxaQS1z0beKjwuhtYUkWb2cAj1b6JpNVkex/MmjWLzs7OkfQ1qaenp6brqzfNXJ9ra1yNUt/je3vp3rUXAQHMmT6VZ05tG3SZRqmtX5kBocS0GEGbQUXEOmAdwOLFi6Ojo2M4iw+qs7OTWq6v3jRzfa6tcTVCfTt79nPWFTexr7f10LQpbQe4dc0fMaN98oDLNUJtRWUOMXUDcwuv5wA7RtDGzKyudO/aS1vL4R+fbS0tdO/aO049KkeZAXE7sEDSSZKOAlYCmyrabAIuyM9mOhN4PCKqHl4yMxsPc6ZPpbev77BpvX19zJk+dZx6VI7SAiIiDgCXADcC9wJfiYitki6SdFHebDOwHdgGfBZ4W//ykq4HfgD8vqRuSW8pq69mZsMxo30yV65YxJS2Fo6ZPIkpbS1cuWLRoMNLjajMYxBExGayEChOW1t4HsDFAyy7qsy+mZmNxnmnzeas+TPp3rWXOdOnNl04QMkBYWbWzGa0T27KYOjnW22YmVmSA8LMzJIcEGZmQ2j2K6YH4mMQZmaD+MaWh1mzsYu2lhZ6+/q4csUizjtt9nh3a0x4D8LMbAA7e/azZmMX+3r7eGL/Afb19nHpxq4JsyfhgDAzG8BEuWJ6IA4IM7MBTJQrpgfigDAzG8BEuWJ6ID5IbWY2iIlwxfRAHBBmZkNo9iumB+IhJjOzgol6zUOK9yDMzHIT+ZqHFO9BmJnhax5SHBBmZviahxQHhJkZvuYhxQFhZoaveUjxQWozs9xEvuYhxQFhZlYwUa95SPEQk5mZJTkgzMwsyQFhZmZJDggzaxq+TUZt+SC1mTUF3yaj9rwHYWYNz7fJKIcDwswanm+TUQ4HhJnVjZ09+9nbe3DY3/x9m4xyOCDMrC58Y8vDnHXFTfzi0T2cdcVNbNrycNXL+jYZ5fBBajMbd8VjCAcjDh1DOGv+zKo/5H2bjNpzQJjZmNvZs/+wD/L+Ywj7eHqYqP8YwnA+6H2bjNpyQJjZmEqdjnrW/Jk+hlCHfAzCzEpVvHhtoNNRgUPHEFolH0OoE96DMLPSVO4tXNwxf8ChpP5jCD/6wS3cet7LHA51wAFhZqUo7i30B8Knv/czQIe1Kw4lzWifzNS2VodDnfAQk5mVInXx2lGtrVxy9nyfjtogvAdhVqcqz/RpNANdvPa6JSfyuiUnNnRtE0WpexCSlkq6X9I2SZcl5kvSVfn8LkmnV7tsLY32DpDNcgfJZqmjGfRfNPaGz/1w2BeN1YvBLl6b0T6ZU+dOczjUudL2ICS1AlcDfwJ0A7dL2hQRPy00WwYsyB9LgGuAJVUuWxOjvQNks9xBslnqaAapsfvhXjRWL3zxWmMrcw/iDGBbRGyPiKeADcDyijbLgfWRuQ2YJun4KpcdtdHeAbJZ7iDZLHU0i2a78Zz3FhqXIqKcFUuvBZZGxFvz1+cDSyLikkKbG4CPRMQt+evvAmuAeUMtW1jHamA1wKxZs168YcOGqvu4t/cgv3h0DwcLP4NWiZOOO5qpba309PTQ3t4+4uXrXX99jV5HylDbrp4d7Avu+9UT9BW2R4vE8599DK0taujaqtHM9dVjbWefffadEbE4Na/Mg9RKTKtMo4HaVLNsNjFiHbAOYPHixdHR0VF1B3f27OedV9zEvt6nD6RNaWs5dA52Z2cng61vqOXrXX99jV5HylDbrt7t2fIwl1YM+b0iH/Jr9NqG0sz1NVptZQZENzC38HoOsKPKNkdVseyo9R9Eq/xDrPZDcbTL14tmqaOZeOze6kGZAXE7sEDSScDDwErgdRVtNgGXSNpAdpD68Yh4RNKjVSxbE6P9Q2yWP+RmqaOZ+MZzNt5KC4iIOCDpEuBGoBW4NiK2Sroon78W2AycC2wDngTeNNiyZfV1tH+IzfKH3Cx1mFltlHqhXERsJguB4rS1hecBXFztsmZmNnZ8qw0zM0tyQJiZWZIDwszMkhwQZmaWVNqV1OMhPz32wRqucibwWA3XV2+auT7X1riaub56rO05EXFcakZTBUStSbpjoEvQm0Ez1+faGlcz19dotXmIyczMkhwQZmaW5IAY3Lrx7kDJmrk+19a4mrm+hqrNxyDMzCzJexBmZpbkgDAzsyQHBCBpqaT7JW2TdFli/usldeWP70s6dTz6ORJV1LY8r2uLpDskvWw8+jlSQ9VXaPcHkg7m/+mwIVSx7TokPZ5vuy2SLh+Pfo5ENdstr2+LpK2S/u9Y93E0qth27y1st3vy383fG4++DioiJvSD7HbiPweeS/aPiu4GFla0eSkwPX++DPjhePe7hrW18/SxqEXAfePd71rWV2h3E9ndgV873v2u4bbrAG4Y776WVNs04KfAifnrZ413v2tZX0X7PwVuGu9+px7eg4AzgG0RsT0ingI2AMuLDSLi+xGxK395G9l/uGsE1dTWE/lvKXA0A/xr1zo1ZH25twMbgd+MZedGqdraGlE1tb0O+GpE/BIgIpp5260Crh+Tng2TAwJmAw8VXnfn0wbyFuCbpfaodqqqTdJrJN0H/Dvw5jHqWy0MWZ+k2cBrgLU0lmp/L18i6W5J35R0yth0bdSqqe15wHRJnZLulHTBmPVu9Kr+TJH0DGAp2ReYulPqPwxqEEpMS36LlnQ2WUA0yjh9VbVFxNeAr0n6I+BDwDlld6xGqqnvE8CaiDgopZrXrWpqu4vsPjo9ks4Fvg4sKLtjNVBNbZOAFwOvAKYCP5B0W0T8Z9mdq4GqP1PIhpdujYjfltifEXNAZOk+t/B6DrCjspGkRcDngGURsXOM+jZaVdXWLyJulnSypJkRUW83FEuppr7FwIY8HGYC50o6EBFfH5MejtyQtUXE7wrPN0v65wbZdtVst27gsYjYA+yRdDNwKtAIATGcv7uV1OnwEuCD1GQhuR04iacPKJ1S0eZEsv+b/dLx7m8Jtc3n6YPUpwMP97+u90c19VW0v47GOUhdzbZ7dmHbnQH8shG2XZW1vQD4bt72GcA9wAvHu++1qi9v90zgt8DR493ngR4Tfg8iIg5IugS4kezsg2sjYquki/L5a4HLgRnAP+ffRA9EA9yRscraVgAXSOoF9gJ/Eflvb72rsr6GVGVtrwX+StIBsm23shG2XTW1RcS9kr4FdAF9wOci4p7x63X1hvF7+Rrg25HtJdUl32rDzMySfBaTmZklOSDMzCzJAWFmZkkOCDMzS3JAmJlZkgPCrEby20K8smLaOyRtlrRX0o8l3SvpR5LeOF79NKvWhL8OwqyGrie7MvbGwrSVwHvJ7kr6IgBJzwW+KqklIv7X2HfTrDregzCrnX8DXi1pMoCkecAJZLdeOCQitgPvAv77WHfQbDgcEGY1Etk9un5EdndOyPYevkz6Rm13Ac8fo66ZjYgDwqy2+oeZYPAbsTXUrWVtYnJAmNXW14FXSDodmBoRdw3Q7kXAvWPWK7MRcECY1VBE9ACdwLUMsPeQH5v4KPCpMeuY2Qj4LCaz2rse+CpPDzUBnCzpx8AU4AngUz6Dyeqd7+ZqZmZJHmIyM7MkB4SZmSU5IMzMLMkBYWZmSQ4IMzNLckCYmVmSA8LMzJL+P+ErUg56DVhYAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"\n",
"x = np.linspace(0.2, 0.74, 1000)\n",
"ax.set_title('V-I characteristic of IN4001 diode')\n",
"ax.set_ylabel('current $I_D$ (mA)')\n",
"ax.set_xlabel('voltage $V_D$')\n",
"\n",
"df1.plot('VD', 'ID', kind='scatter', ax=ax)\n",
"ax.grid()"
]
},
{
"cell_type": "markdown",
"id": "secondary-humanitarian",
"metadata": {},
"source": [
"Lets try a simple linear regression to see where that gets us"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "advised-mason",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0.03743289, -0.01297006])"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"z = np.polyfit(df1['VD'], df1['ID'], 1)\n",
"# Create the polynomial from the coefficients\n",
"p = np.poly1d(z)\n",
"# View the coefficients themselves\n",
"p.c"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "aerial-stuff",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[ 0.03743289 -0.01297006]\n",
"[ 0.00537781 -0.00140042]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAADsCAYAAACIYkUuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAABG/UlEQVR4nO3deXxV9Z3/8dcnIQn7krCvIWyigigoUDfcl7Za16qtVtupw1Rrp5u2v3ZmOu04Y9XqaKtVa23rdLELtdIZW8QlrkQBRRQlLGELqyQhELLnfn5/nANeYiA3yc1dkvfz8ciD3HPO95zPPSSffO453/P9mrsjIiIiIpJuMpIdgIiIiIhIe6iQFREREZG0pEJWRERERNKSClkRERERSUsqZEVEREQkLamQFREREZG0pEJWWmVmvzSz/wi/P9XMipMdE4CZfc/Mfp2E45qZ/cLMKszsjfacEzPLMbP3zGx4Z8V5mOMeEnu47J/MbKeZVZlZXhv3d4uZ3dE50YqkN+XOjxxXubNzYuvWeViFbBdkZovM7PstLL/YzHaYWY8W1rmZTWxt3+7+srtPiVesqcbM8sNz8ZFzFOUU4BxgtLuf1PycmNlGMzu7lUPdCLzk7js6GG9b/yAdEruZZQH3AOe6e193L2vhGI+YWbGZRczs+marHwE+a2ZD2/seRFKFcmf7KXe2mDtnmNlyM6sO/53RSkxnm9mbZrbfzLaY2ZVR6zxcXhV+PRrVtFvnYRWyXdMvgWvNzJotvxb4jbs3Jj6kjmklOSbaOGCju+/vwD7+EfifOMXTFs1jHwb0BFYdoc3bwJeAN5uvcPda4G/AdXGOUyQZfolyZ2fqNrnTzLKBp4BfA4OAXwFPhctb2v5o4LfAd4ABwAxgebPNjguL5r7u/g8HFnb7POzu+upiX0AvoBI4LWrZIKCW4BehpTYOTDzMul8C/xF+Pw8ojVq3EfgGsDI85u+BnlHrPwGsAPYArwHTo9Z9C1gP7APeAy6JWnc98CpwL1B+4PjN4voe8KfwmPsICq3jotaPBBYAHwAbgFui1p0ELAP2AjuBe8Llm8NzURV+zW12zC+E57EpXP/v0eeEIMFGgJpw/a0txD02XN+j2f/Zj4BN4Xl8JVx2yPmOOudnA+cD9UBDeKy3o973wvC8rQO+eJjYfwfsj3q/z7fyc/UKcH0Lyz8DvJDsn3t96aujXyh3Hliv3NnB3AmcC2wFLGrZZuD8w/ys/Bb4wRF+Ng/7cxau77Z5OOkB6KuT/mPhZ8CjUa//EVhxhO07kozfCBNALvA+MD9cdwKwC5gNZAKfC7fPCddfEbbLAD4dJoYR4brrgUbgy0APoFcLcX0vTESXA1kEfxQ2hN9nEHya/VcgGygASoDzwrZLgGvD7/sCc8Lv88Nz0eMI5+p64JWo1y2dk7OP0P7jwKpmyx4ACoFR4bn6GJDTfN/N9x+eg183W/8i8CDB1YIZBH+MzjpM7K2+36htD1fIngCUJ/tnXl/6iscXyp3KnXHIncBXgb81W/a/wNcPs30J8APgHWA7wZXc3GY/Z9uAHcCfgfxm7bttHlbXgq7rV8AVZtYrfH1duKwz3O/u29y9HPgrQQIA+CLwsLu/7u5N7v4roA6YA+DufwzbRdz998Bagk/7B2xz9x+7e6O71xzm2Mvd/U/u3kDQX6lnuP8TgSHu/n13r3f3EoI/UFeF7RqAiWY22N2r3L0oXicjBgMJroIAYGYZwOeBr7j71vBcvebudW3dsZmNIejLdZu717r7CuBRglujnWUfwa0wka5AuVO5Mx65sy/BFeJolUC/w2w/OjzWZcAkgqvKP45afzpB8XwUQUH7v826jXTbPKxCtoty91cIPk1ebGYFBMnptwBmtiqqw/ipcThcdKf7aoJfYAj6FH3dzPYc+ALGEFxJwMyuM7MVUeuOBQZH7WtLDMc+uI27R4DScP/jgJHNjv3/CPo1QXCraDKw2syWmtkn2vKGO6iCQ5PZYII/IuvjsO+RBJ/K90Ut20RwtaKz9OOjCVskLSl3KndGLetI7qwC+jdb1p+oQryZGuAX7r7G3auA/wQuPLDS3V8KP1jsAb4CjAemRrXvtnk4lTqBS/w9TnA1YQrwjLvvBHD3YxJ0/C3A7e5+e/MVZjaO4FP+WcASd28ysxVA9EMWHsMxxkTtM4PgU+02gltrG9x9UkuN3H0tcHXY5lLgT+HwKbEcszWt7WMlUGBmPTx4eGQ3Qf+rCQQPVkXbD/Q+8MLMMoEhRzjWNiDXzPpFJeSxBH21OstUPhq3SDpT7lTuhI7lzlUEH0bM3Q8cazpBV4iWrGwhpiNxDv0/77Z5WFdku7bHCTq2f5HOuzV2JD8D5pvZbAv0MbOPm1k/oA/BL+IHAGZ2A8FVhbaaaWaXhrdY/png9lsRQd+zvWZ2m5n1MrNMMzvWzE4Mj/dZMxsSXonYE+6rKYwnQtAvrL12Hqm9u5cSdSswjOEx4B4zGxnGOtfMcoA1QM/wvGUB3yXo/xV9rPzwjwruvoXgwZD/MrOeZjad4ArKb9r7Zsws28x6EiTNrHC/0bnjdIInZkW6CuVO5c6O5s5CgvNyiwVj394cLn/+MNv/ArjBzArMrDdwG0GfWszsGAuG8so0s74ED7dtJehXfUC3zcMqZLswd99I8IvZh+BJzEQffxnBH4KfENwSWkfQYR53f4/gl3EJQUKZRvCkbVs9RfCwQwVB/6JL3b3B3ZuATxL0OdtA8Mn9UT7sQ3Q+sMrMqoD7gKvCflHVwO3Aq+FttTntiOm/gO+G7b9xmG0e5tC+V98g6OS/lOCJ2R8CGe5eSTD01aMEiWs/wS3AA/4Y/ltmZgeGx7qaoC/VNuBJ4N/cfXE73scBzxDc9voYwXiFNcBpAGGBeyHJ+WMv0imUO5U76WDudPd64FMEV/b3EPTl/VS4HDP7jJmtitr+MYIPUK8TdGmoA24JVw8jGGFiL8FDYfnAJ8L+zd0+D9uHV7xFJFHCKwZvETwRuz3Z8bSXmX0ZGOPutyY7FhHp+rpK7oyn7p6HVciKiIiISFpS1wIRERERSUsqZEVEREQkLamQFREREZG0pEJWRERERNJSl50QYfDgwZ6fn9/h/ezfv58+ffp0PKAEU9yJpbgTK9XiXr58+W53H9L6ll2HcqziTiTFnVipFveRcmyXLWTz8/NZtmxZh/dTWFjIvHnzOh5QginuxFLciZVqcZvZpmTHkGjKsYo7kRR3YqVa3EfKsepaICIiIiJpSYWsiIiIiKQlFbIiIiIikpZUyIpIt1VWVcfbW/ZQVlWX7FBERADlpbbqsg97iYgcyVMrtnLbgpVkZWTQEIlw52XTuWjGqGSHJSLdmPJS2+mKrIh0O2VVddy2YCW1DRH21TVS2xDh1gUrdQVERJJGeal9VMiKSLdTWlFDVsah6S8rI4PSipokRSQi3Z3yUvuokBWRbmf0oF40RCKHLGuIRBg9qFeSIhKR7k55qX1UyIpIt5PXN4c7L5tOz6wM+uX0oGdWBndeNp28vjnJDu0gMzvfzIrNbJ2ZfauF9WZm94frV5rZCa21NbMfhNuuMLNnzGxk1Lpvh9sXm9l5nf8ORSRaOuSlVKSHvUSkW7poxihOnjiY0ooaRg/qlVJ/LMwsE3gAOAcoBZaa2UJ3fy9qswuASeHXbOCnwOxW2t7l7v8SHuMW4F+B+WZ2NHAVcAwwEnjWzCa7e1MC3q6IhFI5L6UqFbIi0m3l9c1J1T8UJwHr3L0EwMyeAC4GogvZi4HH3d2BIjMbaGYjgPzDtXX3vVHt+wAeta8n3L0O2GBm68IYlnTWGxSRlqVwXkpJKmRFRFLPKGBL1OtSgquurW0zqrW2ZnY7cB1QCZwRta+iFvZ1CDO7EbgRYNiwYRQWFsb6fg6rqqoqLvtJNMWdWIo7sdIpbhWyIiKpx1pY5jFuc8S27v4d4Dtm9m3gZuDfYjwe7v4I8AjArFmzfN68eS3F3iaFhYXEYz+JprgTS3EnVjrFrYe9RERSTykwJur1aGBbjNvE0hbgt8BlbTieiEjKUSErIpJ6lgKTzGy8mWUTPIi1sNk2C4HrwtEL5gCV7r79SG3NbFJU+4uA1VH7usrMcsxsPMEDZG901psTEYkXdS0QEUkx7t5oZjcDi4BM4DF3X2Vm88P1DwFPAxcC64Bq4IYjtQ13fYeZTQEiwCbgwP5WmdkfCB4mawRu0ogFIpIOElbImtn5wH0EifVRd7+j2XoL119IkJSvd/c3o9ZnAsuAre7+iUTFLSKSDO7+NEGxGr3soajvHbgp1rbh8sta2PzAutuB29sbr4hIMiSka0HUuIYXAEcDV4fjFkaLHhPxRoIxEaN9BXi/k0MVERERkTSRqD6yB8dEdPd64MC4htEOjono7kXAgTERMbPRwMeBRxMUr4iIiIikuEQVsocb7zDWbf4buJWgX5eIiIiISML6yLZ7TEQz+wSwy92Xm9m8Ix5Eg3UfpLgTS3EnVrrGLSIi8ZWoQrYjYyJeDlxkZhcCPYH+ZvZrd/9s84NosO4PKe7EUtyJla5xi4hIfCWqa0G7x0R092+7+2h3zw/bPd9SESsiIiIi3UtCrsh2ZExEEREREZGWJGwc2Y6MiRi1TSFQ2AnhiYiIiEia0RS1IiIiIpKWVMiKiIiISELsrqqL6/5UyIqIiIhIp3pv214+/8ulnH3Pi+ytbYjbfhPWR1ZEREREupcNu/dz7+I1LHx7G/179mD+vAlkZcTvOqoKWRERERGJq+2VNdz/3Dr+sGwL2ZkZ3HTGBG48dQIDemfF9TgqZEVEUpCZnQ/cRzBk4aPufkez9Rauv5BgyMLr3f3NI7U1s7uATwL1wHrgBnffY2b5wPtAcbj7Inef37nvUES6ovL99fy0cB2/WrIJd+faOeP40hkTGNqvZ6ccT4WsiEiKMbNM4AHgHIJZD5ea2UJ3fy9qswuASeHXbOCnwOxW2i4Gvh2O7f1D4NvAbeH+1rv7jM5/dyLSFVXVNfLoyyU8+vIGqusbueT40fzz2ZMYk9u7U4+rQlZEJPWcBKxz9xIAM3sCuBiILmQvBh4Px+AuMrOBZjYCyD9cW3d/Jqp9EcEU4CIi7Vbb0MSvizbxYOF6yvfXc/4xw/n6uZOZNKxfQo6vQlZEJPWMArZEvS4luOra2jajYmwL8Hng91Gvx5vZW8Be4Lvu/nL7QheR7qCxKcIfl5dy/3Nr2V5Zy6mTBvONc6dw3JiBCY1DhayISOqxFpZ5jNu02tbMvgM0Ar8JF20Hxrp7mZnNBP5iZse4+95m7W4EbgQYNmwYhYWFrb2PVlVVVcVlP4mmuBNLcSfWkeKOuPPGjiaeXFvPzmpnwoAMbjuxJ1PzaqhYv4LC9YmNVYWsiEjqKQXGRL0eDWyLcZvsI7U1s88BnwDOCrsl4O51QF34/XIzWw9MBpZFH9DdHwEeAZg1a5bPmzevfe8uSmFhIfHYT6Ip7sRS3InVUtzuTmHxB9y9qJj3tldz1PB+3H75FM6aOpTg2dPkUCErIpJ6lgKTzGw8sBW4Crim2TYLgZvDPrCzgUp3325mHxyubTiawW3A6e5efWBHZjYEKHf3JjMrIHiArKRT36GIpI03NpRz16LVLN1Ywbi83tx31Qw+OX0kGRnJK2APUCErIpJiwlEFbgYWEQyh9Zi7rzKz+eH6h4CnCYbeWkcw/NYNR2ob7vonQA6wOLyCcmCYrdOA75tZI9AEzHf38sS8WxFJVe9ureSuRcW8uOYDhvXP4fZLjuXKWWPIykydiWFVyIqIpCB3f5qgWI1e9lDU9w7cFGvbcPnEw2y/AFjQkXhFpOvYXhXhpt+8yf+9s52BvbP4fxcexXVz8+mZlZns0D5ChayIiIiIsHVPDfc9u4Y/LquhV3Y9t5w5kX84rYD+PeM7G1c8qZAVERER6cZ2V9XxwAvr+E3RZgDOGdeD/7x2HoP75iQ5stapkBURERHphvbWNvCzl0r4+SsbqG1o4oqZY7jl7EmsXfF6WhSxoEJWREREpFupqW/i8SUb+emL69lT3cDHp4/ga+dMZsKQvgCsTXJ8baFCVkRERKQbaGiK8PulW7j/ubXs2lfHvClD+Ma5Uzh21IBkh9ZuKmRFREREurCmiPPXt7dxz+I1bC6vZta4QfzkmhM4aXxuskPrMBWyIiIiInFWVlVHTUMTZVV15CWpv6m78+z7u7h7UTHFO/cxdUR/fnH9icybMiSps3HFU+qMaCsiIiLSBTy1Yisn//B5Nnywn5N/+DwLV2xNeAyvrd/NpT99jS8+voz6pgg/vvp4/u/Lp3DGUcmdUjbeEnZFNpwa8T6CmWYedfc7mq23cP2FBLPUXO/ub5pZT+AlgtloegB/cvd/S1TcIiIiIrEqq6rjtgUrqW2I0ORObUOEWxes5OSJgxNyZfbtLXu4+5liXl67mxEDenLHpdO4bObolJqNK54SUsiaWSbwAHAOUAosNbOF7v5e1GYXEMzvPYlg3vCfhv/WAWe6e5WZZQGvmNnf3L0oEbGLiIiIxKq0ooasjAxqiRxclpWRQWlFTacWsmt37uNHz6zh76t2kNsnm+9+fCqfnTMuJWfjiqdEXZE9CVjn7iUAZvYEcDEQXcheDDweTrtYZGYDzWyEu28HqsJtssIvT1DcIiIiIjEbPagXDZHIIcsaIhFGD+rVKcfbUl7Nfz+7liffKqV3dg++evZkPn9KPv1SeDaueEpUITsK2BL1upTgamtr24wCtodXdJcDE4EH3P31ToxVREREpF3y+uZw52XTuXXBSjLN6JmVwZ2XTY/71dhd+2p54Pl1/PaNzZgZXzhlPP80byK5fbLjepxU1+ZC1sz6ALXu3tSWZi0sa35V9bDbhMeaYWYDgSfN7Fh3f7eF2G4EbgQYNmwYhYWFbQixZVVVVXHZT6Ip7sRS3ImVLnG3M1+KSJq7aMYoTp44mDeWvMKrF50S1yK2srqBh19azy9e3Uh9U4QrZ43hlrMmMmJA51zxTXWtFrJmlgFcBXwGOJGgz2qOmX0APA084u6tTQJRCoyJej0a2NbWbdx9j5kVAucDHylk3f0R4BGAWbNm+bx581oJq3WFhYXEYz+JprgTS3EnVqrGHad8KSJdQF7fHHplZcatiK2ub+QXr27k4RfXs7e2kYuOG8nXzplM/uA+cdl/uorlEbYXgAnAt4Hh7j7G3YcCpwJFwB1m9tlW9rEUmGRm480smyDRL2y2zULgOgvMASrdfbuZDQmvxGJmvYCzgdUxvj8RkUSKR74EgpFezKzYzNaZ2bdaWG9mdn+4fqWZndBaWzO7y8xWh9s/eSC3huu+HW5fbGbntfsMiEhc1TdGeHzJRk67s5C7FhVzYn4uT99yKvdffXy3L2Ihtq4FZ7t7Q/OF7l4OLAAWhKMJHJa7N5rZzcAiguG3HnP3VWY2P1z/EMHViguBdQTDb90QNh8B/CrsJ5sB/MHd/zemdyciklgdzpfQsZFeWmm7GPh2mJN/SFBw32ZmRxNcYDgGGAk8a2aT1SVCJHmaIs5f3trKvc+uobSihtnjc3n42hOYOS79Z+OKp1YL2ZaSMoCZnQxc4+43HW6bZvt5mqBYjV72UNT3DtzUQruVwPGt7V9EJNnilS/pwEgvQP7h2rr7M1Hti4DLo/b1hLvXARvMbF0Yw5JY3reIxI+7s2jVTn70TDFrd1UxbdQA/vOSaZw6aXCXmsggXtr0sJeZzQCuAa4ENgB/7oSYRETSXgfzZUdGeomlLcDngd9H7St6bO4D+zqEHqj9kOJOrO4Qt7vzXlmEP62tZ0NlhBF9jJtm5DBrWAORbat4sfmTRZ0onc53LA97TSa45XQ1UEaQ+Mzdz+jk2ERE0koc82VHRnppta2ZfQdoBH7ThuPpgdooijuxunrcb26u4K6/F7OkpIxRA3tx5+WTuPT4UfRI0mxc6XS+Y7kiuxp4Gfiku68DMLOvdmpUIiLpKV75siMjvWQfqa2ZfQ74BHBW2C0h1uOJSJyt3rGXuxet4dn3dzK4bzb/9smjuWb2WHJ6dO3ZuOIplkL2MoIrDC+Y2d+BJ2j507uISHcXr3x5cKQXYGu4z2uabbMQuDnsAzubD0d6+eBwbc3sfOA24HR3r262r9+a2T0ED3tNAt5oR9wiEoNNZfu5d/Eannp7G31zevCNcydzw8nj6ZOTqHmquo5YHvZ6kmASgj7Ap4CvAsPM7KfAk80eHhAR6bbilS87MtLL4dqGu/4JkAMsDh8aKXL3+eG+/0DwMFkjcJNGLBCJv517a7n/ubX8fukWemQa/3jaBOafXsDA3t1rNq54irn0d/f9BP2pfmNmucAVwLcAFbIiIlHikS/bO9LL4dqGyyce4Xi3A7fHGp+IxK5ifz0PvbSeX722kcYm5+qTxvLlMycytH/PZIeW9mJ52Mui+lEBB8dEfDj8anEbEZHuRvlSRKLVNjo/fm4tj7xUQlV9I5fMGMU/nz2ZsXm9kx1alxHLFdkXzGwB8JS7bz6wMJyh6xTgcwSz2fyyUyIUEUkfypciQm1DE799fTP3vlTNvvo1nHv0ML5+7hSmDO+X7NC6nFgK2fMJxhv8XfjwwB6gJ0Hfq2eAe919RWcFKCKSRpQvRbqxxqYIf35zK//97Bq2VdYyNTeD/7xqDsePHZTs0LqsWB72qgUeBB4Mp1YcDNS4+55Ojk1EJK0oX4p0T5GI87d3d/CjxcWUfLCf48YM5K4rjqOh9F0VsZ2sTeM8hFMrbu+kWEREugzlS5Guz915cc0H3P1MMe9u3cukoX15+NqZnHv0MMyMwtJkR9j1acAyERERkTZatrGcOxcV88aGckYP6sU9Vx7HxTNGkZmhofYTSYWsiIiISIze27aXu58p5vnVuxjSL4cfXHwMnz5xLNk9kjOdbHfXrkJWw8eIiMRG+VKka9iwez/3LF7DX9/eRv+ePbj1/Clc/7F8emfrmmAytfnsm9n1wLVmth/YDNwWDv4tIiJRlC9F0t/2yhruf24tf1hWSnZmBjedMYEbT5vAgF5ZB7cpq6qjtKKG0YN6kdc3J4nRdj/t+Rgxz93PAjCz6cC/AbfGNSoRka5B+VIkTZXvr+fBF9bxeNEm3J1r54zjpjMmMqTfoYXqUyu2ctuClWRlZNAQiXDnZdO5aMaoJEXd/bSnkN174Bt3X2lmuqYuItIy5UuRNLOvtoGfv7KBR1/eQHV9I5eeMJqvnDWJMbkfnY2rrKqO2xaspLYhQi0RAG5dsJKTJw7WldkEaU9SnWNm9wPLw6/s+IYkItJlKF+KpInahiZ+XbSJB15YR0V1AxccO5yvnzuZiUMPPxtXaUUNWRkZB4tYgKyMDEoralTIJkibC1l3P8nMRgMzgSuB/HgHJSLSFShfiqS+hqYIf1peyn3PrmXH3lpOnTSYb543hemjB7badvSgXjREIocsa4hEGD2oVydFK821Wsia2YPAO8BK4B133+vupUAp8FQnxycikjbimS/N7HzgPoLpbR919zuarbdw/YVANXC9u795pLZmdgXwPWAqcJK7LwuX5wPvA8Xh7ovcfX6b3rxImolEnL+u3Ma9i9ewsayaE8YO5N5Pz2DuhLyY95HXN4c7L5vOrc36yOpqbOLEckV2BTAduAo41sz2cWiifqLzwhMRaV0KPTG8gjjkSzPLBB4AziEogpea2UJ3fy9qswuASeHXbOCnwOxW2r4LXAo83MJh17v7jLa9XZH04+68ULyLuxat4f3tezlqeD8evW4WZ00dSvD5sG0umjGKkycOTpUc1O20Wsi6+yPRr8PbZNOBacDHARWyIpI0qfTEcBzz5UnAOncvCffzBHAxEF3IXgw8Ho5RW2RmA81sBEH3hRbbuvv74bL2vUGRNPd6SRl3LSpm2aYKxuX15r6rZvDJ6SPJ6OBsXHl9c1TAJkl7+sgeuE32dFvatfc2mZmNAR4HhgMR4BF3v6+tcYtI15PqTwy3N18Co4AtUa9LCa66trbNqBjbtmS8mb1FMNLCd9395TbGLJKy3t1ayZ2LinlpzQcM65/D7Zccy5WzxpCVqdm40l1ChoLpyG0yoBH4eljU9gOWm9niZm1FpBvqwk8Mt3R5qPnsYIfbJpa2zW0Hxrp7mZnNBP5iZse4+97ojczsRuBGgGHDhlFYWNjKbltXVVUVl/0kmuJOrPbGva0qwp/X1rNsZxN9suDTU7I5a2wm2TUbePXlDfEPtJnudr6TIVFjGrb7Npm7bydIsrj7PjN7n+CKgwpZkW6uCz8xXAqMiXo9GtgW4zbZMbQ9hLvXAXXh98vNbD0wGVjWbLtHgEcAZs2a5fPmzYvt3RxBYWEh8dhPoinuxGpr3Fv31HDfs2v40/JSemVlcstZk/iHU8fTv2dW643jqLuc72SK+Zq6mf0wlmWHcbhbYG3aJnyy9njg9RiPKyJd2IEnhntmZdAvpwc9szJS4onhDuZLgKXAJDMbb2bZBA+PLWy2zULgOgvMASrDD/6xtG0e25DwzhlmVkBwZ6ykDfGKpITdVXX8+19XccZdhfxlxTZuOHk8L916Bl87Z3LCi1hJjLZckT0HuK3ZsgtaWNaSjtwmC1aa9QUWAP/c/HZX1Da67RVS3ImluBMrOu7+wANn9KS+KUJ2ZgaZe9ZSWLg2qfHRsXyJuzea2c3AIoLnCh5z91VmNj9c/xBBv9sLgXUEzxXccKS2AGZ2CfBjYAjwf2a2wt3PA04Dvm9mjUATMN/dy9v97kUSbG9tAz97qYSfv7KBusYIV8wczS1nTWLkwLS/OyOtiGUc2X8CvgQUmNnKqFX9gNdiPE5HbpNhZlkERexv3P3PhzuIbnt9SHEnluJOrFSNO075EgB3f5pmD4mFBeyB7x24Kda24fIngSdbWL6AIMeKpJWa+iZ+tWQjPy1cT2VNAx+fPoKvnTOZCUP6Jjs0SZBYrsj+Fvgb8F/At6KW72vDJ/aDt7qArQS3uq5pts1C4Oaw/+xswttk4WgGPwfed/d7YjyeiEgyxCNfikgr6hsj/H7ZFn783Fp27atj3pQhfOPcKRw7akCyQ5MEi2Uc2Uqg0sxuIBhIO/9AOzPD3b8fwz7afZsMOBm4FnjHzFaEy/5feMVBRCRlxCNfisjhNUWchW9v5d7Fa9lcXs2J+YP4yTUncNL43GSHJknSlj6yfwEqgeWET7e2RXtvk7n7K7Tcf1ZEJFX9hQ7kSxE5lLvzzKod/OiZNRTv3MfRI/rzixtOZN7kIZrgo5trSyE72t3P77RIRES6DuVLkTh5bf1u/qOolvWVyxk/uA8/vvp4Pj5tRIdn45KuoS2F7GtmNs3d3+m0aEREugblS5EOenvLHu5aVMwr63aT29O449JpXD5zND00G5dEaUshewpwg5mVENwqM4IeAdM7JTIRkfSlfCnSTmt37uPuZ4pZtGonuX2y+e7HpzK2fhPnnjQ22aFJCmpLIXtBp0UhItK1KF+KtNGW8mrufXYNf3lrK72ze/DVsyfzhVPH0zenB4WFm5MdnqSothSym4HPAAXu/n0zGwsMBzZ1SmQiIulL+VIkRrv21fLA8+v47RubyTDjH04t4J9On8CgPtnJDk3SQFsK2QeBCHAm8H1gH8EA2id2QlwiIulM+VKkFZXVDTz80np+8epGGpoiXHniGG45cxLDB/RMdmiSRtpSyM529xPM7C0Ad68I5/EWEZFDKV+KHEZ1fSO/eHUjD724nqq6Ri46biRfPXsy+YP7JDs0SUNtKWQbzCwTcAAzG0JwxUFERA6lfCnSTF1jE797fTM/eWE9u6vqOHvqUL5+7hSmjuif7NAkjbWlkL2fYI7uoWZ2O3A58N1OiUpEJL0pX4qEmiLOk29t5d7Fa9i6p4bZ43N5+NoTmDkufWfjKquqo7SihtGDepHXNyfZ4XRrMRey7v4bM1sOnEUwlMyn3P39TotMRCRByqrqKCopp6ikjOId+/j9P87p0GxBypciwWxci1bt4O5n1rBuVxXTRg3gvy6dxqmTBqf1bFxPrdjKbQtWkpWRQUMkwp2XTeeiGaOSHVa3FVMha8FP3Gh3Xw2s7tyQREQ6V8X+el7fUMaS9WUUlZRTvHMfAH2yMzlxfC57axsZ0CurXftWvpTuzt15Zd1u7lpUzMrSSiYM6cNPP3MC5x87PK0LWAg+9N62YCW1DRFqw95Cty5YyckTB+vKbJLEVMi6u5vZX4CZnRuOiEj8VVY3ULShjKKSoHhdvSMoXHtlZTIrfxAXHz+SOQV5TBs1gKwOzhoUr3xpZucD9wGZwKPufkez9RauvxCoBq539zeP1NbMrgC+B0wFTnL3ZVH7+zbwBaAJuMXdF3Ukfume3txcwZ1/X01RSTmjBvbirsunc8nxo7rMbFylFTVkZWQcLGIBsjIyKK2oUSGbJG3pI1tkZie6+9JOi0ZEJA721jbwRkk5S0qC4vW97Xtxh55ZGcwal8s3zh3B3Al5TBs1kOwenfIHtkP5MnxQ7AHgHKAUWGpmC939vajNLgAmhV+zgZ8Cs1tp+y5wKfBws+MdDVwFHAOMBJ41s8nu3tSe+KX7Wb1jL3cvWsOz7+9kcN9svvfJo7l69lhyemQmO7S4Gj2oFw2RQ5/bbIhEGD2oV5IikrYUsmcA/2hmm4D9aMpFEUkR+2obWLqxnKKScpasL2PVtkoiDtk9Mpg5dhBfPXsycwryOG7MgET9Ye1ovjwJWOfuJQBm9gRwMRBdyF4MPO7uTlA4DzSzEUD+4doe6Kfbwu3di4En3L0O2GBm68IYlrTtbUt3s6lsP/cuXsNTb2+jb04PvnneFK7/WD59ctpSXqSPvL453HnZdG5t1kdWV2OTpy19ZOejWWlEJAXUNjqFxbvCK67lvLu1kqaIk52ZwYyxA/nymZOYOyGPGWMG0jMrsVeE4pQvRwFbol6XElx1bW2bUTG2bel4RS3s6xBmdiNwI8CwYcMoLCxsZbetq6qqist+Eq27x11RG2Hh+gZeKm0k0+DC/CwuGJ9FXytl6ZLSjgfaTCqd7/7AA2f0pL4pQnZmBpl71lJYuLbFbVMp7rZIp7jb0kf2XndXH1kRSbjq+kaWb6oIH84q4+0t1TT5UrIyjRljBvKleROYW5DHCeMGJbxwbS5O+bKlJ2I8xm1iadue4+HujwCPAMyaNcvnzZvXym5bV1hYSDz2k2jdNe6K/fU89OJ6fvnaRpoizjWzx/HlMycytH/nzsbVXc93sqRT3OojKyIpp7ahieWbKg4+nPV26R4ampweGcb00QO4YHwWV51xAieMG0jv7JS8hdnRfFkKjIl6PRrYFuM22TG0bc/xpBurqmvksVc28LOXSqiqb+SSGaP457MnMzavd7JDk26urX1k55vZRtRHVkTiqLahibc27zn4cNaKzXuob4qQmWFMGzWAL5xSwNwJecwaN4g+OT0oLCzklEmDkx32kXQ0Xy4FJpnZeGArwYNY1zTbZiFwc9gHdjZQ6e7bzeyDGNo2txD4rZndQ/Cw1yTgjRhjlS6stqGJ37y+mQdfWEfZ/nrOPXoY3zhvCpOH9Ut2aCJA2wrZCzotChHpVuoam1ixeU/wcFbJbt7cvIf6xggZBseOGsANJ+czpyCPWfmD6NezfeO5JlmH8qW7N5rZzcAigiG0HnP3VWY2P1z/EPA0wdBb6wiG37rhSG0BzOwS4MfAEOD/zGyFu58X7vsPBA+TNQI3acSC7q2xKcKCN0u579m1bKus5eSJeXzzvKOYMWZgskMTOURbCtnPHWb59+MRiIh0XfWNEVaW7gn6uG4oY/mmCmobIpjB0SP6c92cccydkMeJ43Ppn56Fa3Mdzpfu/jRBsRq97KGo7x24Kda24fInCabObanN7cDtscYnXVMk4vzt3R38aHExJR/s57gxA7nriuM4eWJK3wGRbqwthez+qO97Ap8ANOWiiHxEQ1OElaWVFIVdBZZtrKCmIbjAN3VEf645aRxzCnKZPT6PAb27ROHanPKlpBV358U1H3DXomJWbdvL5GF9efjamZx79LC0n41LuraYC1l3/1H0azO7m6BflYh0c41NEd7dtvfgqALLNpazvz4oXKcM68enTxzDnII8Zo/PZVCf7CRH2/mULyWdLNtYzp1/L+aNjeWMye3FPVcex8UzRpGZoQJWUl9HHvftDRTEunEHp1t8jOCKxi53P7YDMYtIHDRFnPe27WVJyW6WrC9j6cYKquoaAZg0tC+XnjCauROCwlUDhQNtzJciibBqWyV3LyrmheIPGNIvhx986lg+PWtMZ812J9IpYi5kzewdPhxXMJPgYYEfxNi23dMthut+CfwEeDzWeEUkfiIR573tew92FXh9Qzn7aoPCtWBIHy6eMTIsXPMY0k+Fa0fypUhnK/mginufXctf397GgF5Z3Hb+UVz/sXx6ZXet6WSle2jLFdlPRH3fCOx098YY27Z7ukV33+7uL5lZfhtiFZEOiESc4p37WLK+jCUlZbyxoZzKmgYAxg/uwyemj2BOQR5zC/LiOhB6WVUdpRU1jB7UK92v5HYkX4p0im17anjs3TpefeYlcnpkcPMZE/niaQUM6NUl+6lLN9GWQvb7wFfcfQ+AmQ0ysx+5++djaNuR6Ra3tyFGEWkHd2fNzqqDExC8vqGMiuqgcB2b25vzjxkeXHEtyGXEgF6dEsNTK7ZyW7P5yy+a8ZFZUtNFR/KlSFyVVdXxYOF6/qdoE5GmCNfOzeemMybq7ol0CW0pZKcfSMoA7l5hZsfH2LYj0y3GTPOAf0hxJ1a6xe3ubN/vrNhezQMr/s7q8ib21Qfr8noax+RlMnVCNkflZpLXy4ByqCyn+C0o7oR4miJO6Y593HTUh7/yW95bznPla1p84CQNzndH8qVIXOyrbeBnL2/g5y+XUNPQxGUnjGZ23zIuv+CYZIcmEjdtKWQzzGyQu1cAmFluG9p3ZLrFmGke8A8p7sRK9bjdnZLd+w9ecS0qKWd3VR1gjByQxTnHDj/YVWBMbuKnnHx7yx4eevF19tV9ePe9X04Pfn3q8RzXwgDsqX6+6Vi+FOmQ2oYm/mfJJh4sXEdFdQMXThvO186ZzMSh/VL9A6BIm7Ulsf4IeM3M/kRwpfRKYh88u93TLbYhPhEJuTubyqoPTvlaVFLGzr11AAzrn8MpE/OYOyEP+2AdV1xwRtLHiRw9qBcNkcghyxoiEUYP6pxuDAnQkXwp0i4NTRH+uKyU+59by469tZw2eQjfPHcK00YPSHZoIp2mLePIPm5my4AzCboBXNps1IEjtW33dIsAZvY7YB4w2MxKgX9z95/HGrtIV+fulFbUHHw4q6ikjO2VtQAM6ZfD3IK84IrrhDzy83ofLFwLC0uSXsQC5PXN4c7LpnNrsz6y6frAV0fypUhbRSLOX1du497Fa9hYVs0JYwfy31fNYE5BXrJDE+l0bbrVFSbidiXjDk63eHV7jinSlZVWVFNUUn5wEoKte2oAGNw3m9lhN4E5BXlMGNInJYrV1lw0YxQnTxzcVUYt6FC+FImFu/P86l3ctaiY1Tv2cdTwfvz8c7M486ihafE7LxIP6rMlkia2V4ZXXNeXUbShjC3lQeGa2yebOQW5/OPpBcwtyGPi0L5p8UespaG28vrmpH0BK5IIRSVl3LWomOWbKhiX15v7rprBJ6ePJEOzcUk3o0JWJEXt3Ft78OGsJSVlbCqrBmBg7yxmj8/l8yePZ+6EPCYP7Zd2f7y62FBbIgnzTmkldz1TzEtrPmBY/xz+85JpXDFrNFmZmo1LuicVsiIpYte+2oNdBV4vKaNk934A+vXswezxeVw3N585BblMHd4/7QrXaGVVddy2YCW1DRFqCR7wunXBSk6eOFhXY6N0cFrvFtuGoyf8HsgHNgJXhkOD5QPv8+HoakXuPr8z35+0zbpdVdyzuJin39nBoN5ZfOfCqVw7dxw9szQbl3RvKmRFkmR3VR2vl5SzpGQ3S9aXsf6DsHDN6cFJ43O5+qSxzJ2Qx9QR/VscSzVdlVbUkJWRcbCIBcjKyKC0okaFbKgj03q30vZbwHPufoeZfSt8fVu4v/XuPqPz3520RWlFNfc9u5YFb5bSKyuTW86axBdPHU+/npqNSwRUyIokTPn+el4PRxRYUlLGmp1VAPTJzuTE8blcOWsMcwryOGZkf3p04duEXXCorc7Q7mm9Ca62Hq7txQQjwAD8Cijkw0JWUsjuqjp+8vw6fvv6ZjC44eTxfGneBH3YE2lGhaxIJ9lTXc/rGz4cVWD1jn0A9M7OZFZ+Lp86fhRzC/KYNmpAly5cm+tqQ211ko5M632ktsMOjM/t7tvNbGjUduPN7C1gL/Bdd3+5w+9C2qyypoGfvVTCY69uoK4xwhUzR3PLWZMYOVAf9ERaokJWJE4qaxp4Y0P5wQe03t+xF3fomZXBrHG5fPO8kcwpyGX66IHd8sGM6FEKutpQW52gI9N6t2e67+3AWHcvM7OZwF/M7Bh333vIATUN+EHxjruuyXl2UwNPb2hgfwOcNDyTSyf1ZHifctaseJ01cTqOzndiKe7Op0JWpJ321TawdGNwxXXx2zVsXvQMEYfsHhnMHDuIr549mbkT8pg+egA5Pbr3AxmHG6VABexhdWRa7+wjtN1pZiPCq7EjgF0A7l4H1IXfLzez9cBkYFn0ATUN+IfiFXd9Y4TfL9vCj59by659DZwxZQhfP3cKx47qnNm4uvv5TjTF3flUyIrEqKqukaUbgyuuRevLeGdrZVC4ZmYwvj98+cxJzJ2Qx4wxA/UkcRSNUtAu7Z7W28w+OELbhcDngDvCf58CMLMhQLm7N5lZAcEDZCWd+Qa7u6aIs/Dtrdy7eC2by6s5KT+XBz5zAifm5yY7NJG0okJW5DCq6xtZtrHi4JSvK0sraYo4WZnGjDEDufmMicyZkMcJYwdR9OrLzJs3OdkhpySNUtB2HZnW+3Btw13fAfzBzL4AbAauCJefBnzfzBqBJmC+u5cn4K12O+7O4vd28qNn1lC8cx/HjOzPL284kdMnD0mLiUxEUo0KWZFQTX0Tb26uOPhw1tule2hocnpkGMeNGcj80wuYWzCYmeMG0StbV1xjpVEK2qeD03p/pG24vAw4q4XlC4AFHQxZWvHaut3cuaiYFVv2UDC4Dw9ccwIXHDs8rceFFkk2FbLSbdU2BIVrUUk5RevLWLFlD/VNETIzjGmjBvAPpxYwpyCPWeMG0SdHvyrtpVEKpLtbsWUPdy1azavryhg5oCc/vGwal50wuluNViLSWfTXWbqNusYmVmzec7CrwJub91DfGCHDYNqoAdxwcj5zJuRxYn4ufVW4xpVGKZDuaM3Ofdy9qJhn3ttJbp9s/uUTR/OZ2WPVh14kjvTXWrqs+sYIb5fuoWh9MAHB8k0V1DVGMINjRvbnc3PHMacgjxPH59Jfs+TELHoYrbYUpHl9c1TASrewpbyaexev4ckVW+mb3YOvnTOZz58yXh+QRTqBfquky2hoirCytDIYVaCkjGUbK6hpaAJg6oj+fGb2OOZOyOOk8bkM6KXCtT0ON4yWiMCuvbX85IV1/O6NzWSYceOpBcw/fQKD+mQnOzSRLkuFrKStxqYI727by5LwiuuyjeVU1weF61HD+/HpE4MpX2ePz9UfkjjQMFoiLausbuChl9bzi1c30NjkfPrEMXz5zEkMH9Az2aGJdHkqZCVtNEWcVdsqD86ctXRjBVV1jQBMGtqXy2eOZm5BcMVVhVXryqrqqGlooqyqLqbzpWG0RA61v66RX762kYdeXE9VXSMXHzeSfz57MvmD+yQ7tLTV3q5L0n2pkJWU1RRx3t++92Dh+saGcvaFheuEIX24eMZI5k7IY/b4PIb0U8JriwNdBG6Z2sBXf/h8TF0ENIyWSKCusYnFmxr4xisvsLuqnrOnDuPr505m6oj+yQ4tranrkrSHCllJGZGIs3lvE4+9soElJUHhWlnTAMD4wX34xHFB4TpnfC5D++uWXVtEX+UADnYRaHKntiESUxcBDaMl3V1TxPnzm6X897Nr2bqnnjkFuTx87VHMHDco2aGlPXVdkvZSIStJE4k4a3dVsWT9bpaUlPH6hnL2VDcA7zEurzfnHzM8KFwL8tTXrAOaX+W4ad7EdncR0DBa0h25O39/dwc/WryGdbuqmD56AFdPdG66bI5m44oTdV2S9lIhKwnj7qzbVRV0FSgpo6iknPL99UBw2/qcqcMYWL+LGz5+CiMH6nZ1Rxy4AtsnO/MjVzl+8sJa4NA/vm3pIqBhtKS7cHdeXrubuxYV887WSiYO7ctDnz2B844ZzosvvqgiNo7UdUnaS4WsdBp3p2T3/oNTvhaVlLO7qg6AkQN6Mm/KEOYWBFdcx+T2BqCwsFBFbAdFX4Gta2z6yPSX2ZmZ3HhaAQ8UriPTjJ5ZGeoiINLM8k0V3LVoNUUl5Ywa2Iu7rziOS44fRaamk+0U6rok7ZWwQtbMzgfuAzKBR939jmbrLVx/IVANXO/ub8bSVlKDu7OprJol4cNZRSVl7NoXFK7D+/fk1EmDmVOQy9yCwYzJ7ZWWVzNS/YnalvqZ0eSHbNMQiXDN7LFcM3ssbyx5hVcvOiUl34tIMqzesZe7FxXz7Pu7GNw3m+998miunj2WnB6ajauzqeuStEdCClkzywQeAM4BSoGlZrbQ3d+L2uwCYFL4NRv4KTA7xrYd1t4CJdULG+i8GN2dLeU1LCnZTVFJOUvWl7Fjby0AQ/rlMLcg72Af1/y83mlZuEZLhydqW+pnlpNpuBk5mR+9ytErKzNlf25FEmlT2X7uWbyGhW9vo29OD7553hRuODmf3tm6cZlI6rokbZWo39CTgHXuXgJgZk8AFwPRxejFwOPu7kCRmQ00sxFAfgxtO6S9BUo6FDbxjrG0ovrgBASvl5SzdU8NAIP7ZjMn7CYwd0IeBYP7pH3hGi1dnqhtqZ+ZZRj/d/Mp7K9vSukPXCLJsKOylvufX8sflm6hR6Yx//QJzD9tAgN6a/Y/kXSQqEJ2FLAl6nUpwVXX1rYZFWPbdmtvgZIOhU08Yty2p+bgOK5LSsoorQgK19w+2cwpyGX+6QXMKchj4tC+XapwbS5dnqg9XD+zicP6JTs0aaPO6I5lZrnA7wkuEGwErnT3inDdt4EvAE3ALe6+KJ7vJ9XuelXsr+enL67nV69tJOLONbPHcvMZE9s1tF863JkT6aoSVci2VOF4jNvE0jbYgdmNwI0Aw4YNo7CwsNXAahqauGVqA03+4S4zzXhjySv0ysqkqqqqxf201i7ZqqqqeGPJK22OsaI2wvvlEVaXN7G6vIld1UHbPllwVG4mp0/NZmpuJiP7Ghm2D+r2sfX9jWx9P35xx/L/lmhNEWf+lDoiUecyw5rYvfYtCtdbSsXdH3jgjJ7UN0XIzswgc89aCgvXtrhtKsXdFukad6w6sTvWt4Dn3P0OM/tW+Po2MzsauAo4BhgJPGtmk929KR7vJ5XuelXVNfLYKxv42UslVNU3csnxo/jq2ZMPPnDaVulwZ06kK0tUIVsKjIl6PRrYFuM22TG0BcDdHwEeAZg1a5bPmzev1cDKqur46g+fp7bhwyttPbMyDj4AU1hYSEv7aa1dshUWFjJt1txWY9y1r/Zg/9aikjI27A6uuPbv2YPZBUODrgIFeRw1vN9Hnn7vrLhj+X9Lhv0rtn7kSudZ4R+sVI77SBR3yuqs7lgXA/PC9r8CCoHbwuVPuHsdsMHM1oUxLOnoG0mVu161DU385vXNPPjCOsr213PeMcP4+rlTmNyBuxXpcGdOpKtLVCG7FJhkZuOBrQSf/K9pts1C4OYw6c4GKt19u5l9EEPbdmvvkB/pMFRISzH+y8enhmO4Bt0F1n+wH4B+OT04aXwun5k9ljkFeUwd0V/DzDSjJ2olgTqrO9Ywd98OEObXoVH7KmphX4dIx7teTRHnlW2NPLWugfJa55i8DG6a3pOCAVVse38529p5N6m9d72SLV3vZijuxEqnuBNSyLp7o5ndDCwi6LP1mLuvMrP54fqHgKcJ+nqtI+jvdcOR2sYzvvYWKOlQ2JwyaQjfv+gYCtd8QPGOfXznL8Gp65vTgxPzB3HlrDHMnZDHMSMHqHCNgZ6olQRJSHesNh4vre56RSLO0+9u555n1lCyu54ZYwbyk/Om8LGJg1ttG4tY73qlmnS9m6G4Eyud4k7YuCLu/jRBsRq97KGo7x24Kda28dbeAiXVCps91fUUlZSz4P067ljxEqt37AOgd3Yms/JzuXzmGOYU5DJt1AB6ZGYkOVoROYzO6o6108xGhFdjRwC72nC8dkn0XS93p3DNB9y9qJhV2/YyeVhfHrl2JuccPSzuD6Smw505ka5OA+SlucqaBt7Y8GEf1/d37MUdsjNg9oQcPnncSOYU5DF99ACyVLiKpIvO6o61EPgccEf471NRy39rZvcQPOw1CXgjXm8mUXe9lm4s586/r2bpxgrG5Pbi3k8fx0XHde5sXOlwZ06kK1Mhm2b21jawdEN50Me1pIxV24LCNadHBjPHDeJrZ09mzoQ8Kkve5uwz4zZKmYgkUCd2x7oD+IOZfQHYDFwRtlllZn8geCCsEbgpXiMWHNCZd73e3VrJ3c8UU1j8AUP75fCDTx3Lp2eNIbtHYj68p9qdOZHuRIVsiquqa2TpxnKKwiuu72ytJOKQnZnB8WMH8pWzJjG3II8ZYwceMoVi4Ub1dxVJZ53RHcvdy4CzDtPmduD2DoSccCUfVHHP4jX878rtDOiVxbcuOIrPzc2nV3ZqPmglIvGnQjbFVNc3smxjBUvCUQXe2VpJU8TJyjSOHzOIm8+YyJwJeZwwdhA9U/SpWBGRzrRtTw33P7eWPy4vJadHBl8+cyL/cGoBA3ppNi6R7kaFbJLV1DexfFMFS0p2U1RSzttb9tAYcXpkGMeNGcg/nT6BuWHhqqsMItKdlVXV8WDhev6naBM4XDd3HF+aN5Eh/XRbX6S7UiGbYLUNTby5uSLsKlDOW1sqaGhyMjOM6aMH8MXTCphbkMes/EH0ztZ/j4jIvtoGfvbyBn7+cgk1DU1cPnM0t5w1idGD2jcbl4h0HaqUOlldYxNvbd5zcAKCt7bsob4xQobBtFED+Pwp45lTkMeJ+bn0zdF/h4jIAbUNTTy+ZCMPFq5nT3UDF04bztfOmcLEoX2THZqIpAhVTnFW3xjh7dI9B4fDWr6pgrrGCGZw7MgBfG7uOOZOCArXfj3Vn0tEpLmGpgh/WLaF+59by869dZw2eQjfPHcK00YPSHZoIpJiVMh2UENThJWleygqCcZyXbapnNqGoHCdOrw/n50zjjkFeZw0PlcPIoiIHEEk4vx15TbuWbyGTWXVzBw3iPuuOp45BXnJDk1EUpQK2TZqbIrwztZKlpQEfVyXbSynuj4YbvGo4f246sSxzJ2Qx+zxuQzsnZ3kaEVEUp+78/zqXdy1qJjVO/Zx1PB+PHb9LM6YMjTus3GJSNeiQrYVEXdWhl0FlpSUsXRDOfvDwnXysL5cPnM0cwvymF2QR24fFa4iIm2xuryJHz+0hOWbKsjP6819V83gk9NHktGJs3GJSNehQvYwdlfVcdufVvLaumpqFr0KwIQhfbjkhFHMLRjM7IJcBmsmFxGRdtm1t5av//FtXl5by/D+8J+XTOOKWaM1lbaItIkK2cMY2CuLnftqmT28B5eeOo05BbkM7dcz2WGJiHQJA3pnUVFdz6enZPPvn52nCV5EpF300fcwemRm8L9fPpXrj83houNGqogVEYmjnB6Z/PXmU7hgfJaKWBFpNxWyIiKSFHqQS0Q6SoWsiIiIiKQlFbIiIiIikpZUyIqIiIhIWlIhKyIiIiJpSYWsiIiIiKQlc/dkx9ApzOwDYFMcdjUY2B2H/SSa4k4sxZ1YqRb3OHcfkuwgEkk5VnEnmOJOrFSL+7A5tssWsvFiZsvcfVay42grxZ1Yijux0jVu+ah0/b9U3ImluBMrneJW1wIRERERSUsqZEVEREQkLamQbd0jyQ6gnRR3YinuxErXuOWj0vX/UnEnluJOrLSJW31kRURERCQt6YqsiIiIiKQlFbKAmZ1vZsVmts7MvtXC+s+Y2crw6zUzOy4ZcTYXQ9wXhzGvMLNlZnZKMuJsSWuxR213opk1mdnliYzvcGI45/PMrDI85yvM7F+TEWdzsZzvMPYVZrbKzF5MdIwtieF8fzPqXL8b/qzkJiNWOTzl2MRTjk0s5dgkcvdu/QVkAuuBAiAbeBs4utk2HwMGhd9fALyeJnH35cPuI9OB1cmOO9bYo7Z7HngauDwd4gbmAf+b7FjbEfdA4D1gbPh6aDrE3Wz7TwLPJztufbX9/1E5NvGxR22nHJuYuJVjO+lLV2ThJGCdu5e4ez3wBHBx9Abu/pq7V4Qvi4DRCY6xJbHEXeXhTx/QB0iVDtGtxh76MrAA2JXI4I4g1rhTTSxxXwP82d03A7h7Kpzztp7vq4HfJSQyaQvl2MRTjk0s5dgkUiELo4AtUa9Lw2WH8wXgb50aUWxiitvMLjGz1cD/AZ9PUGytaTV2MxsFXAI8lMC4WhPrz8pcM3vbzP5mZsckJrQjiiXuycAgMys0s+Vmdl3Coju8mH83zaw3cD7BH2VJLcqxiaccm1jKsUnUI9kBpABrYVmLn6rN7AyCJJsK/aBiitvdnwSeNLPTgB8AZ3d2YDGIJfb/Bm5z9yazljZPiljifpNgKr0qM7sQ+AswqbMDa0UscfcAZgJnAb2AJWZW5O5rOju4I4j5d5Pglter7l7eifFI+yjHJp5ybGIpxyaRCtngE8iYqNejgW3NNzKz6cCjwAXuXpag2I4kprgPcPeXzGyCmQ1292TPnxxL7LOAJ8IEOxi40Mwa3f0vCYmwZa3G7e57o75/2sweTIFzHsv5LgV2u/t+YL+ZvQQcByQzybblZ/wqUvCWlwDKscmgHJtYyrHJlOxOusn+IijmS4DxfNjZ+Zhm24wF1gEfS3a8bYx7Ih8+iHACsPXA61SPvdn2vyQ1HkSI5ZwPjzrnJwGbk33OY4x7KvBcuG1v4F3g2FSPO9xuAFAO9En2z4i+2vf/qByb+Nibba8c2/lxK8d20le3vyLr7o1mdjOwiOAJvsfcfZWZzQ/XPwT8K5AHPBh+em1091nJijmMK5a4LwOuM7MGoAb4tIc/lckUY+wpJ8a4Lwf+ycwaCc75Vck+57HE7e7vm9nfgZVABHjU3d9NXtRt+jm5BHjGgysdkmKUYxNPOTaxlGOTSzN7iYiIiEha0qgFIiIiIpKWVMiKiIiISFpSISsiIiIiaUmFrIiIiIikJRWyIiIiIpKWVMiKiIiISFpSISsiIiIiaUmFrHRZZlZlZgPN7EsJONZEM3un2bIcM9tgZkd39vFFRBJNOVZSgQpZ6eoGAp2eZAmm+RtjZtG/UzcCL7r7ewk4vohIMgxEOVaSSIWspAUz+2H0p34z+56Zfd3MvmZm74Zf/9xC0zuACWa2wszuCtv+xcyWm9kqM7sxap//YmarzWyxmf3OzL4Rte6zZvZGuJ+HzSwz+iDuHiGY8zs/3L4X8HXge3E7CSIinUQ5VtKVCllJF08An456fSWwDLgBmA3MAb5oZsc3a/ctYL27z3D3b4bLPu/uM4FZwC1mlmdmswjmTT8euDRcB4CZTQ2PfbK7zwCagM+0EOP7wFHh9zcBC919Y/verohIQinHSlrqkewARGLh7m+Z2VAzGwkMASqAGcCT7r4fwMz+DJwKvNXK7m4xs0vC78cAkwiS9FPuXhPu669R258FzASWmhlAL2BXC/t9H5hiZi8RJNk5B1aY2VLgdaA/8IK7/yLGty4i0umUYyVdqZCVdPIn4HJgOMHVg8wjb/5RZjYPOBuY6+7VZlYI9ATsSM2AX7n7t1vZ/fvAmcBXgN+4+87wmGOA19395vD182b2uLs3tTV+EZFOpBwraUddCySdPAFcRZBo/wS8BHzKzHqbWR/gEuDlZm32Af2iXg8AKsIEexQffqJ/BfikmfU0s77Ax6PaPAdcbmZDAcws18zGtRDf+8BJwOeBu6KWzwSWR72uBiIxvmcRkURRjpW0oyuykjbcfZWZ9QO2uvt2YLuZ/RJ4I9zkUXd/q1mbMjN71czeBf4GfBeYb2YrgWKgKNxuqZktBN4GNhH0DasM171nZt8FngmfmG0guK21qVmIxcA04DvuXhm1fCbwRwAzOw7Y7O7e8TMiIhI/yrGSjkz/1yIBM+vr7lVm1pvgSsSN7v5mHPb7NLARqCN4iOHf3X1fR/crIpJOlGOlM6iQFQmZ2W+Bown6c/3K3f8rySGJiHQZyrHSGVTIioiIiEha0sNeIiIiIpKWVMiKiIiISFpSISsiIiIiaUmFrIiIiIikJRWyIiIiIpKWVMiKiIiISFpSISsiIiIiaUmFrIiIiIikpf8PGRmfxKRQWVYAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, axs = plt.subplots(1,2, squeeze=True, figsize=(10,3.5))\n",
"fig.tight_layout(pad=3.0)\n",
"x = np.linspace(0.2, 0.75, 1000)\n",
"cutoffs = [1, .65]\n",
"for ax, c in zip(axs, cutoffs):\n",
" df = df1[df1['VD']"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"f3 = lambdify(vd, expr1.subs([(Is, result.x[0]), (k, result.x[1]), (m,1)]).args[0],\"numpy\")\n",
"fig, axs = plt.subplots(2,1, squeeze=True, figsize=(6,8))\n",
"fig.tight_layout(pad=3.0)\n",
"x = np.linspace(0.2, 0.75, 1000)\n",
"y = [f3(x1) for x1 in x]\n",
"axs[1].set_yscale('log')\n",
"axs[0].set_title('V-I characteristic of IN4001 diode')\n",
"axs[1].set_title('V-I characteristic (log scale)')\n",
"for ax in axs:\n",
" \n",
" ax.plot(x, y)\n",
" dfax = df1.plot('VD', 'ID', kind='scatter', ax=ax)\n",
" # For some reason labels have to be set on the pandas plot axes object\n",
" dfax.set_ylabel('current $I_D$ (A)')\n",
" dfax.set_xlabel('voltage $V_D$')\n",
" dfax.grid()\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 25,
"id": "medieval-distance",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" direc: array([[ 1.00000000e+00, 0.00000000e+00, 0.00000000e+00],\n",
" [ 0.00000000e+00, 1.62179946e-06, -8.39945856e+09],\n",
" [ 0.00000000e+00, 3.15337071e-06, -1.13978814e+09]])\n",
" fun: 6.273249557562098e-05\n",
" message: 'Optimization terminated successfully.'\n",
" nfev: 142\n",
" nit: 3\n",
" status: 0\n",
" success: True\n",
" x: array([ 1.66810054e-14, 2.58668803e-02, -1.26598426e+11])"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"isval, kval, mval = initial_guess = [*crude_result[1:3],1]\n",
"result = optimize.minimize(sumsq, initial_guess, args=(e1, df1, (Is, k, m)), method='Powell')\n",
"result\n"
]
},
{
"cell_type": "code",
"execution_count": 26,
"id": "stuffed-longitude",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZIAAAEQCAYAAACa+vIpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAv2klEQVR4nO3deZxcZZn3/8+3O52F7BshJIGwBCFAwhIWRWYatwmIRoVHwQXFZ8wwA446OoCOu4/PDDpuPINGRAb5ueCCaNQILtgqMIlhSQJJQEIIpLMQ0kk66aTT6/X745wOlUov1UtVdVW+79erXuk6577Pue4+nbrqPvc591FEYGZm1lcVxQ7AzMxKmxOJmZn1ixOJmZn1ixOJmZn1ixOJmZn1ixOJmZn1ixOJ5YWkmZJC0pBixzIQJK2WVN2Heu+Q9Js8xPN/JG2XtHWgtz2YSKqWVJvxvk/HIa0bkk4cqNjsJU4khxlJ90n6bCfLF0ja2tkHf6n/BxyI+CPi1Iio6WE/hyTPiPheRLyuP/vuZD8zgA8DsyPiqE7WZ3/41kjan9brWPYaSRs6qTsrLfvdrOWvlvSkpH2S/iDp2Ix1knSTpLr09QVJylj/OUmPS2qV9On+tD2X42CF50Ry+LkDeFfmf/TUu4DvRURr4UPqXjF7NYO0R3UsUBcR23pRZy/wiRzK3QIsz1wgaRLw07T+BOBh4IcZRRYCbwLmAnOAS4F/yFi/Drge+FUv4rUS4kRy+PkZyYfBhR0LJI0n+c9/Z283JmmEpC9Jek5SvaQHJI3IKPIOSc+np2H+LaPeuZL+R9IuSVsk/ZekoRnrQ9K1kp4Gnk6XfU3SRkm7JT0iKbMNlZI+JukZSXvS9TMk/SktslJSg6S3peUvlbQi3f9DkuZkbGuDpBskrQL2ShqSLntNRuwPp3G8IOnLadWOfe1K9/VySe+R9EDGtk+V9FtJO9K6H+vi9zpW0p2SXkx/tx+XVJHG8Fvg6HQfd+R4qG4GruyuZybpCmAX8PusVW8BVkfEjyNiP/BpYK6kk9P17wa+FBG1EbEJ+BLwno7KEfGdiPg1sKenINO/pzsk7ZS0Bjgna33mcRgm6auSNqevr0oallH2X9O/rc2S3pu1nWGS/jP923xB0qKsv1vrBSeSw0xENAI/Aq7KWPxW4MmIWNmHTf4ncDbwCpIEdT3QnrH+lcDLgFcDn5R0Srq8DfgQMAl4ebr+n7K2/SbgPGB2+n45cEa6n+8DP5Y0PF33L8CVwCXAGOC9wL6I+Jt0/dyIGBURP5R0FnA7ybfmicA3gcWZH0Lptl4PjOukl/Y14GsRMQY4geT3CdCxr3Hpvv4ns5Kk0cDvgHuBo4ETOfRDu8P/A8YCxwN/S3K8ro6I3wEXA5vTfbyni/rZNgHfIkkCh5A0BvgsySmzbKcCB/42ImIv8Ey6/JD16c+n0jefIvmdngD8HUmS6sq/AeeT/E3MBc4FPg4gaT7wEeC1wCzgNVl1bwJOSuueCEwDPtnHmA97TiSHp+8A/yvjG9hV6bJekVRB8oH9gYjYFBFtEfFQRDRlFPtMRDSmSWolyX94IuKRiFgaEa0RsYHkw/xvs3bx7xGxI01+RMR3I6IurfMlYBhJkgL4e+DjEfFUJFZGRF0Xob8P+GZELEtj/g7QRPKh1OHmiNjYse8sLcCJkiZFRENELM3tN8alwNaI+FJE7I+IPRGxLLuQpErgbcBH0zIbSL7lvyvH/XTl34E3SOrsQ/5zwLcjYmMn60YB9VnL6oHRXayvB0Z1cvo0F28FPp8e940kPamuvAP4bERsi4gXgc/w0u/orcB/R8QTaeL7dEelNK73AR9K97MH+L/AFX2I13AiOSxFxAPAi8ACSceTnD74Phy4KqYhfV3Y3XZIehPDSb6ddiXzqqJ9JB86SDpJ0i+VDPDvJvmPPCmr7kEfapI+LGltegptF8k39o46M3qII9OxwIfT01q70m3NIOkldLrvLP+b5Nvsk5KWS7o0x/3mGuMkYCjwXMay50i+NfdZ+mH7XyQ9jwMknUHyjf0rXVRtIOnlZRrDS6eqstePARqibzPCHs3Bv/vnuiqYls3+HR2dsa6r7UwGjgAeyTj+96bLrQ+cSA5fd5L0RN4F/CYiXoADV8WMSl9/7mEb24H9JKcheusbwJPArPQU0ceA7G+wBz6I0qR2A8k3zfERMY7km29HnY29iGMjybfecRmvIyLiB53tO1tEPB0RVwJHkpwi+Ymkkd3V6WWM20l6PcdmLDuG5PRUf30RuIjkdGSHamAm8LySy4k/Alwm6dF0/WrSniRA2tYT0uWHrE9/Xk3fbCFJuB2O6absZg79HW3OYTvbgUbg1IzjPzYiRvUx5sOeE8nh606Sb6Hvow+ntQAiop1krOHLko5OB7xfnjXW0JXRwG6gIR20/cccyreS9KSGSPokB38Lvg34nJLLVyVpjqSJ6boXSMYaOnwLuEbSeWnZkZJen45h9EjSOyVNTtu/K13clsbWnrWvTL8EjpL0wXSwd7Sk87ILRUQbybjL59Myx5KMAX03u2xvRcQuktNk12csvpUkMZyRvhaRXGH1d+n6e4DTJF2Wjkl9ElgVEU+m6+8E/kXSNElHk4yz3NGxcUlVab0KkmM3PD1915kfAR+VNF7SdOD93TTnB8DHJU1WcmXZJ3npd/Qj4D2SZks6gmTspeN30E7yN/AVSUemMU6T9HdYnziRHKbS8+4PASOBxf3Y1EeAx0kGwneQfEPP5e/qI8DbSU6PfIuDLyftzH3Ar4G/kpym2M/Bpy6+TPLh8RuSBPVtoGMM6NPAd9LTGG+NiIdJEuh/ATtJLk99Tw4xd5gPrJbUQDLwfkU65rEP+DzwYLqvzDEX0nPxrwXeQHLK72mS3kFn3k9yye564AGSU4+39yLG7nyNJPF1xLUvIrZ2vEhOVe1PT4V1nBK7LG3bTpILIDLHE74J/ILk7+AJkiT0zYz13yLpAVxJMkDeSNfjPZ8hOb7PkhzL/6+bdvwfkkuRV6X7fjRdRnqV2FeB+0mO7/1ZdW9Ily9NT63+jpfG26yX5AdbmZlZf7hHYmZm/eJEYmZm/eJEYmZm/VKwRCJpvqSnJK2TdGMn6yXp5nT9qvTuYyS9TMlUFh2v3ZI+WKi4zcysewUZbE8v9fsryRUrtSRX+FwZEWsyylxCcqXKJSRXhXwtIs7rZDubgPMiorsblczMrEAKNbPpucC6iFgPIOkuYAGwJqPMAuDO9G7YpZLGSZoaEVsyyrwaeCaXJDJp0qSYOXPmgDUAYO/evYwcOXJAtzmYlHP73LbSVc7tK6W2PfLII9sjotO7/wuVSKZx8DX/tSS9jp7KTCO5Q7XDFSQ3IfVo5syZPPzww72PtBs1NTVUV1cP6DYHk3Jun9tWusq5faXUNkldfoEvVCLpbPK27HNq3ZZRMsX4G4GPdrkTaSHJsxGYMmUKNTU1vQ60Ow0NDQO+zcGknNvntpWucm5fubStUImkloPnvZnOS3Pi5FrmYuDRjjmhOhMRt5JM98C8efNioDN9KX176Itybp/bVrrKuX3l0rZCXbW1HJgl6bi0Z3EFh07LsRi4Kr1663ygPmt85EpyPK1lZmaFU5AeSUS0SrqOZL6kSuD2iFgt6Zp0/SJgCckVW+tIphu/uqN+Ounaazn48Z1mZjYIFOx51BGxhCRZZC5blPFzANd2UXcfyZPszMxskPGd7WZm1i9OJGZmZa65tZ3P/mINyzfsyMv2nUjMzMrczn3N3P7gs/z1hT09F+4DJxIzszJX19AMwIQjhuZl+04kZmZlbue+NJGMdCIxM7M+qNvrRGJmZv2wo6EJgPFOJGZm1hd1e5upEIz3GImZmfXF9oZmJowcSmVFZ3Pj9p8TiZlZmduxt4mJI4flbftOJGZmZa4u7ZHkixOJmVmZq9vbzMRRTiRmZtZH2xuamDTKp7bMzKwPmlrb2LO/lYk+tWVmZn2xI70ZcaJ7JGZm1hcd82x5jMTMzPpke3pX+yQnEjMz64sDPRLfR2JmZn3RMUYyoRx6JJLmS3pK0jpJN3ayXpJuTtevknRWxrpxkn4i6UlJayW9vFBxm5mVsu17mxhaWcHoYUPyto+CJBJJlcAtwMXAbOBKSbOzil0MzEpfC4FvZKz7GnBvRJwMzAXW5j1oM7MyUNeQ3Iwo5WeeLShcj+RcYF1ErI+IZuAuYEFWmQXAnZFYCoyTNFXSGOBvgG8DRERzROwqUNxmZiWtrqEpr1dsQeESyTRgY8b72nRZLmWOB14E/lvSY5JukzQyn8GamZWLur3NeR1oB8jfSbODddanihzLDAHOAt4fEcskfQ24EfjEITuRFpKcFmPKlCnU1NT0J+ZDNDQ0DPg2B5Nybp/bVrrKuX2FaNum7fsYPaEyr/spVCKpBWZkvJ8ObM6xTAC1EbEsXf4TkkRyiIi4FbgVYN68eVFdXd3vwDPV1NQw0NscTMq5fW5b6Srn9uW7bRFBw+/u5dQTj6G6+pS87adQp7aWA7MkHSdpKHAFsDirzGLgqvTqrfOB+ojYEhFbgY2SXpaWezWwpkBxm5mVrL3NbTS1tud1ni0oUI8kIlolXQfcB1QCt0fEaknXpOsXAUuAS4B1wD7g6oxNvB/4XpqE1metMzOzTuxIb0bM57NIoHCntoiIJSTJInPZooyfA7i2i7orgHn5jM/MrNy8eGB6lPwOtvvOdjOzMvXinv0ATB7tRGJmZn2wbU/SIzlyjBOJmZn1wbbdTVQovxM2ghOJmVnZenFPExNHDaOyIn/To4ATiZlZ2dq2Zz9H5nl8BJxIzMzK1rY9TU4kZmbWd0kiGZ73/TiRmJmVobb2oK6hKe9XbIETiZlZWarb20R75P8eEnAiMTMrS9t2p/eQOJGYmVlfvJjejDjZYyRmZtYX29LpUdwjMTOzPuk4teUxEjMz65MXG5oYO6KK4VWVed+XE4mZWRnatrupIL0RcCIxMytLhZoeBZxIzMzKUqGmRwEnEjOzshMRSSIZk/9Lf8GJxMys7OxubKW5tb38eiSS5kt6StI6STd2sl6Sbk7Xr5J0Vsa6DZIel7RC0sOFitnMrBRtrm8EYOrYEQXZ35BC7ERSJXAL8FqgFlguaXFErMkodjEwK32dB3wj/bfDRRGxvRDxmpmVsq31yc2IR40tr1Nb5wLrImJ9RDQDdwELssosAO6MxFJgnKSpBYrPzKxsbEkTydHjyiuRTAM2ZryvTZflWiaA30h6RNLCvEVpZlYGttY3UiGYPKowYyQFObUFdPbA4OhFmQsiYrOkI4HfSnoyIv50yE6SJLMQYMqUKdTU1PQj5EM1NDQM+DYHk3Jun9tWusq5fflq26NPNTF2qHjgz4d8TOZFoRJJLTAj4/10YHOuZSKi499tku4hOVV2yG8oIm4FbgWYN29eVFdXD1D4iZqaGgZ6m4NJObfPbStd5dy+fLXttnXLOPbIVqqrLxjwbXemUKe2lgOzJB0naShwBbA4q8xi4Kr06q3zgfqI2CJppKTRAJJGAq8DnihQ3GZmJWdLfWPBxkegQD2SiGiVdB1wH1AJ3B4RqyVdk65fBCwBLgHWAfuAq9PqU4B7JHXE+/2IuLcQcZuZlZqIYEv9fv72pCMLts9CndoiIpaQJIvMZYsyfg7g2k7qrQfm5j1AM7MysHt/K/ua25haoEt/wXe2m5mVlY57SKYW8NSWE4mZWRnZcuCudicSMzPrgy0H7movzPQo4ERiZlZWttTvRyrMs9o7OJGYmZWRrfWNHDl6GFWVhft4dyIxMysjW+r3F/S0FjiRmJmVlS31+5laoAdadXAiMTMrExFB7c59DB1SQV1DU8H22+tEkk5ZUpmPYMzMrO++v+x59re0c98TW7ngpvtZvGJTQfbbYyKRVCHp7ZJ+JWkb8CSwRdJqSV+UNCv/YZqZWXfqGpr4zC9WA9DU1s7+lnauv3tVQXomufRI/gCcAHwUOCoiZkTEkcCFwFLgPyS9M48xmplZD2p3NlKhg5/GUVVRQe3OxrzvO5e5tl4TES3ZCyNiB3A3cLekqgGPzMzMcjZ9/Aha2w9+zFNLezvTx+f/Cq4eeySdJREASRdIuqW7MmZmVhgTRw3j/OMnAjB62BCGV1XwhcvmMLEAT0ns1ey/ks4A3g68FXgW+GkeYjIzsz6oqhQvO2o0X7hsDtPHjyhIEoEcEomkk0geRHUlUAf8EFBEXJTn2MzMrBdqdzZy/OSRzJ0xrqD7zWWw/Ung1cAbIuKVEfH/gLb8hmVmZr2R3EPSyPTxRxR837kkksuArcAfJH1L0qsB9VDHzMwKqG5vM40tbQUZXM+Wy2D7PRHxNuBkoAb4EDBF0jckvS7P8ZmZWQ46LvMdrD0SACJib0R8LyIuBaYDK4Ab8xWYmZnlrnbnPgBmTBiEPRJJh5zGiogdEfHNiHhVV2U62c58SU9JWifpkASkxM3p+lWSzspaXynpMUm/7GlfZmaHm44eybRxgzCRkIyNvF/SMZkLJQ2V9CpJ3wHe3d0G0rm5bgEuBmYDV0qanVXsYmBW+loIfCNr/QeAtTnEa2Z22KnduY9xR1Qxenjh7w/PJZHMJ7lK6weSNktaI2k98DTJJcFfiYg7etjGucC6iFgfEc3AXcCCrDILgDsjsRQYJ2kqgKTpwOuB23JtmJnZ4WTjjsaiDLRDDveRRMR+4OvA19OpUCYBjRGxqxf7mQZszHhfC5yXQ5lpwBbgq8D1wOhe7NPM7LCxoW4vp00bW5R99+rO9nQqlC192E9nYyiRSxlJlwLbIuIRSdXd7kRaSHJajClTplBTU9P7SLvR0NAw4NscTMq5fW5b6Srn9g1U21rbg4079nH62Jai/K56lUj6oRaYkfF+OrA5xzKXA2+UdAkwHBgj6bsRcciMwxFxK3ArwLx586K6unrAGgBQU1PDQG9zMCnn9rltpauc2zdQbXt2+17af1PD3551CtXzZvRcYYAV6gmJy4FZko6TNJRkypXFWWUWA1elV2+dD9RHxJaI+GhETI+ImWm9+ztLImZmh6sNdXsBmDlpZFH236ceiSRFRPapqS5FRKuk64D7gErg9ohYLemadP0iYAlwCbAO2Adc3ZfYzMwONxu2p4lkYokkEknvAd4laS/wPHBDROztqV5ELCFJFpnLFmX8HMC1PWyjhuTuejMzSz1Xt4+RQyuZNGpoUfbflx5JdUS8GkDSHOBTJFdUmZlZETy7fS8zJ40kh3vD86IvYyS7O36IiFUUbsDezMw68Vzd3qKd1oK+JZLz06lM3i3pNKA4fSkzM6OlrZ2NOxuZOanwkzV26HVvIiLOTe80P5vkSYkzBzooMzPLzaadjbS1B8cWsUeSyxMSvw48DqwCHo+I3RFRS3Lfx8/zHJ+ZmXXj2fTS3+OKdOkv5NYjWQHMIbmH4zRJezg4sdyVv/DMzKw7z6WX/h47cRCf2krvFj8gPa01BzidZCJFJxIzsyJZv30vo4YNYfKoYUWLoS9jJB2ntZb0VNbMzPJr3bYGTjhyVNEu/YXCTZFiZmZ5sG5bAydOHlXUGJxIzMxKVH1jC9v2NDFrSokkEkk35bLMzMwKY922BoCS6pG8tpNlFw9UIGZm1jvPpImk2D2SXO4j+Ufgn4DjJa3KWDUaeChfgZmZWfee3raHoUMqmD6+eJf+Qm5XbX0f+DXw78CNGcv3RMSOvERlZmY9WretgRMmj6KyonhXbEFu95HUA/WSrgbeQjIlyhAASUTEZ/MaoZmZderpbQ2cecz4YofRqzGSnwELgFZgb8bLzMwKrLG5jU27Gpl1ZHHHR6B3NyROj4j5eYvEzMxy9syLDUTAiYMgkfSmR/KQpNPzFomZmeXs6W17gMGRSHrTI3klcLWk9UATIJIn5M7JS2RmZtalJ7fsYWhlRVFn/e3Qm0TSr3tGJM0HvgZUArdFxH9krVe6/hJgH/CeiHhU0nDgT8CwNN6fRMSn+hOLmVmpW7NlNycdNYqqyuJPUNKbCJ4HLgTeHRHPAQFMyaWipErgFpJkNBu4UtLsrGIXA7PS10LgG+nyJuBVETEXOAOYL+n8XsRtZlZ21m7ZzSlHjSl2GEDvEsnXgZcDV6bv95Akh1ycC6yLiPUR0Uwy9fyCrDILgDsjsRQYJ2lq+r4hLVOVvqIXcZuZlZVte/azvaGZU6aWXiI5LyKuBfYDRMROcn9e+zRgY8b72nRZTmUkVUpaAWwDfhsRy3oRt5lZWVm7JRloHyyJpDdjJC3pKaoAkDQZaM+xbme3XWb3KrosExFtwBmSxgH3SDotIp44ZCfSQpLTYkyZMoWampocw8tNQ0PDgG9zMCnn9rltpauc29fXti1Z3wzAjvWrqNlY3LvaoXeJ5GbgHuBISZ8HLgc+nmPdWmBGxvvpwObelomIXZJqgPnAIYkkfZrjrQDz5s2L6urqHMPLTU1NDQO9zcGknNvntpWucm5fX9t2z9bHOHrsDl7/2osGPqg+yPnUVkR8D7ieZM6tLcCbIuLHOVZfDsySdJykoSTPf1+cVWYxcJUS5wP1EbFF0uS0J4KkEcBrgCdzjdvMrNys3bJ70JzWghx7JOmludMj4kn68CEeEa2SrgPuI7n89/aIWC3pmnT9IpJH914CrCO5/PfqtPpU4DvpabUK4EcR8cvexmBmVg72t7TxzIt7ed3so4odygE5JZKICEk/A87u644iYglZz3lPE8iBfQDXdlJvFXBmX/drZlZO/vrCHtraY1D1SHpz1dZSSefkLRIzM+vRytp6AOZMH1vkSF7Sm8H2i4B/kPQcyay/niLFzKzAVm3cxYSRQ5k+fkSxQzmgN2Mk1wDP5TccMzPrzsraXcydPpbkY3lw6M0YyVcios9jJGZm1j8NTa08va2Bi0+bWuxQDuIxEjOzEvHEpnoi4IwZ44odykF6O0ZyjaQNeIzEzKzgVtXuAgbXQDsUcBp5MzPrn5Ub65k+fgQTRw0rdigH6U0ieXcXyz87EIGYmVn3koH2ccUO4xC9GSPZm/FqI+mhzMxDTGZmlmXbnv3U7mxk7ozBdVoLetEjiYgvZb6X9J8cOl+WmZnlwfJndwJwzswJRY7kUP15RuMRwPEDFYiZmXVt+YYdjKiq5LRpJdwjkfQ4Lz1DpBKYDHwuH0GZmdnBlm/YwZnHjBsUz2jP1pvB9kszfm4FXoiI1gGOx8zMsuzZ38LaLbu57lWzih1Kp3qT2j5L8oyQ5yJiEzBa0u15isvMzFKPPr+L9oBzB+H4CPQukcyJiF0db9Jntnt6dzOzPFv+7A4qK8SZx4wrdiid6k0iqZA0vuONpAn07tSYmZn1wV827ODUo8cwctjg/MjtTVRfAh6S9BOSQfe3Ap/PS1RmZgbAvuZWHnt+J1dfcFyxQ+lSb+4juVPSw8CrSObZektErMlbZGZmh6G6hiZqdzYemApl2bM7aGkLXnnipGKH1qVe9ZPSxOHkYWaWBz9fsYkb7l5FVUUFLe3tfOGyOaysrWfokArOPW5wDrRD/25I7BVJ8yU9JWmdpBs7WS9JN6frV0k6K10+Q9IfJK2VtFrSBwoVs5lZodQ1NHHD3avY39LOnqZW9re0c/3dq6h5ahvnzBzP8KrKYofYpYIkEkmVwC0k83PNBq6UNDur2MXArPS1EPhGurwV+HBEnAKcD1zbSV0zs5JWu7ORqoqDP5IrJZ55cS8XzppcpKhyU6geybnAuohYHxHNwF3AgqwyC4A7I7EUGCdpakRsiYhHASJiD7AWmFaguM3MCmL6+BG0tLcftKy5LXk/mMdHoHCX704DNma8rwXOy6HMNGBLxwJJM0nuXVnW2U4kLSTpzTBlyhRqamr6GfbBGhoaBnybg0k5t89tK13l3L7stt30iiHU7mxMnhoI3L+1ir/uDLb99VFqnh48z2jPVqhE0tlvIHpTRtIo4G7ggxGxu7OdRMStwK0A8+bNi+rq6j4F25WamhoGepuDSTm3z20rXeXcvs7a1nHV1lFjh/Gtr/6Z1542lVdddEZR4stVoRJJLTAj4/10YHOuZSRVkSSR70XET/MYp5lZUU0cNYyJo4axdH0du/a18NrZU4odUo8KNUayHJgl6ThJQ4ErOPRZJouBq9Krt84nmddriyQB3wbWRsSXCxSvmVlR/W7NCwytrODCkwb3QDsUqEcSEa2SrgPuI5mC/vaIWC3pmnT9ImAJcAmwDtgHXJ1WvwB4F/C4pBXpso9FxJJCxG5mVmgRwW/XvsArTpzIqEE6LUqmgkWYfvAvyVq2KOPnAK7tpN4DdD5+YmZWltZta+C5un2878LSeHbg4HtCipnZYe43a14A4DWnDP7xEXAiMTMbdBav2MzZx47nqLHDix1KTpxIzMwGkae27uGpF/bwxrlHFzuUnDmRmJkNIotXbqKyQlxy+tRih5IzJxIzs0EiIli8cjOvOGEik0cPK3Y4OXMiMTMbJB7buIuNOxpL6rQWOJGYmQ0aP1q+kRFVlcw/7ahih9IrTiRmZoNAQ1Mri1du5tI5Uxk9vKrY4fSKE4mZ2SDwi5Wb2dfcxhXnHlPsUHrNicTMbBC46y/Pc9KUUZx1zLhih9JrTiRmZkX2eG09K2vrueKcY0jmqS0tTiRmZkX2rT+vZ9SwIVw+b3qxQ+kTJxIzsyLatKuRXz2+hSvOmcGYEhtk7+BEYmZWRHc8+CwAV7/yuCJH0ndOJGZmRdLQHPzgLxu55PSpTBs3otjh9JkTiZlZkdy7oYW9za1ce9EJxQ6lX5xIzMyKoK6hid8+18LrT5/KyUeNKXY4/eJEYmZWBN/803qa2+CDr5lV7FD6zYnEzKzAnq/bxx0PbeDlRw/hxCNHFzucfitYIpE0X9JTktZJurGT9ZJ0c7p+laSzMtbdLmmbpCcKFa+ZWb58fskaKiUuP6k0L/fNVpBEIqkSuAW4GJgNXClpdlaxi4FZ6Wsh8I2MdXcA8/MfqZlZ39U1NLFy4y7qGpq6LPPguu3ct/oFrr3oBCYML4+TQoVqxbnAuohYHxHNwF3AgqwyC4A7I7EUGCdpKkBE/AnYUaBYzcx67ecrNnHBTffzztuWccFN97N4xaZDyuxvaeMTP3uCGRNG8PcXHl+EKPNjSIH2Mw3YmPG+FjgvhzLTgC257kTSQpLeDFOmTKGmpqYvsXapoaFhwLc5mJRz+9y20lUK7WtrD2q37uHak+PAso1rHuH3O/5KZcVLc2f98Klm1m9v4fpzhrP0wT+XRNtyUahE0tksZNGHMt2KiFuBWwHmzZsX1dXVvaneo5qaGgZ6m4NJObfPbStdpdC+lRt3seiPy9jT1Hpg2ehhQ/juhWcyd8Y4AB57fif33fcQV557DP/0ltOB0mhbLgp1aqsWmJHxfjqwuQ9lzMwGnenjR9DS3n7Qspb2dqaPT+5Wr9/Xwvt/8BhTx47gY5ecXIwQ86pQiWQ5MEvScZKGAlcAi7PKLAauSq/eOh+oj4icT2uZmRXLxFHD+MJlcxheVcHoYUMYXlXBFy6bw8RRw4gIPvzjlbywez+3vOOsknv6YS4KcmorIlolXQfcB1QCt0fEaknXpOsXAUuAS4B1wD7g6o76kn4AVAOTJNUCn4qIbxcidjOzXLzxjGlccOIkanc2Mn38CCaOGgbAoj+u53drX+BTb5jNGelprnJTqDESImIJSbLIXLYo4+cAru2i7pX5jc7MLHd1DU2HJAxIeiaZ73+xcjM33fskb5h7NO95xcwiRFoYBUskZmbl4OcrNnHD3auoqqigpb2dL1w2hzeeMe2QcsvW1/HhH63k3JkT+OLlc0ryyYe5Ko+7YczMCqCuoYkb7l7F/pZ29jS1sr+lnevvXnXIDYjLN+zgvXcsZ8aEEdx61dkMr6osUsSF4URiZpaj2p2NVFUc/LFZVVFB7c7GA++Xrq/j3bf/hSljh/P9953PuCOGFjrMgnMiMTPLUU+X+f58xSauuv0vHD1uBHctPJ8pY4YXI8yCcyIxM+tG5vxZXV3mO+6IoXz5N0/xgbtWcMaMcfzoH17OkaMPjyQCHmw3M+tSVwPrmZf5Nre1847blrJ0/Q7+19nT+fybT2fokMPrO7oTiZlZJzIH1veTnM66/u5VXHDiJCaOGsaEkUP52YpNfOYXa2hubeeLl8/h8rOnl/XVWV1xIjEz60THwHpHEoGXBtbr9jbziZ89wbJndzB3xji+8ta5HD95VBGjLS4nEjOzTnQ2sN7U1sY3//gM967eyujhVfzfN5/OFefMoKLi8OuFZDq8TuSZmeWoY2B92BAxoqqSCkFLW3D/U9t434XH84ePVPP284457JMIuEdiZtapLfWNvNjQzPTxR/DMi3sZNWwIV547g4V/cwKTRw/reQOHEScSMytbXc2J1Zn29uDJrXt4YN2L3PvEVh59fhcAp00bw02Xnc4b505jxNDyvkO9r5xIzKws9TQn1r7mVtZs3s0Tm+pZvmEn/7O+jh17mwE4ZeoYPvK6k7jk9KmH9SB6rpxIzGzQqmtoorGl7cDNgL2pl33p7od/vJKVtfW8sHs/T23dwzMvNtCePoP1qDHDqX7ZZF5xwiReccJEjh43Ih/NKVtOJGY2KHX0KP75lBY+dNP9fOGyOVw652gamlvZ3dhCfWMLuxtbk3/3t1C/r4Vte/bzwu4m1r/YQFNr1lQmbcF/P/gsMyYcwQmTR3Hx6VM5fdpYTp82liljhh2W938MFCeSHD27fS+rt7cx5Onth6yLbh4tH908db67B9JHdxV7qNvdyu5iXbWtlba1L3QRT99i6a4d3dfrZmUPtTur+8TWVhof39LnfRbjGHcns+qaza3semxTxj77GGs/2tEeQWt70N6e/NuWvloz/n1pXTtt7dDW3n5g/Z79reza10xFhWiPoGF/K6tq6wlg0doK9re08893reCDP1xxoBfRmeFVFUwZM5wJRwxFWXEPHSL+9K8XcdRY9zYGmhNJju76y/N88+H98PCyYoeSX48+XOwI8mfFo8WOIH9WrSh2BD2qrBCVFaJCUCFRVVnBkArR0tbO7v2tVChJZjMnjWT08CFUVIi29mD6yGDNLlFVKd50xjROmjKasSOqGDNiCGNGVDFmeBVjR1Qx9ogqRg8bcqBnsXjFJq7PGiNxEskPJ5IcvfP8Y5nYtJkzzzyz0/XddYq77zF3vbKnnnb3++xmu10sf+TRR5h39tnd1Ot7rH2p193+eqybtW758oc555x5PW63+3j6Fktfj3FPv9KOY7xs2TLOO++8nOv29XfeXb2OJFFZIYZUiIr03+R9BRVK4u04XVUp0dTaxvWvn83nfrUG4EBPY0t9I9961yu59L8eoK09uHhGO2t2VVBZIW68+OScx0q6evStDTwnkhzNmHAEJ42v5JyZE4odSt7sfKaSOdPHFTuMvNg6uoKTjxpT7DDy4rmRFRw3aWSxw+hRZwPgn/nF6kMmOKyqqGBvcxtfuGwO16dJp2OW3d4mg+xH31p+FOzOdknzJT0laZ2kGztZL0k3p+tXSTor17oDLXPa6GLUHyzKpR3lotSPR6cPhaqsoLnt4EGPjud7vPGMaTx4w6s4bvJIHrzhVZ0+ztYGh4L0SCRVArcArwVqgeWSFkfEmoxiFwOz0td5wDeA83KsO2ByfR5zvuoPFuXSjnJRDsejs7mr2iL41Btm87lfrjmobR29iImjhjGiqtK9ikGuUKe2zgXWRcR6AEl3AQuAzGSwALgzkktZlkoaJ2kqMDOHugOip2mj811/sCiXdpSLcjkeHXNXZQ+Av/GMacw/9SiPZZQw9ecSxJx3Il0OzI+Iv0/fvws4LyKuyyjzS+A/IuKB9P3vgRtIEkm3dTO2sRBYCDBlypSz77rrrl7F2djSxrMv7qUt43dSKXHc5JGMqKqkoaGBUaO6vsu1p/qDXUf7Sr0dnenp2A1m/f27HGza2oPmtnaGViYD6D0ptfb1Rim17aKLLnokIuZ1tq5QPZLO/lqyM1hXZXKpmyyMuBW4FWDevHlRXV3dixCTb34fuul+9re81P0eXlXBg298JRNHDaOmpobuttlT/cGuo32l3o7O9HTsBrP+/l2WunJuX7m0rVCD7bXAjIz304HNOZbJpe6A6Op5zLl+ePa3/mBRLu0oFz4eNtgVqkeyHJgl6ThgE3AF8PasMouB69IxkPOA+ojYIunFHOoOmP5ee14u166XSzvKhY+HDWYFSSQR0SrpOuA+oBK4PSJWS7omXb8IWAJcAqwD9gFXd1c3n/H299rzcrl2vVzaUS58PGywKtgNiRGxhCRZZC5blPFzANfmWtfMzAYHP2rXzMz6xYnEzMz6xYnEzMz6xYnEzMz6pSB3thdDetnwcwO82UnAoU+2Kh/l3D63rXSVc/tKqW3HRsTkzlaUbSLJB0kPdzVFQDko5/a5baWrnNtXLm3zqS0zM+sXJxIzM+sXJ5LeubXYAeRZObfPbStd5dy+smibx0jMzKxf3CMxM7N+cSLpRA7Pl39H+lz5VZIekjS3GHH2RQ5tW5C2a4WkhyW9shhx9lVP7csod46ktvShayUhh2NXLak+PXYrJH2yGHH2RS7HLW3fCkmrJf2x0DH2Rw7H7l8zjtsT6d/mhGLE2icR4VfGi2SG4WeA44GhwEpgdlaZVwDj058vBpYVO+4BbNsoXjrlOQd4sthxD2T7MsrdTzIR6OXFjnsAj1018Mtix5qnto0jebz2Men7I4sd90C2L6v8G4D7ix13b17ukRzqwPPlI6IZ6HhG/AER8VBE7EzfLiV52FYpyKVtDZH+NQMj6eJplINUj+1LvR+4G9hWyOD6Kde2laJc2vZ24KcR8TxARJTzsbsS+EFBIhsgTiSHmgZszHhfmy7ryv8Gfp3XiAZOTm2T9GZJTwK/At5boNgGQo/tkzQNeDOwiNKS69/lyyWtlPRrSacWJrR+y6VtJwHjJdVIekTSVQWLrv9y/kyRdAQwn+SLTsko2PNISkjOz4iXdBFJIimVcYSc2hYR9wD3SPob4HPAa/Id2ADJpX1fBW6IiDaps+KDVi5te5RkGosGSZcAPwNm5TuwAZBL24YAZwOvBkYA/yNpaUT8Nd/BDYCcP1NITms9GBE78hjPgHMiOVROz4iXNAe4Dbg4IuoKFFt/5dS2DhHxJ0knSJoUEaUwH1Au7ZsH3JUmkUnAJZJaI+JnBYmw73psW0Tszvh5iaSvl8ixy+W41QLbI2IvsFfSn4C5QCkkkt78v7uCEjutBXiwPftFklzXA8fx0sDYqVlljiF5JPArih1vHtp2Ii8Ntp8FbOp4P9hfubQvq/wdlM5gey7H7qiMY3cu8HwpHLsc23YK8Pu07BHAE8BpxY59oNqXlhsL7ABGFjvm3r7cI8kSuT1f/pPARODr6Tfb1iiBiddybNtlwFWSWoBG4G2R/pUPdjm2ryTl2LbLgX+U1Epy7K4ohWOXS9siYq2ke4FVQDtwW0Q8Ubyoc9eLv8s3A7+JpNdVUnxnu5mZ9Yuv2jIzs35xIjEzs35xIjEzs35xIjEzs35xIjEzs35xIjEzs35xIjEzs35xIjEbIJIaJI2T9E8F2NeJkh7PWjZM0rOSZud7/2aZnEjMBtY4IO+JhGTKjRmSMv8PLwT+GBFrCrB/swOcSMw6IemmzJ6FpE9L+rCkf0mfYPeEpA92UvU/gBPSJ919Ma37s3Tq89WSFmZs8xOSnpT0W0k/kPSRjHXvlPSXdDvflFSZuZOIaCeZS2tmWn4E8GHg0wP2SzDLkROJWefuAt6W8f6twMPA1cB5wPnA+ySdmVXvRuCZiDgjIv41XfbeiDibZObhf5Y0UdI8knnNzgTekq4DQNIp6b4viIgzgDbgHZ3EuBY4Of35WmBxRGzoW3PN+s6TNpp1IiIek3SkpKOBycBO4Azgno5J9ST9FLgQeKyHzf2zpDenP88geUbI+cDPI6Ix3dYvMsq/muTZG8vTSUFH0PnTHNcCL0unVL823Sbp9pYDy4AxwB8i4r9zbLpZrzmRmHXtJyQz6h5F0kOp7L74oSRVkzwY7OURsU9SDTCczh92dKAa8J2I+GgPm18LvAr4APC9iHgh3ecMYFlEXJe+v1/SnRHR1tv4zXLhU1tmXbuL5EFDl5MklT8Bb5J0hKSRJNN+/zmrzh5gdMb7scDONImczEu9hgeAN0gaLmkU8PqMOr8HLpd0JICkCZKO7SS+tSTPHXkv8MWM5WcDj2S830cy9bpZXrhHYtaF9JkRo4FNEbEF2CLpDuAvaZHbIuKxrDp1kh6U9ATwa+DjwDWSVgFPAUvTcsslLSZ5yNFzJOMv9em6NZI+DvwmvSqrheTU1XNZIT4FnA78W0TUZyw/G/gxgKS5wPOl8FwSK11+HolZkUgaFcnz1Y8g6e0sjIhHB2C7S4ANQBPJQP1nImJPf7dr1hUnErMikfR9YDbJmMl3IuLfixySWZ84kZiZWb94sN3MzPrFicTMzPrFicTMzPrFicTMzPrFicTMzPrFicTMzPrFicTMzPrFicTMzPrl/wdo8+f0oRD6GwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"f3 = lambdify(vd, expr1.subs([(Is, result.x[0]), (k, result.x[1]), (m,result.x[2])]).args[0],\"numpy\")\n",
"fig, ax = plt.subplots(1,1, squeeze=True, figsize=(6,4))\n",
"fig.tight_layout(pad=3.0)\n",
"x = np.linspace(0.2, 0.75, 1000)\n",
"y = [f3(x1) for x1 in x]\n",
"#axs[1].set_yscale('log')\n",
"ax.set_title('V-I characteristic of IN4001 diode')\n",
"#axs[1].set_title('V-I characteristic (log scale)')\n",
"#for ax in axs:\n",
" \n",
"ax.plot(x, y)\n",
"dfax = df1.plot('VD', 'ID', kind='scatter', ax=ax)\n",
"# For some reason labels have to be set on the pandas plot axes object\n",
"dfax.set_ylabel('current $I_D$ (A)')\n",
"dfax.set_xlabel('voltage $V_D$')\n",
"dfax.grid()\n",
" "
]
},
{
"cell_type": "markdown",
"id": "interior-allowance",
"metadata": {},
"source": [
"Now I try a polynomial fit. The smallest degree polynomial that doesn't suffer from visible polynomial wiggle is degree 7."
]
},
{
"cell_type": "markdown",
"id": "russian-comment",
"metadata": {},
"source": [
"Now plot the polyfit to see how it looks against the data"
]
},
{
"cell_type": "code",
"execution_count": 27,
"id": "sized-pierre",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-3.25887849e-01, 6.62071329e+00, -5.54833723e+01, 2.48785469e+02,\n",
" -6.45996699e+02, 9.74328013e+02, -7.93080880e+02, 2.69742889e+02])"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"from numpy.polynomial import polynomial\n",
"# Find the coefficients of the polynomial\n",
"z = polynomial.polyfit(df1['VD'], df1['ID'], 7)\n",
"# Create the polynomial from the coefficients\n",
"p = np.poly1d(np.flip(z))\n",
"z"
]
},
{
"cell_type": "code",
"execution_count": 28,
"id": "smooth-belgium",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 0, 'voltage $V_D$')"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEaCAYAAAACBmAUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAt+ElEQVR4nO3de5wcdZ3v/9e755bLhCQkwyU3giGI3AIabrKuKKiACCoeBd0V9Zxl2UVdXV3QXZdV93jWy9FVfiqIylFWBV0RjSwK3tAFRAkQQgIJBkjIJIGEZHKZzL378/ujapLOMJmpmUx3T8+8n49HPaa66ltVn5qe6U9/L1WliMDMzGwwuUoHYGZm1cEJw8zMMnHCMDOzTJwwzMwsEycMMzPLxAnDzMwyccKwESNpvqSQVFvpWEaCpJWSzhrGdu+QdFcJ4vnfkp6X9OxI73s0kXSWpOai18N6H9JtQ9JRIxXbeOeEMQ5IulPSJ/tZfpGkZ/v7gK/2f7SRiD8ijouIuwc5zguSZER8NyJeeyDH7uc4c4EPAcdGxGH9rO/7IXu3pI50u95l50ha28+2C9Oy3+mz/GxJqyS1SfqNpCOK1knSZyRtTafPSlLR+n+V9KikHkkfP5Bzz/I+WHk4YYwP3wL+svgfOvWXwHcjoqf8IQ2skrWUUVpDOgLYGhGbh7DNbuCfM5T7CvBA8QJJM4EfpdsfDCwFvl9U5HLgjcAi4ETgAuCvi9avAa4C/msI8doo54QxPvyY5J/+Fb0LJE0n+Se/aag7kzRR0uclrZO0Q9I9kiYWFXmHpGfS5pN/KtruVEm/l7Rd0iZJX5ZUX7Q+JF0p6U/An9JlX5K0XtJOSQ9KKj6HGkn/KOlJSbvS9XMl/S4t8oikVklvS8tfIGlZevz7JJ1YtK+1kq6WtBzYLak2XXZOUexL0ziek/SFdNPeY21Pj3WGpHdJuqdo38dJ+oWkbem2/7if3+tUSTdJ2pL+bj8mKZfG8AtgVnqMb2V8q64FLh2opiXpEmA78Ks+q94MrIyI/4yIDuDjwCJJx6TrLwM+HxHNEbEB+Dzwrt6NI+LbEfEzYNdgQaZ/T9+S1CLpMeCUPuuL34cGSV+UtDGdviipoajsP6R/WxslvafPfhok/d/0b/M5Sdf3+bu1QThhjAMR0Q78AHhn0eK3Aqsi4pFh7PL/Ai8DXk6SiK4CCkXr/wx4MXA2cI2kl6TL88AHgZnAGen6v+2z7zcCpwHHpq8fAE5Kj/M94D8lTUjX/T1wKXA+cBDwHqAtIv48Xb8oIhoj4vuSXgrcSPIteAbwNWBJ8YdNuq/XA9P6qXV9CfhSRBwELCD5fQL0HmtaeqzfF28kaQrwS+DnwCzgKF744dzr/wOmAi8CXknyfr07In4JnAdsTI/xrv1s39cG4OskH/YvIOkg4JMkTV19HQfs+duIiN3Ak+nyF6xP549jeP6F5He6AHgdSTLan38CTif5m1gEnAp8DEDSucCHgdcAC4Fz+mz7GeDodNujgNnANcOMeXyKCE/jYCL5EN8BTExf3wt8cIDyARzVz/Ic0E7yYdx33fx0uzlFy/4IXLKfY3wAuK3PMV89yHm09B4bWA1clCV+4DrgX/uUWQ28Mp1fC7ynz/q1wDnp/O+ATwAz93POtUXL3gXck85fCjyc4f2pATpJ+ih6l/01cHc6fxbQPMD2+6wH7gb+F9CUvu/HkXyAri0q8yXg6nT+48B3itZ9E/h0n2PcC7wrnc8DxxStW5j+HtRnm+8AHx/k3J8Czi16fXmfcyl+H54Ezi9a97recyL5QvDponVH9/4dACJpoltQtP4M4OkD/d8aT5NrGONERNwDbAEukvQikmr/92DPKJTWdHrFQPshqR1MIPnH3Z/iUTxtQGN6nKMl3a6ko30n8H/S/RVbX/xC0ockPZ42fW0n+Qbeu83cQeIodgTwobQ5anu6r7kk3/r7PXYf/5PkA2iVpAckXZDxuFljnAnUA+uKlq0j+RY8bBGxBfgySU1iD0knkSSQf9/Ppq0ktbZiB7G3ianv+oOA1kg/iYdoFvv+7tftr2Batu/vaFbRuv3tpwmYBDxY9P7/PF1uGTlhjC83kTRz/CVwV0Q8B3tGoTSm038Pso/ngQ6S5oOhug5YBSyMpGnnH0m++RXb84GTJq+rSZrPpkfENJJvy73brB9CHOuBT0XEtKJpUkTc3N+x+4qIP0XEpcAhJE0bP5Q0eaBthhjj80A3SWLrNY+kWelAfQ54FUkzYq+zSGpHzygZpvth4GJJD6XrV5I0+QCQnuuCdPkL1qfzKxmeTSSJtde8Acpu5IW/o40Z9vM8Sc34uKL3f2pENA4z5nHJCWN8uYnkW+VfAd8ezg4iokBS9f+CpFlpx/MZffoC9mcKsBNoTTtP/yZD+R6SmlGtpGvY91vtN4B/VTIsVJJOlDQjXfccSV9Ar68DV0g6LS07WdLr0z6GQUn6C0lN6flvTxfn09gKfY5V7HbgMEkfSDtdp0g6rW+hiMiT9It8Ki1zBEkfzXf6lh2qiNhO0il9VdHiG0gSwEnpdD3JiKbXpetvA46XdHHaZ3QNsDwiVqXrbwL+XtJsSbNI+kG+1btzSXXpdjmS926CpJr9hPgD4KOSpkuaA7xvgNO5GfiYpCYlI7muYe/v6AfAuyQdK2kSSd9I7++gQPI38O+SDkljnC3pdVhmThjjSESsBe4DJgNLDmBXHwYeJemQ3kbyjTvL39KHgbeTNGt8nX2HafbnTuBnwBMkzQsd7Nvk8AWSD4m7SBLRN4HeUS8fB76dNj+8NSKWkiTKL5P0g6yhaFRPBucCKyW1krT9XxIRHRHRBnwKuDc91unFG0XELpJO2DeQNNX9ieTbfn/eR9LO/hRwD0mT4Y1DiHEgXyJJcL1xtUXEs70TSRNTR9qE1duUdXF6bi0kAxEuKdrf14CfkvwdrCBJNl8rWv91km/0l5J0VLeT1Gz78wmS9/dpkvfyPwY4j/9NMsR3eXrsh9JlRDIq64vAr0ne31/32fbqdPn9aZPoL0kGZ1hGGl6To5mZjTeuYZiZWSZOGGZmlokThpmZZeKEYWZmmYzGm6yNiJkzZ8b8+fMrHYaZWVV58MEHn4+Ifi9oHLMJY/78+SxdurTSYZiZVRVJ+73S3k1SZmaWiROGmZll4oRhZmaZOGGYmVkmThhmZpaJE4aZmWXihGFmZpk4YZiZjSFfuGs19z35fEn27YRhZjZGdHTnufbXa3hoXUtJ9u+EYWY2RmzY3g7A7OkTByk5PE4YZmZjxMY0Ycya6oRhZmYD2NDiGoaZmWWwYXs7OcFhB00oyf6dMMzMxogN29s57KAJ1NaU5qPdCcPMbIzY0NJesuYocMIwMxszNmxvZ9Y0JwwzMxtAvhA8u6OD2U4YZmY2kM27OugphJukzMxsYHuuwXANw8zMBtKcXoMxxwnDzMwGssE1DDMzy2Lj9namTapjckNtyY7hhGFmNgZsaGkv6QgpcMIwMxsTSn0NBjhhmJlVvYhwDcPMzAa3s72H3V15JwwzMxvY+pY2AOYe7IRhZmYDWL+tN2FMKulxnDDMzKrcM2MtYUg6V9JqSWskfaSf9ZJ0bbp+uaSXFq1bK+lRScskLS1XzGZm1WB9SxvTJtVx0IS6kh6ndFd4FJFUA3wFeA3QDDwgaUlEPFZU7DxgYTqdBlyX/uz1qoh4vhzxmplVk2e2tTN3emlrF1C+GsapwJqIeCoiuoBbgIv6lLkIuCkS9wPTJB1epvjMzKrW+m1tzCtxcxSUL2HMBtYXvW5Ol2UtE8Bdkh6UdPn+DiLpcklLJS3dsmXLCIRtZja65QvJNRhzSjxCCsqXMNTPshhCmTMj4qUkzVZXSvrz/g4SETdExOKIWNzU1DT8aM3MqsRzOzvoyhfGVA2jGZhb9HoOsDFrmYjo/bkZuI2kicvMbNzbM6R2DPVhPAAslHSkpHrgEmBJnzJLgHemo6VOB3ZExCZJkyVNAZA0GXgtsKJMcZuZjWq9Q2rLUcMoyyipiOiR9F7gTqAGuDEiVkq6Il1/PXAHcD6wBmgD3p1ufihwm6TeeL8XET8vR9xmZqPd+pZ2pNI+B6NXWRIGQETcQZIUipddXzQfwJX9bPcUsKjkAZqZVaH129qYNXUi9bWlbzDyld5mZlVs/bY25kwvfe0CnDDMzKraM2W6BgOcMMzMqlZHd57NuzpLfg+pXk4YZmZVqrmlfCOkwAnDzKxqrd/WDpT+ORi9nDDMzKpUuW5r3ssJw8ysSq3dupuJdTU0NTaU5XhOGGZmVWrd1jaOmDGJ9MLmknPCMDOrUmuf382RMyeX7XhOGGZmVagnX+CZbW3Md8IwM7OBrNiwg55C0NRYX7ZjOmGYmVWZnyzbwP/42u8B+PTPVrFk2YayHNcJw8ysimxt7eTqW5fTnU+eL9eVD666dTlbWztLfmwnDDOzKtLc0k5dbt+P7rpcjuaW9pIf2wnDzKyKzJk+ke5CYZ9l3YVCWe5Y64RhZlZFZjQ28NmLT0RAbU5MqMvx2YtPZEYZLt5zwjAzqzLnnXA4OYk3njybe69+NReeNLssx3XCMDOrMuu3tZGP4LQjDy5LzaKXE4aZWZVZtzW56WA5r/IGJwwzs6rz9PO7Acp6lTc4YZiZVZ21W3czpaGWGZPLd5U3OGGYmVWdp5/fzfyZk8t2l9peThhmZlVm7dbdZW+OAicMM7Oq0tGdp7mlnQVNThhmZjaAp7bsJgKOOqSx7McuW8KQdK6k1ZLWSPpIP+sl6dp0/XJJL+2zvkbSw5JuL1fMZmajzZotrcAYThiSaoCvAOcBxwKXSjq2T7HzgIXpdDlwXZ/1fwc8XuJQzcxGtTWbW8kJ5s8Yu01SpwJrIuKpiOgCbgEu6lPmIuCmSNwPTJN0OICkOcDrgW+UKV4zs1Hpyc2tzD14EhPqasp+7HIljNnA+qLXzemyrGW+CFwFFBiApMslLZW0dMuWLQcUsJnZaLRmcytHNZW/OQrKlzD6GywcWcpIugDYHBEPDnaQiLghIhZHxOKmpqbhxGlmNmrlC8HTz++uSP8FlC9hNANzi17PATZmLHMmcKGktSRNWa+W9J3ShWpmNjqt39ZGV77AgjGeMB4AFko6UlI9cAmwpE+ZJcA709FSpwM7ImJTRHw0IuZExPx0u19HxF+UKW4zs1FjzebKjZACqC3HQSKiR9J7gTuBGuDGiFgp6Yp0/fXAHcD5wBqgDXh3OWIzM6sWvUNqF1SoD6MsCQMgIu4gSQrFy64vmg/gykH2cTdwdwnCMzMb9Z7c3ErTlAamTqyryPF9pbeZWZVYs6VyI6TACcPMrCpERDKktkL9F+CEYWZWFbbs6mRXR48ThpmZDazSI6RgGAlD0uT03lBmZlYmq57dBcDRh06pWAyDJgxJOUlvl/RfkjYDq4BNklZK+pykhaUP08xsfFv97C5mTK6naUpDxWLIUsP4DbAA+ChwWETMjYhDgFcA9wOfluQL6czMSmjVc7t48WGVq11AtuswzomI7r4LI2IbcCtwq6TKDAo2MxsHCoXgT8/t4m2nzB28cAkNWsPoL1kASDpT0lcGKmNmZgdufUsbbV15jqmCGsYekk4C3g68FXga+FEJYjIzsyKPb0o6vF982EEVjWPQhCHpaJKb/l0KbAW+DygiXlXi2MzMjKTDW4KjD63ckFrIVsNYBfw38IaIWAMg6YMljcrMzPZY/dxO5h08iUn1Zbv9X7+yjJK6GHgW+I2kr0s6m/4fdmRmZiWw6tldvLiC11/0ytLpfVtEvA04huROsR8EDpV0naTXljg+M7NxraM7z9rnd1e8wxuGcKV3ROyOiO9GxAUkT8NbBnykVIGZmRn86blWCgHHHF7ZDm/IdqX3C5qfImJbRHwtIl69vzJmZnbgVj27E6DiF+1Bxiu9Jb1P0rzihZLqJb1a0reBy0oTnpnZ+Lb62V001OaYP2NypUPJNErqXOA9wM2SjgS2AxNIHrV6F/DvEbGsVAGamY1njz+7k6MPnUJNrvINOYMmjIjoAL4KfDW9BchMoD0itpc4NjOzcS0iWLFhJ+efcFilQwGGeKV3eguQTSWKxczMijS3tLOjvZvjZk2tdCiAH6BkZjZqrdy4A4DjZzthmJnZAFZs2ElNTqPiGgwYZsLwMFozs9JbsXEHCw9pZELd6HjI6XAe0fou4JeSlkj6sqTKj/UyMxtjkg7vHaOm/wKG2OmdOisizgaQdCLwL8BVIxqVmdk4t3lXJ8+3dnH87Mpf4d1rOE1SO3tnImI5w0s6ZmY2gBUbRleHNwwvYZwu6VpJl0k6HqjPspGkcyWtlrRG0gvuQaXEten65ZJemi6fIOmPkh6RtFLSJ4YRs5lZVVmxYScSvGQU3EOq15BrBxFxqqQ5wMtInrw3f7BtJNUAXwFeAzQDD0haEhGPFRU7D1iYTqcB16U/O4FXR0RreuHgPZJ+FhH3DzV2M7NqsWLjDo6cOZnGhtHTiJPliXtfBR4FlgOPRsTOiGgm+eD/ScbjnAqsiYin0n3eAlwEFCeMi4CbIiKA+yVNk3R4RGwCWtMydekUGY9rZlaVVm7YweL5B1c6jH1kaZJaBhwH/B/gaUlrJf1U0qckXZLxOLOB9UWvm9NlmcpIqpG0DNgM/CIi/tDfQSRdLmmppKVbtmzJGJqZ2eiytbWTjTs6OG7W6GmOgmz3krqh+HXaHHUicALweuCWDMfp77qNvrWE/ZaJiDxwkqRpwG2Sjo+IFfuJ9QaAxYsXuxZiZlVp2frtAJw0d1pF4+hrOH0Yvc1Rdwxhs2ZgbtHrOcDGoZaJiO2S7ia5g+4LEoaZ2ViwbP12anLihDmjZ4QUlO/WIA8ACyUdKakeuARY0qfMEuCd6Wip04EdEbFJUlNas0DSROAcYFWZ4jYzK7tl67dz9KFTmFQ/ejq8oUzXUEREj6T3AneSPEfjxohYKemKdP31JDWW84E1QBvw7nTzw4FvpyOtcsAPIuL2csRtZlZuhUKw7JntXLBoVqVDeYHMCUPSZyLi6sGW7U9E3EGfZqw0UfTOB3BlP9stB07OGqeZWTV76vlWdnX2cPIo67+AoTVJvaafZeeNVCBmZgYPP7MdgJPnTatoHP3Jch3G3wB/C7xI0vKiVVOA+0oVmJnZeLRs/XamNNSyoKmx0qG8QJYmqe8BPwP+DSi+pceuiNhWkqjMzMapZeu3c+LcqeRGwTO8+8pyHcYOYIekdwNvJrkVSC2AJCLikyWN0MxsnGjvyrPq2V1c8coXVTqUfg1llNSPgR3AgyT3dzIzsxH0SPN28oXg5LnTKx1Kv4aSMOZExLkli8TMbJxbujZp5V88f3QmjKGMkrpP0gkli8TMbJz749oWjj60kWmTMj01ouyGkjD+DHgofabFckmP9hk1ZWZmw5QvBA+ta+GUUXaH2mJDaZLyNRdmZiXy+KadtHb2jOqEMZQaxjPAK4DLImIdyZ1kDy1JVGZm40xv/8UpR46NhPFV4Azg0vT1LpKn6JmZ2QF6YG0Ls6dNZPa0iZUOZb+GkjBOi4grgQ6AiGgh4/O8zcxs/yKCB9ZuG7Wjo3oNJWF0p3eMDQBJTUChJFGZmY0jz2xrY/OuzlHdfwFDSxjXArcBh0j6FHAPyWNbzczsANz/1FYAThvF/RcwhFFSEfFdSQ8CZ5M8TvWNEfF4ySIzMxsn7ntyK01TGjjqkNF3w8FimRKGJJFc6b0KP+3OzGzERAT3PbmVly+YQfJRO3plapJKH27049KGYmY2/qzZ3MqWXZ2cuWBmpUMZ1FD6MO6XdErJIjEzG4fuXfM8AGcsmFHhSAY3lCu9XwX8taR1wG6SfoyIiBNLEpmZ2Thw35NbmXfwJOYePKnSoQxqKH0YVwDrShuOmdn4kS8E9z+1lfNPOLzSoWSSKWFEREj694h4WakDMjMbL1Zu3MHOjp6qaI4C92GYmVXM757YAsDLq6DDG4beh3GFpLW4D8PM7IDdvXoLJ8yeStOUhkqHkolvb25mVgFPb2nloWdaeM+ZR1Y6lMyGkjAu28/yT45EIGZm48VPlm3gw//5CIWAm36/lhPnTOXCk2ZXOqxBDaUPY3fRlCepccwvQUxmZmPW1tZOrr51Od35AKArH1x163K2tnZWOLLBZU4YEfH5oulTwFlA5pQo6dz08a5rJH2kn/WSdG26frmkl6bL50r6jaTHJa2U9HdZj2lmNto0t7RT2+cWIHW5HM0t7RWKKLuh1DD6mgS8KEvB9LboXyGplRwLXCrp2D7FzgMWptPlwHXp8h7gQxHxEuB04Mp+tjUzqwpzpk+kq7DvkyG6CwXmTB+9D07qlTlhSHo0/ea/XNJKYDXJLc+zOBVYExFPRUQXcAtwUZ8yFwE3ReJ+YJqkwyNiU0Q8BBARu4DHGULNxsxsNJnR2MA5xyRPt55cX8OEuhyfvfhEZjSO/pFSQ+n0vqBovgd4LiJ6Mm47G1hf9LoZOC1DmdnApt4FkuYDJwN/6O8gki4nqZ0wb968jKGZmZXXum1tLJozlU9edDxzpk+simQBQ2uS+iSwIyLWRcQGYIqkGzNu2989e2MoZSQ1ArcCH4iInf0dJCJuiIjFEbG4qakpY2hmZuWzflsbKzfu5PUnHs6iudOqJlnA0BLGiRGxvfdF+kzvkzNu2wzMLXo9B9iYtYykOpJk8d2I+NEQYjYzG1V+8dhzALz22MMqHMnQDSVh5CTteUK5pIPJ3qT1ALBQ0pGS6oFLgCV9yiwB3pmOljqdpDazKb3x4TeBxyPiC0OI18xs1Llz5bO8+NApzJ85udKhDNlQ+jA+D9wn6YckTUVvBT6VZcOI6JH0XuBOoAa4MSJWSroiXX89cAdwPrAGaAPenW5+JvCXwKOSlqXL/jEi7hhC7GZmFbe1tZMH1m7jylcdVelQhmUoz/S+SdJS4NUk/Q1vjojHhrD9HSRJoXjZ9UXzAVzZz3b30H//hplZVfnV45spBLzuuOprjoKh1TBIE0TmJGFmZnvd/ugm5kyfyHGzDqp0KMNyIBfumZlZRltbO7l3zfO8YdEspOpsNHHCMDMrgztWPEu+EFy4aFalQxk2JwwzszL46bKNLDykkWMOm1LpUIbNCcPMrMQ2bm/nj2u3cWEVN0eBE4aZWcndvjy5TvkNVdwcBU4YZmYlFRH88MFmTpo7rSov1ivmhGFmVkLLm3fwxHOtvHXx3MELj3JOGGZmJfT9peuZUJfjgkWHVzqUA+aEYWZWIu1deX66bCPnn3A4B02oq3Q4B8wJw8ysRH62YhO7OnvGRHMUOGGYmZXMLX9czxEzJnHakQdXOpQR4YRhZlYCj23cyR/XbuMdp82r6msvijlhmJmVwLfvW8uEutyYaY4CJwwzsxHXsruLHy/bwJtOns20SfWVDmfEOGGYmY2w7y9dT2dPgctePr/SoYwoJwwzsxHUnS/wH79fx2lHHswxh1Xncy/2xwnDzGwELVm2kQ3b2/nrV76o0qGMOCcMM7MRUigE1/32SY45bAqvevEhlQ5nxDlhmJmNkF88/hxrNrfyN2ctGDNDaYs5YZiZjYCI4Kt3P8m8gyfx+hOq/75R/XHCMDMbAb9etZlH1m/nb89aQG3N2PxoHZtnZWZWRoVC8Lk7V3PkzMlc/LI5lQ6nZJwwzMwO0O2PbmLVs7v44GuOpm6M1i7ACcPM7IB09RT4wl2rOeawKVwwRvsuepUtYUg6V9JqSWskfaSf9ZJ0bbp+uaSXFq27UdJmSSvKFa+ZWRbfvm8ta7e2cfV5x5DLjb2RUcXKkjAk1QBfAc4DjgUulXRsn2LnAQvT6XLguqJ13wLOLX2kZmbZbG3t5LerN/PFXz3Bq17cNCavu+irtkzHORVYExFPAUi6BbgIeKyozEXATRERwP2Spkk6PCI2RcTvJM0vU6xmZgP6ybINXH3rcvL5oLsQvHzBjEqHVBblapKaDawvet2cLhtqmQFJulzSUklLt2zZMqxAzcwGsrW1k6tvXU5Hd4HuQgDw+V88wdbWzgpHVnrlShj9NezFMMoMKCJuiIjFEbG4qalpKJuamWXS3NJObZ+ruOtyOZpb2isUUfmUK2E0A8VPEZkDbBxGGTOzipozfSLtPfl9lnUXCsyZPrFCEZVPuRLGA8BCSUdKqgcuAZb0KbMEeGc6Wup0YEdEbCpTfGZmmWza0UEE1AimNNQyoS7HZy8+kRmNDZUOreTK0ukdET2S3gvcCdQAN0bESklXpOuvB+4AzgfWAG3Au3u3l3QzcBYwU1Iz8C8R8c1yxG5m1mt3Zw/vv/lhmqY0cMtfnc7Ojh7mTJ84LpIFlG+UFBFxB0lSKF52fdF8AFfuZ9tLSxudmdng/vknK1i7dTff/V+nc2RTY6XDKbuyJQwzs2q0tbWT5pZ2Hn6mhR89tIG/O3shZ4yTYbR9OWGYme1H7/UWOURbd56jmibz/rMXVjqsivG9pMzM+lF8vUVbdzIqan1LG9vbuiocWeU4YZiZ9aO/6y3qa2rGxfUW++OEYWbWj0OmNOypWfQaL9db7I/7MMzM+ujOF7hmyUoKAbU1YmJtDd2Fwri53mJ/nDDMzIp09RT44PeX8YvHnuMTFx7HBSceTnNL+7i63mJ/nDDMzFLrt+3mfTcvY9n67fzT+S/hspfPBxj3iaKXE4aZGfAf96/lmp+sJNJmqEMPcpLoy53eZjbu3fOnLfzzj5NkAdCTD666dfm4uGX5UDhhmNm4FRF8/4FneM+3lr7g+Qrj5ZblQ+EmKTMbl1p2d/HRHz3Kz1c+yynzp7O8eTudPXsfwTPeh9D2xwnDzMaViODnK57l4z9dybbdXXz0vGP4q1e8iNuXb+SqW5dTl8t5CO1+OGGY2bixbuturvnJSn77xBZecvhBfPOyUzh+9lQALjxpNmceNdNDaAfghGFmY97mnR18+TdruPmPz1Bfk+OfLziWy844gtqafbtxZzQ2OFEMwAnDzMaM3luR99YQNu1o5//du5abfr+WnnzwtlPm8v6zF3LoQRMqHWpVcsIwszGh91bktRJd+QInzJnGI+u3U4jgwkWz+MA5RzN/5uRKh1nVnDDMrOptbe3kqh8+ss8opwfXtfCO0+ZxxSsXMPfgSRWMbuxwwjCzUaFvc1IWm3a088vHnuPWhzbskywAGutreOviuU4WI8gJw8wqrrc5qXhI64UnzX5BuY7uPA+ua+H3T27lt09s4dENOwCYd/AkanKQL+wt2xPh6yhGmBOGmZVdcW0C2PNkuw6ST/yrbl3OmUfNBGB58w6Wrd/O/U9t5eFnttOVL5ATnDR3Gled+2Jee+yhLGhq5KeP+DqKUnPCMLOy6lubuPKso17wZLuefHDel/6bzbuSezlJcOzhB3HZy4/gjAUzOGX+wUyZULfPNr6OovScMMysZPr2S2zZ1bGnc7q3NvGFXzxB9NkuXwgWzZ3GKfOnc+KcaRw366AXJIj++DqK0nLCMLMR1dmTZ/22dn6w9BluvGctUpIAmqY0sG13F935fdNDTnD87Kms3LiTuhpRiOBzb1nUbx+GVZYThpllVigEW3d3sWlHOxu3d7BpRzubdnSwYXs7m7Yn88/u7Nhzm/BiW3Z18paXzuFHD2+gp7C3QF1tjhvfdQqAm5NGOScMs1FqOMNMh6tQCFrautjS2smWXX2m1k6e3dGRJIMdHXQVD0UC6mtzzJo6gcOnTuSMBTOYO30SEtzw26do687vKTe5vpZ3nH4Ef7Zw5n47p50oRreyJQxJ5wJfAmqAb0TEp/usV7r+fKANeFdEPJRl25E0Ev+k5fxHL5VSnkOhEHT2FOjsySc/u4vme/J054NCBBFQiKDQ+7Owdz4iAFGbEzU5kcuJGiXzyQQ5idpcjpqcqK8V9TU1NNTlqK/JUV+bTLU5IfV9EkLlZR1m2p+IYFdnDzvaumlp62J7+nNHe/fe+fRnb4J4vrWLfOGF1YIJdTkOmTKBQ6Y0sGjuNM47YQKzpk7k8KkTmDUt+Xnw5PoX/A63tnZy/W+f3GdZ7+3CF82d5s7pKlWWhCGpBvgK8BqgGXhA0pKIeKyo2HnAwnQ6DbgOOC3jtiNioH/Sra2dSCInUO8Hk0RDbY5cTpn2US36nsNn3nwCrzv+cHZ2dNPa0UNrZw+tHT3sSn/u7uphV9Hy1s7k9e7OdFn6urM7SQp9v6FWUk7JN+QkidTQUJujoXZvQtkzX5OjriZHXTpfm9ML5utqctTXiNqafedrcyKXMSnl02/6n7tzNT2FvR3DH/zBMv7w9DZqcqKjO8/urjy7O3to68yzu6uHtq48rZ09tHX20Nad77dJqFdjQy3TJtUxbVIdTY0NHHv4QTRNaaCpsYGmKROS+XSaXF8zrIQ6o7GBz1584oA1CSeK6qMY6C9rpA4inQF8PCJel77+KEBE/FtRma8Bd0fEzenr1cBZwPzBtu3P4sWLY+nSpZlj3NrayZmf+TUd3Xs/zCbU5bj36lczo7GBkz95Fy1t3f1uO6m+hkn1NTTU1rBxe/s+Iz5ygv/xsjnMaGxgckMtjQ21TG6oZXJ9TfJzz7KaPevqag78QYi93+Lbu/PJ1JVO6evdnT3s6uhmV0cPOzuS+Z3tPWzd3cnvnthCP182B1WbE1Mm1NI4oZbGhjoa03NqnJDMT6yrpaEul34opx/OdTkm1Naky2uor81RV5N8wOaKEnROSY2hJickECII8oVkKkSQL0BPoUChAPm0RtJTCPKFAl35oKunQFdai9k7nySw3vnidV35pPbTu747n8z35IPufCGd9p0vpQl1OSbUJb+33r+bSfU1TK5P/6YaapiUzk9Jk8L0SfV7ksO0SfVMnVg3In9fWY2F2vZ4I+nBiFjc37pyNUnNBtYXvW4mqUUMVmZ2xm0BkHQ5cDnAvHnzhhRgc0s7dbncnm90sPcRjTMaG/jIecfQ0V1IP5iS5pKeQtDRnaetq4fdXXk2tLTz3M6OfTr0IuD2RzfR0V3ot8rfn94mk9qavU0uvU0rtekHZiH2fjj2FArkC5AvJMfoyhf2SXyDkaCxvpYpE5Jk1ff7ZH2NeNsp8zj60EYaJ9QypaEuTQrplM431OZGZfNOuUQkCapvIunJx4Df+PdsT1Bbk6O1o5sLv3zPPre6KP7yUk1ckxhbypUw+vsU6fsvtL8yWbZNFkbcANwASQ1jKAHOmT6R7sK+H7LFj2h82ymDJ6DeWkpxwmioy/G7f3gVB0+up7OnwO7OHnZ3Js0Hu7uS5prepoXe+dauHrp7km/GPek36N6f3fkCERS11SdNY7nc3uRSVyMm1iffPifWJdOEdH5SfQ0T6mqY3FDDlAl1SY2gvnZPs1rvOeSLEk4uJz5wzkL/4w9CSn73B/4NfiKfe8siX7Vso065EkYzMLfo9RxgY8Yy9Rm2PWCDtbmOxD4m1CUf1jMaRzr6kTMSvwc7cL5q2UajcvVh1AJPAGcDG4AHgLdHxMqiMq8H3ksySuo04NqIODXLtv0Zah9GL4+SSoyFczCzoat4H0ZE9Eh6L3AnydDYGyNipaQr0vXXA3eQJIs1JMNq3z3QtqWKdSTaXMdCu+1YOAczG1llqWFUwnBrGGZm49lANYzyja8zM7Oq5oRhZmaZOGGYmVkmThhmZpaJE4aZmWUyZkdJSdoCrBvh3c4Enh/hfY4GY/W8YOyem8+r+lTLuR0REU39rRizCaMUJC3d33CzajZWzwvG7rn5vKrPWDg3N0mZmVkmThhmZpaJE8bQ3FDpAEpkrJ4XjN1z83lVn6o/N/dhmJlZJq5hmJlZJk4YZmaWiRNGH5LOlbRa0hpJH+ln/TskLU+n+yQtqkScw5Hh3C5Kz2uZpKWS/qwScQ7VYOdVVO4USXlJbylnfAciw3t2lqQd6Xu2TNI1lYhzqLK8Z+m5LZO0UtJvyx3jcGR4v/6h6L1akf49HlyJWIclIjylE8nzNp4EXkTypL9HgGP7lHk5MD2dPw/4Q6XjHsFza2Rvv9aJwKpKxz0S51VU7tckz115S6XjHsH37Czg9krHWoLzmgY8BsxLXx9S6bhH4rz6lH8D8OtKxz2UyTWMfZ0KrImIpyKiC7gFuKi4QETcFxEt6cv7SR4ZWw2ynFtrpH/JwGT28+z0UWbQ80q9D7gV2FzO4A5Q1nOrNlnO6+3AjyLiGYCIqIb3bajv16XAzWWJbIQ4YexrNrC+6HVzumx//ifws5JGNHIynZukN0laBfwX8J4yxXYgBj0vSbOBNwHXlzGukZD17/EMSY9I+pmk48oT2gHJcl5HA9Ml3S3pQUnvLFt0w5f580PSJOBcki8xVaMsj2itIupnWb/fsiW9iiRhVEU7PxnPLSJuA26T9OfAvwLnlDqwA5TlvL4IXB0Ream/4qNWlnN7iOTeP62Szgd+DCwsdWAHKMt51QIvA84GJgK/l3R/RDxR6uAOQObPD5LmqHsjYlsJ4xlxThj7agbmFr2eA2zsW0jSicA3gPMiYmuZYjtQmc6tV0T8TtICSTMjYjTfMC3LeS0GbkmTxUzgfEk9EfHjskQ4fIOeW0TsLJq/Q9JXx8h71gw8HxG7gd2SfgcsAkZzwhjK/9glVFlzFOBO7+KJJIE+BRzJ3k6r4/qUmQesAV5e6XhLcG5HsbfT+6XAht7Xo3XKcl59yn+L6un0zvKeHVb0np0KPDMW3jPgJcCv0rKTgBXA8ZWO/UDPKy03FdgGTK50zEOdXMMoEhE9kt4L3Eky4uHGiFgp6Yp0/fXANcAM4KvpN9aeqII7UGY8t4uBd0rqBtqBt0X6Fz5aZTyvqpTx3N4C/I2kHpL37JKx8J5FxOOSfg4sBwrANyJiReWiHtwQ/hbfBNwVSe2pqvjWIGZmlolHSZmZWSZOGGZmlokThpmZZeKEYWZmmThhmJlZJk4YZmaWiROGmZll4oRhdgAktUqaJulvy3CsoyQ92mdZg6SnJR1b6uObOWGYHbhpQMkTBsltJ+ZKKv6/vRz4bUQ8Vobj2zjnhGGWkvSZ4pqCpI9L+pCkv0+fjrZC0gf62fTTwIL0KWqfS7f9cXpb7pWSLi/a5z9LWiXpF5JulvThonV/IemP6X6+Jqmm+CARUSC5V9T8tPxE4EPAx0fsl2A2ACcMs71uAd5W9PqtwFLg3cBpwOnAX0k6uc92HwGejIiTIuIf0mXviYiXkdwp9/2SZkhaTHK/rpOBN6frAJD0kvTYZ0bESUAeeEc/MT4OHJPOXwksiYi1wztds6HxzQfNUhHxsKRDJM0CmoAW4CTgtt4bxUn6EfAK4OFBdvd+SW9K5+eSPKPidOAnEdGe7uunReXPJnn+wwPpTS0n0v/TAR8HXpze7vvKdJ+k+3sA+ANwEPCbiPh/GU/dLBMnDLN9/ZDkDrCHkdQ4agYu/kKSziJ58NQZEdEm6W5gAv0/YGfPZsC3I+Kjg+z+ceDVwN8B342I59JjziV5vvx709e/lnRTROSHGr/Z/rhJymxft5A83OYtJMnjd8AbJU2SNJnk1tT/3WebXcCUotdTgZY0WRzD3lrAPcAbJE2Q1Ai8vmibXwFvkXQIgKSDJR3RT3yPkzz34j3A54qWvwx4sOh1G8ltwc1GjGsYZkXS5xdMATZExCZgk6RvAX9Mi3wjIh7us81WSfdKWkHyjPePAVdIWg6sBu5Pyz0gaQnJg3XWkfSP7EjXPSbpY8Bd6SiobpImp3V9QlwNnAD8U0TsKFr+MuA/ASQtAp4Z7c/FsOrj52GYlZGkxkievz2JpPZyeUQ8NAL7vQNYC3SSdJh/IiJ2Heh+zYo5YZiVkaTvAceS9Gl8OyL+rcIhmWXmhGFmZpm409vMzDJxwjAzs0ycMMzMLBMnDDMzy8QJw8zMMnHCMDOzTJwwzMwsk/8fxXZxDz4qbxUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"x = np.linspace(.2,.75, 1000)\n",
"y = [f3(x1) for x1 in x]\n",
"ax.set_title('V-I characteristic of IN4001 diode')\n",
"ax.plot(x, p(x))\n",
"dfax = df1.plot('VD', 'ID', kind='scatter', ax=ax)\n",
"dfax.set_ylabel('current $I_D$ (A)')\n",
"dfax.set_xlabel('voltage $V_D$')\n"
]
},
{
"cell_type": "markdown",
"id": "modular-alignment",
"metadata": {},
"source": [
".... and if we take a lower domain size and assume a cutoff point"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "committed-commissioner",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.00516094, 0.05215921, -0.16448826, 0.16238424])"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import numpy as np\n",
"from numpy.polynomial import polynomial\n",
"\n",
"\n",
"# Find the coefficients of the polynomial.\n",
"z = polynomial.polyfit(df['VD'], df['ID'], 3)\n",
"# Create the polynomial from the coefficients\n",
"p = np.poly1d(np.flip(z))\n",
"# Here are the coefficients in ASCENDING order of degree. (ie c0 +c1 *x + c2*x^2 + ...)\n",
"# numpy.polyfit returns them in opposite order\n",
"z"
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "distinguished-causing",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5, 0, 'voltage $V_D$')"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEaCAYAAAAotpG7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAA17ElEQVR4nO3deXxU1f3/8dc7G4R9R1bZFVBEiYBba1VacSm2Wita95/UVmtra12q9VttbbVqrVar4lLXirvSlpaqdVeUoMiOhD2A7ASSkP3z++Pe6BCyTMJMZpJ8no/HPGbuvefc+5mZZD5z7j1zjswM55xzLl5SEh2Ac8655s0TjXPOubjyROOccy6uPNE455yLK080zjnn4soTjXPOubjyROOSgqQBkkxSWqJjiQVJCyUd24B650j6bxzi+Z2kLZK+iPW+k4mkYyXlRiw36H0I65qkIbGKrSXzRONqJWmmpJurWT9J0hfVJYam/g8ai/jNbKSZvVXHcfZKrmb2tJl9c1+OXc1x+gG/AEaY2X7VbK/64fyWpKKwXuW6EyStqqbu0LDsU1XWHy9piaRCSW9K2j9imyTdJmlrePujJEVs/62k+ZLKJP1mX557NO+Diz9PNK4ujwHnRn4QhM4FnjazssYPqXaJbBUlaYtsf2CrmW2qR50C4NdRlLsPmB25QlI34KWwfhcgG3g2osgU4DTgEGAUcArww4jtOcDVwL/qEa9LYp5oXF1eIfiwOKZyhaTOBB8OT9R3Z5IyJd0pabWkPEnvScqMKHKOpDXhaZ7rI+qNlfShpB2SNki6V1JGxHaTdJmkZcCycN3dktZK2ilpjqTI55Aq6VeSlkvaFW7vJ+mdsMhnkvIlfT8sf4qkueHxP5A0KmJfqyRdI2keUCApLVx3QkTs2WEcGyX9Kaxaeawd4bGOkHSBpPci9j1S0muStoV1f1XD69pR0hOSNoev7Q2SUsIYXgN6h8d4LMq36h5gcm0tO0lnATuAN6ps+i6w0MyeN7Mi4DfAIZIODLefD9xpZrlmtg64E7igsrKZPW5m/wZ21RVk+Pf0mKTtkhYBh1fZHvk+tJL0Z0nrw9ufJbWKKPvL8G9rvaSLquynlaQ7wr/NjZIeqPJ362rhicbVysx2A88B50WsPhNYYmafNWCXdwBjgCMJEtjVQEXE9qOBA4DjgRslDQ/XlwNXAt2AI8LtP66y79OAccCIcHk2MDo8zt+B5yW1Drf9HJgMnAR0AC4CCs3sa+H2Q8ysnZk9K+kw4FGCb91dgQeB6ZEfUuG+TgY6VdPKuxu428w6AIMJXk+AymN1Co/1YWQlSe2B14H/AL2BIez9oV7pL0BHYBDwdYL360Izex2YCKwPj3FBDfWrWgc8RJAk9iKpA3AzwSm5qkYCX/5tmFkBsDxcv9f28PFIGub/CF7TwcC3CJJYTa4HxhP8TRwCjAVuAJB0InAVMAEYCpxQpe5twLCw7hCgD3BjA2NucTzRuGg8Dnwv4hvceeG6epGUQvCB/lMzW2dm5Wb2gZkVRxS7ycx2h0nsM4IPBMxsjpnNMrMyM1tF8GH/9SqH+IOZbQuTI2b2lJltDevcCbQiSGIA/w+4wcyWWuAzM9taQ+iXAA+a2UdhzI8DxQQfWpXuMbO1lceuohQYIqmbmeWb2azoXjFOAb4wszvNrMjMdpnZR1ULSUoFvg9cF5ZZRdBKODfK49TkD8CpkqpLAr8FHjGztdVsawfkVVmXB7SvYXse0K6a07PROBO4JXzf1xK0xGpyDnCzmW0ys83ATXz1Gp0J/M3MFoSJ8TeVlcK4LgGuDI+zC/g9cFYD4m2RPNG4OpnZe8BmYJKkQQSnJ/4OX/bqyQ9vx9S2H4LWSGuCb7c1iewVVUjwoYSkYZL+qaADwk6Cf/RuVeru8aEn6ReSFoen6HYQfOOvrNOvjjgi7Q/8IjxttiPcVz+CVka1x67iYoJvw0skzZZ0SpTHjTbGbkAGsDpi3WqCb90NFn4Y30vQcvmSpNEE3/jvqqFqPkErMVIHvjoVVnV7ByDfGjbCb2/2fO1X11QwLFv1Neodsa2m/XQH2gBzIt7//4TrXRQ80bhoPUHQkjkX+K+ZbYQve/W0C2/v1rGPLUARwWmO+rofWAIMDU9B/Qqo+g34yw+qMOldQ/BNtbOZdSL45lxZZ2094lhL8K25U8StjZk9U92xqzKzZWY2GehBcArmBUlta6tTzxi3ELSa9o9Y15/g9Ne+uh34BsHpzkrHAgOANQq6S18FnC7pk3D7QsKWKED4XAeH6/faHj5eSMNsIEjIlfrXUnY9e79G66PYzxZgNzAy4v3vaGbtGhhzi+OJxkXrCYJvsZfQgNNmAGZWQXCt40+SeocX5I+ocq2jJu2BnUB+eFH5R1GULyNoiaVJupE9v0U/DPxWQfdcSRolqWu4bSPBtY5KDwGXShoXlm0r6eTwGkqdJP1AUvfw+e8IV5eHsVVUOVakfwL7SfpZeDG6vaRxVQuZWTnBdZ9bwjL7E1yDeqpq2foysx0Ep+Gujlg9lSBxjA5vDxD0EPtWuP1l4CBJp4fXxG4E5pnZknD7E8DPJfWR1JvgOs9jlTuXlB7WSyF471qHpwer8xxwnaTOkvoCP6nl6TwD3CCpu4KecTfy1Wv0HHCBpBGS2hBc+6l8DSoI/gbuktQjjLGPpG/houKJxkUlPO//AdAWmL4Pu7oKmE9woX4bwTf8aP4OrwLOJjj98hB7dpetzkzg38DnBKdBitjz1MifCD5c/kuQwB4BKq9B/QZ4PDxNcqaZZRMk2HuB7QTdby+IIuZKJwILJeUTdAw4K7zmUgjcArwfHivymg/htYAJwKkEpxSXEbQuqvMTgi7JK4D3CE5tPlqPGGtzN0FirIyr0My+qLwRnAorCk+1VZ5yOz18btsJOmhEXs94EPgHwd/BAoIk9WDE9ocIWhCTCS7g76bm6003Eby/KwneyydreR6/I+hqPS889ifhOsJebn8G/kfw/v6vSt1rwvWzwlO3r/PV9T5XB/nEZ8455+LJWzTOOefiyhONc865uPJE45xzLq480TjnnIurZBwAMOG6detmAwYMSHQYzjnXpMyZM2eLme31Q1ZPNNUYMGAA2dnZiQ7DOeeaFEnVjszgp86cc87FlSca55xzceWJxjnnXFx5onHOORdXSZVoJJ0oaamkHEnXVrNdku4Jt88LJ6Sq3PaopE2SFlSp00XBDIXLwvvOjfFcnHPOBZIm0YSjs95HMBvgCIJpZEdUKTaRYPa7oQTzjt8fse0xgsELq7oWeMPMhhLMTrhXAnPOORc/SZNoCKZVzTGzFWZWAkwDJlUpMwl4IpwRcRbQSVIvADN7h2A04Kom8dWw9o8TTPfrnHOukSRTounDnsO457L3DIHRlKmqp5ltAAjve1RXSNIUSdmSsjdv3lyvwJ1zrqnbVVTKzf9YxNpthTHfdzIlmurmC686h0E0ZRrEzKaaWZaZZXXv7jO0OudallfnrufR91eytaAk5vtOpkSTy55Tqfblq2lW61Omqo2Vp9fC+037GKdzzjU702avYXivDhzSt2PM951MiWY2MFTSQEkZBDPyVZ3JcTpwXtj7bDyQV3larBbTgfPDx+cDr8YyaOeca+rm5+axYN1OJo/th1TdiaN9kzSJxszKgMsJpuBdDDxnZgslXSrp0rDYDIKpanMIpnv9cWV9Sc8AHwIHSMqVdHG46VZggqRlBNPi3tooT8g555qIZ2avoXV6CpNG13XJu2GSalBNM5tBkEwi1z0Q8diAy2qoO7mG9VuB42MYpnPONRsFxWW8+uk6Tj64Nx0z0+NyjKRp0TjnnGt8/5y3noKScs4e16/uwg3kicY551qwv3+8lqE92nFY//gNmuKJxjnnWqgF6/L4bO0OJo/tH5dOAJU80TjnXAv15IeryUxP5fQxfeN6HE80zjnXAuUVlvLqZ+s47dD4dQKo5InGOedaoBc+yaWotIIfjN8/7sfyROOccy1MRYXx1KzVjNm/MyN7x34kgKo80TjnXAvz/vItrNxSwLmN0JoBTzTOOdfiPPnharq2zWDiwfs1yvE80TjnXAuybsduXl+8ke8f3o9WaamNckxPNM4514I889EaDDh7XP9GO6YnGuecayFKyiqYNnsNxx/Yg76d2zTacT3ROOdcCzFj/ga25Jc0SpfmSJ5onHOuBTAzHn1/JYO7t+VrQxt3FmFPNM451wLMWb2debl5XHjUQFJS4jeuWXU80TjnXAvwyHsr6ZiZzncPi8/kZrXxROOcc83c2m2FzFz4BZPH9qdNRuPPd5lUiUbSiZKWSsqRdG012yXpnnD7PEmH1VVX0mhJsyTNlZQtaWxjPR/nnEsGT3y4Ckmcf2TjdgKolDSJRlIqcB8wERgBTJY0okqxicDQ8DYFuD+Kun8EbjKz0cCN4bJzzrUI+cVlTPt4LScd3IteHTMTEkPSJBpgLJBjZivMrASYBkyqUmYS8IQFZgGdJPWqo64BHcLHHYH18X4izjmXLF7IXsuu4jIuOmpAwmJo/JN1NesDrI1YzgXGRVGmTx11fwbMlHQHQWI9MnYhO+dc8qqoMP72wSoO69+JQ+M4VXNdkqlFU11/O4uyTG11fwRcaWb9gCuBR6o9uDQlvIaTvXnz5ihDds655PXGkk2s3lrIRUcPTGgcyZRocoF+Ect92fs0V01laqt7PvBS+Ph5gtNsezGzqWaWZWZZ3bs37o+ZnHMuHh56ZwV9OmVy4sjGGaW5JsmUaGYDQyUNlJQBnAVMr1JmOnBe2PtsPJBnZhvqqLse+Hr4+DhgWbyfiHPOJdqc1dv5eNU2Lj56IGmpif2oT5prNGZWJulyYCaQCjxqZgslXRpufwCYAZwE5ACFwIW11Q13fQlwt6Q0oIigt5pzzjVrD7y9nE5t0jlrbL+6C8dZ0iQaADObQZBMItc9EPHYgMuirRuufw8YE9tInXMueeVs2sVrizZyxfFDE/IDzaqS6dSZc865GHjw7RW0Tk/hgiMHJDoUwBONc841KxvydvPK3HV8P6sfXdpmJDocwBONc841K4++t5IKg/93zKBEh/IlTzTOOddM5BWW8veP1nDKqF7069J4M2jWxRONc841E099tJqCknJ++LXBiQ5lD55onHOuGSgsKePR91by9WHdGdG7Q90VGpEnGuecawb+/tEathaUcMXxQxIdyl480TjnXBO3u6ScB95ewdFDujFm/y6JDmcvnmicc66Je+bjNWzJL+aK44cmOpRqeaJxzrkmrKi0nAfeXs74QV0YOzD5WjPgicY555q057LXsmlX8rZmwBONc841WcVl5dz/1nIOH9CZIwZ1TXQ4NfJE45xzTdTz2blsyCvip8cPQ6pu/sfk4InGOeeaoJKyCu5/azmH9e/EUUOStzUDnmicc65JmjZ7Det27OanJyR3awY80TjnXJNTWFLGPW/kMG5gF742tFuiw6mTJxrnnGtiHv9gNVvyi/nltw5I+tYMeKJxzrkmJW93KQ+8vZzjDuxB1oDk/N1MVUmVaCSdKGmppBxJ11azXZLuCbfPk3RYNHUl/STctlDSHxvjuTjnXDw8/O4K8naX8otvDkt0KFFL/GTSIUmpwH3ABCAXmC1pupktiig2ERga3sYB9wPjaqsr6RvAJGCUmRVL6tF4z8o552Jn865iHnlvJaeM6sXI3h0THU7UkqlFMxbIMbMVZlYCTCNIEJEmAU9YYBbQSVKvOur+CLjVzIoBzGxTYzwZ55yLtb++lUNxWQU/n9B0WjOQXImmD7A2Yjk3XBdNmdrqDgOOkfSRpLclHV7dwSVNkZQtKXvz5s378DSccy721u3YzdOz1nDGYX0Z1L1dosOpl2RKNNV1nbAoy9RWNw3oDIwHfgk8p2q6aZjZVDPLMrOs7t27Rx+1c841gjtnLgXBFSck75hmNUmmRJML9ItY7gusj7JMbXVzgZfC020fAxVA8nc8d8650PzcPF76dB0XHz2QPp0yEx1OvSVTopkNDJU0UFIGcBYwvUqZ6cB5Ye+z8UCemW2oo+4rwHEAkoYBGcCWuD8b55yLATPjlhmL6No2gx8fOzjR4TRI0vQ6M7MySZcDM4FU4FEzWyjp0nD7A8AM4CQgBygELqytbrjrR4FHJS0ASoDzzazqKTnnnEtKry/exKwV2/jtpJG0b52e6HAaRP6Zu7esrCzLzs5OdBjOuRautLyCb931DhL852dfIz01mU5C7U3SHDPLqro+uaN2zrkW7JmP17BiSwHXTRye9EmmNk03cueca8Z2FpXy59eXccSgrhw/vGn/ztwTjXPOJaG7X1/G9sISrj95eJMYOLM2nmiccy7JfL5xF499sIqzDu/PQX2azlAzNfFE45xzScTM+M30hbRrlcYvv3VAosOJCU80zjmXRP694As+WL6Vq745jC5tMxIdTkx4onHOuSRRWFLG7/65iOG9OnD2uP0THU7MeKJxzrkkcf9by1mfV8TNk0aSmtK0OwBE8kTjnHNJYNWWAh58ewWnje7N4U1k5sxoeaJxzrkEMzOuf2U+rdJSuO6k4YkOJ+bqnWgktQ1ntHTOORcDL3+6jvdztnL1iQfQs0PrRIcTc3UmGkkpks6W9C9Jm4AlwAZJCyXdLqnpTY7gnHNJYltBCb/712IO7d+Jc5pRB4BI0bRo3gQGA9cB+5lZPzPrARwDzAJulfSDOMbonHPN1u9nLGbn7lL+8N2DSWlGHQAiRTNNwAlmVlp1pZltA14EXpTUNMeuds65BPogZwsvzMnlx8cO5sD9OiQ6nLips0VTXZIBkHSUpPtqK+Occ656RaXlXP/KAvbv2oYrjm/eVyDqNfGZpNHA2cCZwErgpTjE5Jxzzd5dr33Oyi0FPHXxOFqnN+/+VXUmmnD647OAycBW4FmCCdO+EefYnHOuWZqzehtT313B5LH9OXpot0SHE3fRdAZYAhwPnGpmR5vZX4DyeAQj6URJSyXlSLq2mu2SdE+4fZ6kw+pR9ypJJqn5v6vOuaRVVFrOL5+fR++OmVx/cvP7zUx1okk0pwNfAG9KekjS8UDMu0aEv825D5gIjAAmSxpRpdhEYGh4mwLcH01dSf2ACcCaWMftnHP1ccfMpazYUsAfzxhFu1b1unrRZEXTGeBlM/s+cCDwFnAl0FPS/ZK+GcNYxgI5ZrbCzEqAacCkKmUmAU9YYBbQSVKvKOreBVwNWAzjdc65epm9ahuPvL+Sc8fvz1FDWs7JlahHBjCzAjN72sxOAfoCc4G9TlHtgz7A2ojl3HBdNGVqrCvp28A6M/ustoNLmiIpW1L25s2bG/YMnHOuBoUlZfzy+c/o2zmTaycemOhwGlU0IwPsdZrMzLaZ2YNmdlxNZRqgun1UbYHUVKba9ZLaANcDN9Z1cDObamZZZpbVvXv3OoN1zrn6uPkfi1i9rZDbzziEti3klFmlqEYGkPQTSf0jV0rKkHScpMeB82MQSy7QL2K5L7A+yjI1rR8MDAQ+k7QqXP+JpP1iEK9zzkVlxvwNTJu9lku/Ppjxg7omOpxGF02iOZGgl9kzktZLWiRpBbCMoMvzXWb2WAximQ0MlTRQUgZBl+rpVcpMB84Le5+NB/LMbENNdc1svpn1MLMBZjaAICEdZmZfxCBe55yr0/odu7n2xXkc0rcjP58wLNHhJESd7TczKwL+Cvw1HGqmG7DbzHbEMhAzK5N0OTATSAUeNbOFki4Ntz8AzABOAnKAQuDC2urGMj7nnKuv8grjZ8/OpazCuPusQ0lPbZkzs9TrRGE41MyGOMWCmc0gSCaR6x6IeGzAZdHWrabMgH2P0jnnonP/Wzl8vHIbd3zvEAZ0a5vocBKmZaZX55yLs9mrtnHX68s4ZVQvTj+sagfalsUTjXPOxdjmXcVc9vQn9O2cyS3fOZjYdMxtuhrUx06SwtNYzjnngK35xeRu381+HVvxs2mfkbe7lMcuHEvHTJ9Fpd6JRtIFwLmSCgiGdLnGzApiHZhzzjUVr85dxzUvziM9JYXC0jLKK+D2M0YxonfznWOmPhrSojnWzI4HkDQK+D+C4V2cc67F2ZpfzDUvzqOotIIiKgBIFRx3YI8ER5Y8GnKNZmflAzObRwNPvznnXHOQu3036Sl7fpRmpqeSu313giJKPg1JEuMl3QPMCW8ZsQ3JOeeajr6dMykp33PmlDIz+nbOTFBEyafeLRozGwv8EdhBMNPmgNiG5JxzTUfHzHQGdmsHBC2Z1ukp/PH0UXRt1yrBkSWPaGbY/CswH5gHzDeznWaWSzCcy6txjs8555LaH/69hCVf7OL6k4YzdmAX+nbO9CRTRTSnzuYCowjGDztI0i72TDzT4heec84lr+dmr+WR91ZywZEDuORrgxIdTtKKZqyzqZHLkvoSJJ6DgZMJJhlzzrkW5f2cLVz/ynyOGdqNG1rIlMwNVe/OABGnzWodV8w555qrRet38sMn5zCoWzvuPfsw0lroYJnR8lfHOefqIXd7IRf87WPat07jsYsO91/+R8ETjXPORWlHYQnnP/oxRaXlPH7RWHp19C7M0Yg60Ui6LZp1zjnXHBWWlHHx49ms3b6bh88/nGE92yc6pCajPi2aCdWsmxirQJxzLplszS/ms7U72JpfTFFpOZc8kc2na7Zz9/dHM3Zgl0SH16RE8zuaHwE/BgZJmhexqT3wQbwCc865RIkcJLOkvJzB3duz+Iud3Pm9Q5h4cK9Eh9fkRNOi+TtwKjA9vK+8jTGzc2IZjKQTJS2VlCPp2mq2S9I94fZ5kg6rq66k2yUtCcu/LKlTLGN2zjUvkYNk7iouo7jMWLRhJ7+aOJzvHtY30eE1SXUmGjPLM7NVwIXAUcA5wPnA5ZJujFUgklKB+whOx40AJksaUaXYRGBoeJsC3B9F3deAg8xsFPA5cF2sYnbONT/VDZLZKjXFT5ftg/pco3kFmASUAQURt1gZC+SY2QozKyH4IeikKmUmAU9YYBbQSVKv2uqa2X/NrCysPwvwryTOuRpVN0imUvBBMvdBfX6w2dfMToxbJNAHWBuxnAuMi6JMnyjrAlwEPFvdwSVNIWgl0b9///rE7ZxrRtq2SmNw93Ys2rCLVqkpKAUfJHMf1SfRfCDpYDObH6dYqptUu+p00TWVqbOupOsJWmNPV3fwcKidqQBZWVk+TbVzLVBBcRn/7/FsFvsgmTFVn0RzNHChpBVAMcGHu4XXPmIhF+gXsdwXWB9lmYza6ko6HzgFON7MPIk45/aSs2kXlz39KTmb8rnrzNGcdmifRIfUbNQn0cT7NzOzgaGSBgLrCEaLPrtKmekEnRCmEZwayzOzDZI211RX0onANcDXzawwzs/BOdcEPfzuCm7512IMSE8VKdWdI3ENVp/OAGuAY4DzzWw1wampnrEKJLxgfzkwE1gMPGdmCyVdKunSsNgMYAWQAzxE8PueGuuGde4l+M3Pa5LmSnogVjE755q+t5Zu4ndhkgEoLTeufnEeW/OLExpXc1KfFs1fgQrgOOBmYBfwInB4rIIxsxlUGRXazB6IeGzAZdHWDdcPiVV8zrnmZebCL/jJM58G1wEi1qenpJC7fbdfm4mR+rRoxpnZZUARgJltJ7g24pxzTUpFhXHPG8v44ZNzGNqjHRlpe54rK62o8O7MMVSfRFMa/jDSACR1J2jhOOdck5FfXMalT83hT699zncO7cOLPzqS2884hNbpKbRvlUbr9BTvzhxj9Tl1dg/wMtBD0i3AGcANcYnKOefiYOWWAqY8kc2KLQXccPJwLj56IJL49ug+HDWkG7nbd3t35jiIOtGY2dOS5gDHE3RtPs3MFsctMueci6FX567j+pcXkJ4qnrxoLAfs1555uXlfJpbKm4u9qBKNJBGMDLAEWBLfkJxzLnYKisv4zfSFPD8nlzH7d+bus0YzZ/V2LrptNukpKZRWVPDH00fx7dH+u5l4ieoaTdjb65X4huKcc7G1YF0ep977Hi98ksvl3xjCs1PGk5meusfozEWlFd6dOc7qc41mlqTDzWx23KJxzrkYKCmr4L43c7jvzRy6tM3g6YvHceSQbsBXozMXRfRl8u7M8VWfRPMN4IeSVhOM2hzrIWicc26fLViXx1XPf8aSL3YxaXRv/u/UkXRp+9UvMfp2zqS0Ys8Os96dOb7qc43mUmB1fMNxzrmGKSwp4y//y2HqOyvo2jaDh87LYsKIvQcv6dquFX88fRRXhzNoVl6j8dZM/ESVaMzMJN1lZmPiHZBzztWHmTFj/hf87l+L2JBXxBlj+vLrk0fQsU16jXW8O3Pj8ms0zrkm6/ONu7jpHwt5P2crI3p14C+TDyVrQHQzYXp35sZT32s0l0pahV+jcc4lUO72Qu56bRkvf5pLu1Zp/HbSSM4etz+pPuxyUkqmaQKcc65WW/KLue/NHJ6etQYEFx89kB8dO2SPi/0u+dQn0Zxfw/qbYxGIc87VZO22Qh56dwXPzl5LaXkFZ2b144rjh9K7k/cUawrqk2gKIh63Jpix0oegcc7VaWt+cYMuvC9av5OH3l3B9M/WkyL4zqF9+OHXBzO4e7s4RutirT5jnd0ZuSzpDoIZL51zrkavzl3HNVW6Etc23EtRaTkz5m/gqVmr+WTNDjLTU7ngyAFcfPRAb8E0UfVp0VTVBhgUq0Ccc83P1vziL4d7qfwl/tUvzuOoId32aNmYGQvX7+TVuet4YU4u2wtLGditLTecPJwzxvSlUxu/BtOURZ1oJM3nq0noUoHuwG9jGYykE4G7w/0/bGa3VtmucPtJQCFwgZl9UltdSV2AZ4EBwCrgzHDSNpcE6ntKpa7yFRVGcVkFRaXlFJWVU1RaQfmXvwIXUtBdUhIZaSlkpqeSmZ5Kq7QUUhrYY6mhp4VagrqGe1m9tYDpc9fzytx1LN9cQFqKOGF4T34wfn+OHNy1we+JSy71adGcEvG4DNhoZmWxCiScVO0+YAKQC8yWNN3MFkUUmwgMDW/jgPuBcXXUvRZ4w8xulXRtuHxNrOJ2DRftKZWKCmNLfjF//3gN972ZgxDlVsEhfTvRJiONbQUlbC8MbkWlDZ+Lr3V6Cq3TU2mbkUbHzHQ6tUn/8r5DZjqdMjPo1Cad7u1a0b19cPtw+Rauf2WBjwJcg+qGeykuK+flT9dx9QvzWLpxFwBjB3bhoqMHctJBvejsPciaHQUDM0dRUHoc+KmZ7QiXOwN3mtlFMQlEOgL4jZl9K1y+DsDM/hBR5kHgLTN7JlxeChxL0Fqptm5lGTPbIKlXWP+A2mLJysqy7OzsWDwtV4Ot+cUcddv/9kgMrdLEi5ceyYadxXy+cVd4y2f55nxKyvZOIAJG9e1I9/at6dI2nU5tMshMT6V1euqXSaN1egppKSkYwekZADMwjJKyCnaXlFNUeV8a3HYVl7Fzdyl5u0vZUVjKjt2l5BWWUlJedxJLEZwzbn/279qGHh1a06N9K3p2aE3PDq1ok7EvZ6qbpooK48F3lnPnfz8HoKwieA/SUsTYgV047sAenHRwL7/20kxImmNmWVXX1+cvf1RlkgEws+2SDo1FcKE+wNqI5VyCVktdZfrUUbenmW0IY94gqUd1B5c0BZgC0L9//wY+BRet3O27SdOep0VKyoxT7n3/y+U+nTIZ2rMdRw/pSorEEx+sYndEwmnXKo2bJx3EIf06xT1eM6OotIJthSVs2VXM5l3FfLpmOw+9u3KPBGQGz85eW21SatcqjR4dWtGzfevgPkxEPTq0pmeYkHo04YRkZmzIK2LBujwWrt/JgnV5ZK/eTt7uUgC6t2vF2IFdmHjwfhwztDsdM2seIsY1L/X5i06R1Lny+kZ47SOW/xHVnYyt2tyqqUw0dWtlZlOBqRC0aOpT10WnosJYtGEn7+Vs4c0lm8gvKd9juwRXf+sAxg7syrCe7Wjf+qsPoq35xTz+4ao9yjfmiLuSyMxIpU9GJn3Cb9+H9u/EI++vhIin0So9hfeu/gbpaals2lnEpl3FbNxZxMadwf3mcPmTNdvZtLOY4mpaau3DhNSjfdAS6tmhNd2/bBl91UrKzEhtlOceyczYWVTGhrzdrNpSwMothcH91gJyNuWzraAECFp2g7q348SR+zF2YBfGDepC385tGj1elxzqkyjuBD6Q9ALBh/iZwC0xjCUX6Bex3BdYH2WZjFrqbpTUK+LU2aYYxuzqUFZewccrt/HvBV8wc+EXbNoVTC41rGc7jh3WnfeXb6FVagplZrVe30jGEXdriqlb+9YAdMxMZ2jP9jXWNzN27i5j464iNoWJqPLxpl1BcpqzZjsbdxZXe+qwfes0urVrRfvWaXRonU771mkRj9Np1zqNVmkpZKSlkJEa3KeH9xAk/vIKo9yMigqjrMIoLCkjv7ic/KIy8otLyS8uZ0dhCZt2BTFVlxy7tctgYLe2TBjek4P6dGBE744M79W+ybbMXOxFfY0GQNII4DiCFsQbVS7U71sgUhrwOXA8sA6YDZxtZgsjypwMXE7Q62wccI+Zja2trqTbga0RnQG6mNnVtcXi12j2jZkxZ/V2Xvwkl5kLN7KtoITW6SkcO6wHJ4zoyTFDu9GzQ/BhHOteZ4kQ75jMjLzdpXu0jio/9LfkF7OrqIxdRaXhfRk7i0oprNJabIjM9FTatkqjY2bal62ryOtOA7q2ZUC3Nnu0PF3LFotrNISJJWbJpcq+yyRdDswk6KL8aJgoLg23PwDMIEgyOQTdmy+srW6461uB5yRdDKwBvheP+B18kVfEi5/k8uKcXFZsKaBNRioTRvRk4kH78bVh3av9hlvfEXSTccTdeMckiU5tMujUJoNhtbSQIpWVV1BQXE5xeTklZRWUlgedH0rKKigpD5JQikRqir68T0sRbVql0S4jjbatUklLjWqmd+fqVK8WTUvhLZromRnZq7fz6HsrmbnwCyos6Kr6vTF9OengXrRt5adPnGspYtKica5SaXkF/5y3nkffW8X8dXl0zEznkq8NYvLh/RnQrW2iw3POJRFPNK5eSssreOmTXO57czlrthUyuHtbbvnOQXzn0D5+8dc5Vy3/ZHBRKSuv4Pk5udz3Zg6523czqm9Hbjwli+MO7OHDhDjnauWJxtXKzPjfkk38fsZilm8u4JB+nfjtpIM49oDuSJ5gnHN180TjarRgXR6/n7GYD5ZvZVC3tkw9dwwTRvT0BOOcqxdPNG4vO4tKuWPmUp6ctZpOmenc9O2RnD2uP+ne3dU51wCeaNyXzIwZ87/gpn8sZHN+MecfMYArJwzzMamcc/vEE40Dgh9bXvfSPN5cupmRvTvw0HlZjTJYpXOu+fNE43h17jp+/coCSsuNG04ezgVHDvBfhTvnYsYTTQu2o7CEG15ZwD/nbeDQ/p3405mjGeg/tnTOxZgnmhbqoxVbuWLap2zNL+Gqbw7j0q8P9laMcy4uPNG0MMGMhyu4479L6d+lDY9cdjgH9emY6LCcc82YJ5oWZEdhCb947jPeWLKJkw/uxa2nH+xDvDvn4s4TTQuxeMNOLnkim407i7jp2yM574j9/YeXzrlG4YmmBXh90UZ+Ou1T2rVO47kfHsGh/TsnOiTnXAviiaYZMzOmvrOCW/+zhIP7dGTquVns17F1osNyzrUwnmiaqdLyCn710nyen5PLyaN6cccZh5CZkZrosJxzLVBS9GeV1EXSa5KWhffVntuRdKKkpZJyJF1bV31JEyTNkTQ/vD+usZ5TIhWWlHHJE9k8PyeXnx4/lHsnH+pJxjmXMEmRaIBrgTfMbCjwRri8B0mpwH3ARGAEMFnSiDrqbwFONbODgfOBJ+P6LJLA9oISznn4I975fDO3fvdgrpwwzC/6O+cSKlkSzSTg8fDx48Bp1ZQZC+SY2QozKwGmhfVqrG9mn5rZ+nD9QqC1pFYxjz5JrN+xm+89+CEL1+/k/h+M4ayx/RMdknPOJc01mp5mtgHAzDZI6lFNmT7A2ojlXGBcPeqfDnxqZsUxjDtprN5awOSps9hVVMYTF41l/KCuiQ7JOeeARkw0kl4H9qtm0/XR7qKadRblsUcCtwHfrKXMFGAKQP/+TaslsGpLAWdNnUVxWTnPTBnvv/R3ziWVRks0ZnZCTdskbZTUK2yN9AI2VVMsF+gXsdwXqDwtVmN9SX2Bl4HzzGx5LfFNBaYCZGVlRZXAksGKzflMfmgWpeXG3y8Zz/BeHRIdknPO7SFZrtFMJ7hYT3j/ajVlZgNDJQ2UlAGcFdarsb6kTsC/gOvM7P34hJ44yzfnc9bUWZSVG894knHOJalkSTS3AhMkLQMmhMtI6i1pBoCZlQGXAzOBxcBzZrawtvph+SHAryXNDW/VXb9pctZsLWTy1FlUmPHMlPEcsF/7RIfknHPVklmTOUvUaLKysiw7OzvRYdRo084iznjgQ3YWlfLslCM8yTjnkoKkOWaWVXV9srRoXJR2FJZw7iMfszW/mMcuHOtJxjmX9JKle7OLQkFxGRf8bTYrtxbw2AWHM7pfp0SH5JxzdfIWTRNRWl7BpU/NYf66PO6dfChHDumW6JCccy4qnmiaADPj+pfn8+6yLfzhuwfzzZHV/RzJOeeSkyeaJuCvby3nuexcrjhuCGdm9au7gnPOJRFPNEnu1bnruH3mUk4b3ZsrJwxLdDjOOVdvnmiS2OxV2/jl8/MYO7ALt50xykdhds41SZ5oklTu9kJ++OQc+nbOZOq5Y2iV5vPJOOeaJk80SWh3STk/fHIOpWUVPHx+Fp3aZCQ6JOecazD/HU2SMTOue2keizbs5JHzsxjUvV2iQ3LOuX3iLZok88h7K3ll7np+fsIwjjuwZ6LDcc65feaJJol8kLOFP/x7CSeO3I/LvjEk0eE451xMeKJJEht3FvGTZz5lULe23HHmIaSkeA8z51zz4IkmCZSVV3DFM5+yu7Sc+38whnat/NKZc6758E+0JHDPG8v4aOU2/nTmIQzp4Rf/nXPNi7doEuy9ZVv4y5s5fG9MX757WN9Eh+OcczHniSaBNu0s4mfPfsqQ7u24adLIRIfjnHNx4afOEqSiwrjyubkUFJfzzCWH0SbD3wrnXPOUFC0aSV0kvSZpWXjfuYZyJ0paKilH0rXR1pfUX1K+pKvi/Vyi9bcPVvF+zlZuPHUEQ3v6LJnOueYrKRINcC3whpkNBd4Il/cgKRW4D5gIjAAmSxoRZf27gH/HKfZ6W/rFLm77zxJOGN6Tsw73Yf+dc81bsiSaScDj4ePHgdOqKTMWyDGzFWZWAkwL69VaX9JpwApgYayDbojisnJ+9uxc2rdK49bTD/YRmZ1zzV6yJJqeZrYBILzvUU2ZPsDaiOXccF2N9SW1Ba4BbqorAElTJGVLyt68eXODn0hd/vTa5yzesJPbTh9Ft3at4nYc55xLFo12BVrS60B1cxBfH+0uqllnddS5CbjLzPLrajmY2VRgKkBWVlZd+22Qj1ZsZeo7K5g8th8njPBxzJxzLUOjJRozO6GmbZI2SuplZhsk9QI2VVMsF4i8oNEXWB8+rqn+OOAMSX8EOgEVkorM7N59fT71VVhSxlUvfEa/zm244eQRdVdwzrlmIllOnU0Hzg8fnw+8Wk2Z2cBQSQMlZQBnhfVqrG9mx5jZADMbAPwZ+H0ikgzAHTM/Z+223dx+xija+hAzzrkWJFkSza3ABEnLgAnhMpJ6S5oBYGZlwOXATGAx8JyZLaytfrKYs3o7f/tgJT8Y359xg7omOhznnGtUMovL5YgmLSsry7Kzs2Oyr6LSck6+512KSiuYeeXXfMBM51yzJWmOmWVVXe+fenH2l/8tY/nmAh6/aKwnGedci5Qsp86apQXr8njg7RWcflhfvj6se6LDcc65hPBEEyflFcZ1L82nc5sMfn3K8ESH45xzCeOJJk6emrWa+evyuPHUEXRqk5HocJxzLmE80cTBpl1F3DFzKUcP6capo3olOhznnEsoTzRxcMu/FlNcVsHNk0b6WGbOuRbPE02MvZ+zhVfnrufSYwczqLtPy+ycc55oYqi4rJxfv7KA/bu24cfHDk50OM45lxT8hx0xNPXtFazYEvxmpnV6aqLDcc65pOAtmhjq2bE1k8f289/MOOdcBG/RxNCZWf04M8tnzHTOuUjeonHOORdXnmicc87FlSca55xzceWJxjnnXFx5onHOORdXnmicc87FlSca55xzceWJxjnnXFzJzBIdQ9KRtBlY3cDq3YAtMQwnHpI9xmSPD5I/xmSPDzzGWEi2+PY3s72GRvFEE2OSss0sK9Fx1CbZY0z2+CD5Y0z2+MBjjIVkj6+SnzpzzjkXV55onHPOxZUnmtibmugAopDsMSZ7fJD8MSZ7fOAxxkKyxwf4NRrnnHNx5i0a55xzceWJxjnnXFx5omkgSSdKWiopR9K11WyXpHvC7fMkHZZk8R0o6UNJxZKuaszY6hHjOeFrN0/SB5IOScIYJ4XxzZWULenoZIovotzhksolndGY8YXHrus1PFZSXvgazpV0YzLFFxHjXEkLJb3dmPFFE6OkX0a8fgvC97pLY8dZIzPzWz1vQCqwHBgEZACfASOqlDkJ+DcgYDzwUZLF1wM4HLgFuCpJX8Mjgc7h44mN+RrWI8Z2fHWtcxSwJJniiyj3P2AGcEYSvobHAv9s7L/BesTXCVgE9A+XeyRbjFXKnwr8LxGvZ003b9E0zFggx8xWmFkJMA2YVKXMJOAJC8wCOknqlSzxmdkmM5sNlDZSTFVFE+MHZrY9XJwF9E3CGPMt/O8G2gKN2bsmmr9DgJ8ALwKbGjG2StHGmCjRxHc28JKZrYHgfycJY4w0GXimUSKLkieahukDrI1Yzg3X1bdMvCTy2NGqb4wXE7QQG1NUMUr6jqQlwL+AixopNogiPkl9gO8ADzRiXJGifZ+PkPSZpH9LGtk4oQHRxTcM6CzpLUlzJJ3XaNEFov5fkdQGOJHgi0XSSEt0AE2UqllX9ZtsNGXiJZHHjlbUMUr6BkGiadTrH0QZo5m9DLws6WvAb4ET4h1YKJr4/gxcY2blUnXF4y6aGD8hGCMrX9JJwCvA0HgHFoomvjRgDHA8kAl8KGmWmX0e7+BC9fl/PhV438y2xTGeevNE0zC5QL+I5b7A+gaUiZdEHjtaUcUoaRTwMDDRzLY2UmyV6vU6mtk7kgZL6mZmjTHQYTTxZQHTwiTTDThJUpmZvdII8UEUMZrZzojHMyT9Nclew1xgi5kVAAWS3gEOARor0dTn7/Askuy0GeCdARpyI0jQK4CBfHVxbmSVMiezZ2eAj5MpvoiyvyExnQGieQ37AznAkUn8Pg/hq84AhwHrKpeTIb4q5R+j8TsDRPMa7hfxGo4F1iTTawgMB94Iy7YBFgAHJdNrGJbrCGwD2jbmexzNzVs0DWBmZZIuB2YS9Ah51MwWSro03P4AQQ+fkwg+KAuBC5MpPkn7AdlAB6BC0s8IerLsrGm/jR0jcCPQFfhr+I28zBpxpNooYzwdOE9SKbAb+L6F//VJEl9CRRnjGcCPJJURvIZnJdNraGaLJf0HmAdUAA+b2YLGiC/aGMOi3wH+a0HLK6n4EDTOOefiynudOeeciytPNM455+LKE41zzrm48kTjnHMurjzROOeciytPNM455+LKE41zzrm48kTjXIJIypfUSdKPG+FYQyTNr7KulaSVkkbE+/iuZfNE41xidQLinmgIhjDpJynyf34K8LaZLWqE47sWzBONczEg6bbIlomk30j6haSfhzMeLgiH+anqVmBwODPi7WHdV8Lh6BdKmhKxz19LWiLpNUnPKGJmVEk/kPRxuJ8HJaVGHsTMKgjGEBsQls8EfkEw1p1zceWJxrnYmAZ8P2L5TIKx5C4ExhEMrHqJpEOr1LsWWG5mo83sl+G6i8xsDMHIy1dI6iopi2BctUOB74bbAJA0PDz2UWY2GigHzqkmxsXAgeHjy4DpZraqYU/Xuej5oJrOxYCZfSqph6TeQHdgOzAaeLlykENJLwHHAJ/WsbsrJH0nfNyPYG6W8cCrZrY73Nc/IsofTzBfyuxw8NFMqp9NczFwQDjM/WXhPgn3Nxv4iGCQ1TfN7G9RPnXn6uSJxrnYeYFgJOL9CFo4qbUX35ukYwkmTjvCzAolvQW0pvrJr76sBjxuZtfVsfvFwHHAT4GnzWxjeMx+wEdmdnm4/D9JT5hZeX3jd646furMudiZRjDx1BkESecd4DRJbSS1JRjG/d0qdXYB7SOWOwLbwyRzIF+1Ot4DTpXUWlI7gvmOKr0BnCGpB4CkLpL2rya+xQTzvVwE3B6xfgwwJ2K5kGA4fOdiwls0zsVIOEdIe2CdmW0ANkh6DPg4LPKwmX1apc5WSe9LWkAwUd4NwKWS5gFLgVlhudmSphNMerWa4PpPXrhtkaQbgP+GvcpKCU6Nra4S4lLgYOB6M8uLWD8GeB5A0iHAmsaaD8a1DD4fjXNNhKR2ZpYvqQ1Ba2mKmX0Sg/3OAFYBxQQdCW4ys137ul/nKnmica6JkPR3YATBNZvHzewPCQ7Juah4onHOORdX3hnAOedcXHmicc45F1eeaJxzzsWVJxrnnHNx5YnGOedcXHmicc45F1eeaJxzzsXV/wc73wj3reboegAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"x = np.linspace(0,.75, 1000)\n",
"df = df1[df1['VD']<0.65]\n",
"y = [f3(x1) for x1 in x]\n",
"ax.set_title('V-I characteristic of IN4001 diode')\n",
"ax.plot(x, p(x))\n",
"dfax = df.plot('VD', 'ID', kind='scatter', ax=ax)\n",
"dfax.set_ylabel('current $I_D$ (A)')\n",
"dfax.set_xlabel('voltage $V_D$')\n"
]
},
{
"cell_type": "markdown",
"id": "exposed-explorer",
"metadata": {},
"source": [
"How does the polynomial fit compare against the exponential fit, especially at the high range."
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "transsexual-belfast",
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEaCAYAAAAcz1CnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAsiklEQVR4nO3deXxU1d3H8c8vYQk7SHBBEKxKZQuouJUuVBBta9VW61pFqbW2Pj6Ptlpt61OpSx+Xtlq1WtyxdWnrSq1bRaxFbSub7LgCRpAlrEkIZPk9f9ybMAmTZCaZmTvJfN+vV5iZu53f3BnmN+ecO+eYuyMiIrkrL+oAREQkWkoEIiI5TolARCTHKRGIiOQ4JQIRkRynRCAikuOUCCQhZjbYzNzMOkQdSyqY2WIzG9eC/c42s5fTEM/1ZrbBzD5N9bGziZmNM7PimMcteh3Cfd3MDkxVbLlMiaCNM7OXzOzaOMtPMrNP431wt/X/QKmI392Hu/trzZSzW/Jz90fcfWJryo5TzkDgR8Awd987zvqGH56vmVlFuF/tsglmtiLOvgeF2/6xwfLxZrbMzMrNbKaZDYpZZ2Z2k5mVhH83m5nFrL/OzBaaWZWZTWnNc0/kdZD0UyJo+x4Czon9jxo6B3jE3asyH1LToqxVZGmNZhBQ4u7rktinDPjfBLb7HfB27AIzKwSeCvffA5gN/ClmkwuBk4FRQBFwAvC9mPXvAz8G/pZEvJLFlAjavmcI/jN/oXaBmfUh+M/7cLIHM7MuZvZrM1tpZlvMbJaZdYnZ5GwzWxU2Y/wsZr8jzOwtM9tsZmvM7E4z6xSz3s3sYjN7D3gvXPZbM/vYzLaa2Rwzi30O+Wb2UzP7wMy2hesHmtnr4SbvmFmpmZ0ebn+Cmc0Py3/TzIpijrXCzK40swVAmZl1CJdNiIl9dhjHWjP7TbhrbVmbw7KONrPzzGxWzLGHm9nfzWxjuO9PGzmvvczsYTNbH57bq80sL4zh70D/sIyHEnypbgfObKpmZGZnAJuBGQ1WfRNY7O5/cfcKYAowyswODtdPAn7t7sXu/gnwa+C82p3dfZq7vwBsay7I8P30kJltMrMlwOEN1se+Dp3N7DYzWx3+3WZmnWO2vSJ8b602s8kNjtPZzH4VvjfXmtnvG7xvpQlKBG2cu28H/gycG7P4NGCZu7/TgkP+CjgM+BxBgvkxUBOz/vPAZ4HxwM/NbGi4vBq4DCgEjg7X/6DBsU8GjgSGhY/fBkaH5TwK/MXMCsJ1PwTOBL4K9AQmA+Xu/sVw/Sh37+7ufzKzQ4EHCL619gWmAtNjP0TCY30N6B2nlvRb4Lfu3hM4gOB8AtSW1Tss663YncysB/AK8CLQHziQ3T90a90B9AI+A3yJ4PU6391fAb4CrA7LOK+R/Rv6BLiX4EN8N2bWE7iWoMmpoeFA3XvD3cuAD8Llu60P7w+nZa4hOKcHAMcRJJnG/Aw4iuA9MQo4ArgawMyOBy4HjgUOAiY02PcmYEi474HAvsDPWxhz7nF3/bXxP4IP5y1Al/DxG8BlTWzvwIFxlucB2wk+ZBuuGxzuNyBm2X+AMxop41Lg6QZlHtPM89hUWzawHDgpkfiBu4HrGmyzHPhSeH8FMLnB+hXAhPD+68AvgMJGnnOHmGXnAbPC+2cC8xJ4ffKBHQR9ALXLvge8Ft4fBxQ3sX+99cBrwAVAv/B1H07wwbgiZpvfAleG96cAf4xZdz9wY4My3gDOC+9XAwfHrDsoPA/WYJ8/AlOaee4fAsfHPL6wwXOJfR0+AL4as+642udEkOhvjFk3pPZ9ABhBU9kBMeuPBj5q7f+tXPlTjaAdcPdZwHrgJDP7DEH1+1GouyqjNPz7QlPHIfg2X0DwH7IxsVe1lAPdw3KGmNlzFnRQbwV+GR4v1sexD8zsR2a2NGyC2kzwjbl2n4HNxBFrEPCjsFloc3isgQTf0uOW3cB3CD5YlpnZ22Z2QoLlJhpjIdAJWBmzbCXBt9YWc/f1wJ0E3/zrmNlogsRwayO7lhLUsmL1ZFdTT8P1PYFSDz9hk9Sf+ud+ZWMbhts2PEf9Y9Y1dpx+QFdgTszr/2K4XBKgRNB+PEzQ3HAO8LK7r4W6qzK6h3//bOYYG4AKgmp8su4GlgEHedDE8lOCb2qx6j5IwqR0JUEzVh93703w7bZ2n4+TiONj4AZ37x3z19XdH4tXdkPu/p67nwnsSdDE8ISZdWtqnyRj3ABUEiSsWvsRNO+01i3Alwma82qNI6jNrLLgctTLgVPMbG64fjFB0wsA4XM9IFy+2/rw/mJaZg1Bwqy1XxPbrmb3c7Q6geNsIKjJDo95/Xu5e/cWxpxzlAjaj4cJvgV+F5jWkgO4ew1BFfw3ZtY/7LA9ukFbe2N6AFuB0rDT8fsJbF9FUJPpYGY/p/630PuA6yy4/NHMrMjM+obr1hK0tde6F7jIzI4Mt+1mZl8L2/CbZWbfNrN+4fPfHC6uDmOraVBWrOeAvc3s0rCzsoeZHdlwI3evJuh3uCHcZhBBH8gfG26bLHffTNCZ++OYxfcQfLCPDv9+T3CFz3Hh+qeBEWZ2Stgn83NggbsvC9c/DPzQzPY1s/4E/QwP1R7czDqG++URvHYFZpbfSIh/Bn5iZn3MbABwSRNP5zHgajPrZ8GVTT9n1zn6M3CemQ0zs64EfQ+156CG4D1wq5ntGca4r5kdhyREiaCdcPcVwJtAN2B6Kw51ObCQoCN3I8E35ETeJ5cDZxE0L9xL/csR43kJeAF4l6CaX0H9qv9vCP7zv0yQYO4Haq8CmQJMC5sBTnP32QQJ8E6Cfob3ibnKJQHHA4vNrJSgbf0Md69w93LgBuCNsKyjYndy920EnZdfJ2gye4/g23k8lxC0Y38IzCJounsgiRib8luCxFUbV7m7f1r7R9DUUxE2JdU2KZ0SPrdNBB34Z8QcbyrwV4L3wSKCJDI1Zv29BN/AzyTo4N1OUBON5xcEr+9HBK/lH5p4HtcTXMq6ICx7brgMD65Sug14leD1fbXBvleGy/8VNk2+QnBRgyTAWtbsJyIi7YVqBCIiOU6JQEQkxykRiIjkOCUCEZEcl40DcDWrsLDQBw8eHHUYIiJtxpw5cza4e9wf2bXJRDB48GBmz54ddRgiIm2GmTX6q241DYmI5DglAhGRHKdEICKS49pkH0E8lZWVFBcXU1FREXUobU5BQQEDBgygY8eOUYciIhFoN4mguLiYHj16MHjwYGy3WRulMe5OSUkJxcXF7L///lGHIyIRaDdNQxUVFfTt21dJIElmRt++fVWTEslh7SYRAEoCLaTzJpLb2lUiEBFpt5b+Fd68My2HViKIyLhx45r9Udztt9/O0KFDOfvss5k+fTo33ngjAM888wxLlizJRJgiki2W/hX+c09aDt1uOovbo7vuuosXXnihrhP3xBNPBIJEcMIJJzBs2LAowxORTKrYCgUNp5pODSWCFFmxYgXHH388Rx55JPPmzWPIkCE8/PDDvPXWW1x++eVUVVVx+OGHc/fdd9O5866ZH++//34WLVrErbcG84zfe++9LF26lPLycj788ENOPPFEJk+eTJ8+fZg9ezZnnXUW06dP5x//+AfXX389Tz75JAcc0JIphkWkTdmxFTr3Ssuh22Ui+MVfF7Nk9daUHnNY/55c8/XhTW6zfPly7r//fsaOHcvkyZP5zW9+w9SpU5kxYwZDhgzh3HPP5e677+bSSy+t2+eMM86gqKiIm2++mY4dO/Lggw8ydepURo4cyYsvvsjMmTMpLCzkoYceAuBzn/scJ554IieccAKnnnpqSp+jiGSxiq3Qa0BaDq0+ghQaOHAgY8eOBeDb3/42M2bMYP/992fIkCEATJo0iddff73ePt26deOYY47hueeeY9myZVRWVjJy5MiMxy4iWW6HmoaS0tw393Rp6WWYF1xwAb/85S85+OCDOf/881MclYi0Czu2Quf0JALVCFJo1apVvPXWWwA89thjTJgwgRUrVvD+++8D8Ic//IEvfelLu+135JFH8vHHH/Poo49y5plnNltOjx492LZtW2qDF5Hs5R40DXXukZbDKxGk0NChQ5k2bRpFRUVs3LiRyy67jAcffJBvfetbjBw5kry8PC666KK4+5522mmMHTuWPn36NFvOGWecwS233MIhhxzCBx98kOqnISLZprIcvFpNQ21BXl4ev//97+stGz9+PPPmzdtt29dee63e41mzZnHZZZfVW7ZixYq6++eddx7nnXceAGPHjtXvCERySUV48YuahtqnzZs3M2TIELp06cL48eOjDkdEstGOsCk4TYlANYIUGTx4MIsWLUp6v969e/Puu++mISIRaTd2hDWCNDUNZaxGYGYDzWymmS01s8Vm9j/h8j3M7O9m9l5423wjuYhILqnYHNwWpOcHZZlsGqoCfuTuQ4GjgIvNbBhwFTDD3Q8CZoSPRUSkVsWW4LatJwJ3X+Puc8P724ClwL7AScC0cLNpwMmZiklEpE2oSwS903L4SDqLzWwwcAjwb2Avd18DQbIA9mxknwvNbLaZzV6/fn3GYhURiVx7qRHUMrPuwJPApe6e8IBA7n6Pu49x9zH9+vVLX4CtcMMNNzB8+HCKiooYPXo0//73vxk8eDAbNmxo9bG7d+++27IVK1YwYsSIVh9bRLLc9s2Q1xE6dknL4TN61ZCZdSRIAo+4+1Ph4rVmto+7rzGzfYB1mYwpVd566y2ee+455s6dS+fOndmwYQM7d+6MOiwRaQ8qtgS1gTTNJpjJq4YMuB9Y6u6/iVk1HZgU3p8EPJupmFJpzZo1FBYW1g0xXVhYSP/+/QG44447OPTQQxk5ciTLli0DYOPGjZx88skUFRVx1FFHsWDBAgBKS0s5//zzGTlyJEVFRTz55JP1ytmwYQNHH300f/vb3+otr66u5oorruDwww+nqKiIqVOnAnDOOefw7LO7TmntJDci0oZUbIEuvdN2+EzWCMYC5wALzWx+uOynwI3An83sO8Aq4FutLumFq+DTha0+TD17j4Sv3Njo6okTJ3LttdcyZMgQJkyYwOmnn143rlBhYSFz587lrrvu4le/+hX33Xcf11xzDYcccgjPPPMMr776Kueeey7z58/nuuuuo1evXixcGMS/adOmujLWrl3LiSeeyPXXX8+xxx5b75fH999/P7169eLtt99mx44djB07lokTJ3LBBRdw6623ctJJJ7FlyxbefPNNpk2bhoi0IbU1gjTJWCJw91lAY/WaNv+T2u7duzNnzhz++c9/MnPmTE4//fS6qSW/+c1vAnDYYYfx1FNBi9isWbPqvu0fc8wxlJSUsGXLFl555RUef/zxuuPWjj1UWVnJ+PHj+d3vfhd34LqXX36ZBQsW8MQTTwCwZcsW3nvvPSZOnMjFF1/MunXreOqppzjllFPo0EG/IxRpU9pLIsioJr65p1N+fj7jxo1j3LhxjBw5su6bd21zUX5+PlVVVQC4+277mxnuHnc46w4dOnDYYYfx0ksvxU0E7s4dd9zBcccdt9u6c845h0ceeYTHH3+cBx54oFXPUUQiULEZeg9M2+E11lCKLF++nPfee6/u8fz58xk0aFCj23/xi1/kkUceAYIB6AoLC+nZsycTJ07kzjvvrNuutmnIzHjggQdYtmxZXU0j1nHHHcfdd99NZWUlAO+++y5lZWVAMGDdbbfdBsDw4dHM1SAirZDmGoESQYqUlpYyadIkhg0bRlFREUuWLGHKlCmNbj9lyhRmz55NUVERV111VV3t4eqrr2bTpk2MGDGCUaNGMXPmzLp98vPzefzxx5k5cyZ33XVXveNdcMEFDBs2jEMPPZQRI0bwve99r672sddeezF06FBNeiPSFrmHiaB32oqweE0U2W7MmDE+e/bsesuWLl3K0KFDI4oou5WXlzNy5Ejmzp1Lr17xv1Xo/IlkqcrtcMPeMP4a+MIPW3wYM5vj7mPirVONoJ175ZVXOPjgg7nkkksaTQIiksXS/KtiaK+dxVJnwoQJrFq1KuowRKSltm8ObtVHkJi22MyVDXTeRLJYbY0gjT8oazeJoKCggJKSEn2oJcndKSkpoaCgIOpQRCSeNI88Cu2oaWjAgAEUFxejkUmTV1BQwIABA6IOQ0TiUR9B4jp27Mj+++8fdRgiIqmV5tnJoB01DYmItEtKBCIiOa5iC3ToAh06p60IJQIRkWyW5uElQIlARCS7KRGIiOS47ZuVCEREctr2TdB1j7QWoUQgIpLNtm+CLkoEIiK5q3wjdOmT1iKUCEREslXVDqgsg65KBCIiuWl7MEOhagQiIrmqLhGoj0BEJDeVbwxuddWQiEiOUtOQiEiO2x7WCNQ0JCKSo1QjEBHJceUbIb8TdOqW1mKUCEREstX2TUFtwCytxSgRiIhkq+0b094/AEoEIiLZqzz9A86BEoGISPaqbRpKMyUCEZFstT39A86BEoGISPZSjUBEJIftLIeqCvURiIjkrAwNOAdKBCIi2alueAk1DYmI5KbykuBWTUMiIjmqbENw261f2ovKWCIwswfMbJ2ZLYpZNsXMPjGz+eHfVzMVj4hIVqurERSmvahM1ggeAo6Ps/xWdx8d/j2fwXhERLJX2XqwvPbVR+DurwMbM1WeiEibVrYhuGIoL/0f09nQR/BfZrYgbDpqNPWZ2YVmNtvMZq9fvz6T8YmIZF75hoz0D0D0ieBu4ABgNLAG+HVjG7r7Pe4+xt3H9OuXmZMjIhKZshLolv7+AYg4Ebj7Wnevdvca4F7giCjjERHJGmXroWvfjBSVdCIws25mlp+Kws1sn5iH3wAWNbatiEhOKd+QsRpBh+Y2MLM84AzgbOBwYAfQ2czWA88D97j7ewkc5zFgHFBoZsXANcA4MxsNOLAC+F6LnoWISHtSXRUMMZGBS0chgUQAzAReAX4CLAqbcTCzPYAvAzea2dPu/semDuLuZ8ZZfH+S8YqItH+1vyHIlhoBMMHdK+MsHwoc4+6nmFnHFMclIpK7ymt/VZwliSA2CYTNOGcBpwEfAU823EZERFqpdniJbGkaMrMhBH0EZwIlwJ8Ac/cvpzk2EZHcVBb+VipbagTAMuCfwNfd/X0AM7ssrVGJiOSyuj6C7PlB2SnAp8BMM7vXzMYDlt6wRERyWNkGwDIyzhAkkAjc/Wl3Px04GHgNuAzYy8zuNrOJaY5PRCT3lG8I5iHIS8lPtpqV8A/K3L3M3R9x9xOAAcB84Kp0BSYikrPK1mesoxhaOMSEu29096nufkyqAxIRyXllmRtwDhLrLAbAzMYAPwMGxe7n7kVpiEtEJHeVroX+h2SsuIQTAfAIcAWwEKhJTzgiIsK2tdB9r4wVl0wiWO/u09MWiYiIwI5SqCyD7ntmrMhkEsE1ZnYfMINg4DkA3P2plEclIpKrStcGt933zliRySSC8wkuIe3IrqYhB5QIRERSpS4RZGeNYJS7j0xbJCIisisR9MhcjSCZy0f/ZWbD0haJiIhA6brgNks7iz8PTDKzjwj6CAxwXT4qIpJC2z6FvA7QZY+MFZlMIjg+bVGIiEigdB102xPyMjelfCLDUJsHVja3TWpDExHJQaVrM9pRDIn1Ecw0s0vMbL/YhWbWycyOMbNpwKT0hCcikmNKM/tjMkisaeh4YDLwmJntD2wGCoB84GXgVnefn64ARURySula6D86o0UmMlVlBXAXcFc4N3EhsN3dN6c5NhGR3FJTHYw8moU1gjrh3MRr0hSLiEhuKy8Br8l4Ishct7SIiDRt26fBrRKBiEiOqk0EGfxVMbQwEZiZ5iwWEUm1rZ8Etz33zWixSfURAJjZecA5ZlYGrAKudPeyVAcmIpJztq4Gy8vuzuLQOHcfD2BmRcA1wI9TGpWISC7aujpIAvkt+WhuuZY0DW2tvePuC2hZMhERkYa2fgI9+2e82JZ8iB9lZrcDc8K/TqkNSUQkR21bA4UHZbzYpGsE7n4EcDPBL4xPAwanNiQRkRy1dXXGO4ohsUHn7iKYsH4BsNDdt7p7MVAMPJvm+EREckPFVtixNWubhuYDRcAZwAgz20b9xPB4+sITEckR28JBG7KxRuDu98Q+NrMBBIlhJPA1QIlARKS16n5DkJ01gnpimoWeT304IiI5auvq4DaCRKAhJkREskFtIuixT8aLViIQEckGW1dD10Lo0DnjRSecCMzspkSWiYhIC2xdDT0zXxuA5GoEx8ZZ9pVEdzazB8xsnZktilm2h5n93czeC2/7JBGPiEj7seVj6D0okqKbTQRm9n0zWwh81swWxPx9RHAZaaIeIpj2MtZVwAx3PwiYET4WEckt7rB5FfTer/lt0yCRq4YeBV4A/o/6H9Tb3H1jogW5++tmNrjB4pOAceH9acBrwJWJHlNEpF3Yvgl2lmZvInD3LcAWMzsf+CbBkBIdAMwMd7+2FeXv5e5rwnLWmNmejW1oZhcCFwLst180J0tEJC02rwxuI0oEyfQRPEPwDb4KKIv5ywh3v8fdx7j7mH79+mWqWBGR9Nu8KrjtNTCS4pP5QdkAd2/Yxt9aa81sn7A2sA+wLsXHFxHJfrWJoA3UCN40s5EpLn86MCm8PwkNYiciuWjzKujcC7r0jqT4ZGoEnwfON7MPgR2AAe7uRYnsbGaPEXQMF5pZMcHMZjcCfzaz7xBMe/mtJOIREWkfIrxiCJJLBAn/ZiAedz+zkVXjW3NcEZE2b/Mq6LN/ZMUn0zS0CvgCMMndVwIOZHaGZRGR9ibi3xBAcongLuBooPab/TbgdymPSEQkl0T8GwJIrmnoSHc/1MzmAbj7JjPTfMUiIq1R9xuCaC4dheRqBJVmlk/QJISZ9QNq0hKViEiu2PhRcNtG+ghuB54G9jSzG4BZwC/TEpWISK7Y+EFwu0d0iSDhpiF3f8TM5hBc5WPAye6+NG2RiYjkgo0fBZPRdOoWWQgJJQIzM4JfFi8DlqU3JBGRHFLyAexxQKQhJNQ05O5OMNaQiIik0sYPI20WguT6CP5lZoenLRIRkVxTsRXK1kHfaGsEyVw++mXge2a2kmDU0aSGmBARkQY2hVcM7fGZSMNIpo/gImBlesMREckhJbVXDLWBGoG7u5nd6u6HpTsgEZGcsfHD4FZ9BCIiOWrjh5FfOgrJ9xFcZGYrUB+BiEjrlbwfebMQZHAYahERieEO65fBiFOjjiSpRDCpkeWtmbxeRCQ3la6Dii3Q7+CoI0kqEcROVF8AnABoiAkRkZZYHw7S0G9ItHGQ3FhDv459bGa/IphzWEREkrV+eXCbBTWCZK4aaqgrEO2vIERE2qr1y6CgF3SPfqLHhGsEZraQcC4CIB/oB1yXjqBERNq99cuD2oBZ1JEk1UdwQsz9KmCtu1elOB4Rkdywfhkc/NWoowCSaxq6Ftji7ivd/ROgh5k9kKa4RETar7ISKN+QFf0DkFwiKHL3zbUP3H0TcEjKIxIRae/WhxdcFn422jhCySSCPDPrU/vAzPYguaYlEREB+HRRcLv3iGjjCCXzQf5r4E0ze4Kg0/g04Ia0RCUi0p59uhC69cuKK4Ygud8RPGxms4FjCMYZ+qa7L0lbZCIi7dWnC2DvkVlxxRAk2bQTfvDrw19EpKWqdgZXDB3w/agjqdOaH5SJiEiyNrwL1Tth7+wZuFmJQEQkkz5dGNzuPTLaOGIoEYiIZNKnC6FDQVbMQ1BLiUBEJJM+XQB7DoP87Ln6XolARCRTaqph9TzY99CoI6lHiUBEJFPWL4edpbDvmKgjqUeJQEQkUz6ZHdwOUCIQEclNxbODOQiyqKMYlAhERDLnk7mw72GQl10fvdkVjYhIe7WzDNYtzrr+AciS0UPNbAWwDagGqtw9+86UiEhrrJ4HXpN1/QOQJYkg9GV33xB1ECIiabHiDcBg4JFRR7IbNQ2JiGTCyjeC+Qe69I46kt1kSyJw4GUzm2NmF8bbwMwuNLPZZjZ7/fr1GQ5PRKQVqnbCx/+BQWOjjiSubEkEY939UOArwMVm9sWGG7j7Pe4+xt3H9OvXL/MRioi01Op5ULVdiaAp7r46vF0HPA0cEW1EIiIptHJWcKtEEJ+ZdTOzHrX3gYnAomijEhFJoRWzoN9Q6NY36kjiyoarhvYCnrZgyrYOwKPu/mK0IYmIpEjldlj5JoyZHHUkjYo8Ebj7h8CoqOMQEUmLlW9AVQUcOD7qSBoVedOQiEi79v6MYCKaLO0fACUCEZH0ev+VIAl07BJ1JI1SIhARSZdNK4PJ6g+cEHUkTVIiEBFJl+UvBLcHTYw2jmYoEYiIpMvS6cH8xIUHRh1Jk5QIRETSoXRdcNno0K9HHUmzlAhERNJh+fOAw9ATo46kWUoEIiLpsORZ6LM/7DU86kiapUQgIpJqW9fAh6/ByFMhGDUhqykRiIik2sK/BLORFZ0RdSQJUSIQEUkld3jnMRhweNZfLVRLiUBEJJXWzId1S2BU26gNgBKBiEhqvX0fdOwKI06NOpKEKRGIiKRK+UZY+AQUnZ6VcxM3RolARCRV5v0hGHL6iO9GHUlSlAhERFKhaif8eyoM+nyb+O1ALCUCEZFUeOcx2PoJfOGyqCNJmhKBiEhrVVfBrFthn9FwQPbORNaYyKeqFBFp8955FDZ9BKc/0iZ+SdyQagQiIq2xoxRevR4GHAEHfy3qaFpENQIRkdZ447dQurbN1gZANQIRkZbb+BG8eQeMOAUGHh51NC2mRCAi0hI1NTD9EsjvCMdeF3U0raKmIRGRlpjzAKz4J3z9dui1b9TRtIpqBCIiyVq7GF66Gj4zDg49N+poWk2JQEQkGRVb4E/nQEFP+MbUNttBHEtNQyIiiaquhCe/C5tWwHnPQY+9o44oJZQIREQS4Q7T/xveewlOuBUGfS7qiFJGTUMiIs2pqYG//TD4BfGXfwZjJkcdUUqpRiAi0pSqnfDsD4J5iMdeCl+8IuqIUk6JQESkMVs+gb9MguK3YcIU+HzbG1k0EUoEIiLxLH8Rpv8XVG6Hb02D4SdHHVHaKBGIiMTathZe+iksegL2HAbfegj6fTbqqNJKiUBEBGD7JnjjdvjX3VBTFXQKj70UOnSKOrK0UyIQkdy2/l34zz3BDGM7y2DkqTDuJ9D3gKgjyxglAhHJPZtWwpJnYfHTsHou5HcKRhA9+mLYe2TU0WWcEoGItG81NcHsYavnwUevB3+bPgrW7TMajr0WRp0F3ftFGmaUsiIRmNnxwG+BfOA+d78xHeWUlO6geNN2BvTpQt/undO2TyZka1zZLJvPWcPY4sWabPyper8nElumYmmUe9DGv3ll8G1/88pgroC1i4O/yrJgu869YPBYOOJC+OzxsMdnEoqlvYs8EZhZPvA74FigGHjbzKa7+5JUlvPs/E+48skFdMzLo7KmhptPKeLE0U0PHduSfTIhW+PKZtl8zhrGdtphA/jznOJ6sTokFX+q3u8Ny40XW2LHfYeCPPCaSn554lC+Nrww6JCtqQrG76l3v5JZS1Yx7R+L6Zm3k06+nTNH96Voz45BG/6OUigvgfINULYByjcG96sq6hdc0Du46ueQbwfNPfsUwV4jIC8/sRemEe6Oe3i/9nHdOqh9VLtNvOW1++06BnUHbGq7PDP26Jb6zmvz2GgjYGZHA1Pc/bjw8U8A3P3/GttnzJgxPnv27ITLKCndwdibXqWisqZuWUHHPB4sfIT9Nr8ddx8HqqtrdlveId8wLNyicZbk+oZbNzqeoUO17x5XvlnMIIjNlN3MS95c7E0dv/nnnXzZ3sz6RI5d477bvmbWYJ+Wx57s612vxF3/JFV27KCX9Y7v8c9ZS8fIbOlzqy0zjxo6WnULS99dqXdhEz3YSA82eU820oON3pP19KHY+1Hse1JMP7bStdFjNPWxt+tDvf4HfDbYt3cX3rjqmBbta2Zz3H1MvHWR1wiAfYGPYx4XA0c23MjMLgQuBNhvv/2SKqB403Y65uVRwa4P0I55eWztMohPqrbH3WdndQ0l23ZQHfPfJw8o7NKZTvl54f+qpv9reZz1Vm994+sAPM7wtjurali7dQc1MTubwV49C+jcIXboKIt7t2FsjT2DeLHXD7ZlHyuGNX7sRA/ZRNkNj21ARWU1xZu2UxPzAZlnxoA+XejSMb/x/eMW03Q6aHaTBrZX1rCqpCyMLf6OeeHiao9dZgzu25UunWLjt/CY1Xy0oazBe8TYv7AbXTvF/zZcvrOGjzaUUR3ziZcXnuca90Zjyzf4TL/udOm066Mk9uUp31HNu+vL2el5VHk+VXTA8/L5bP896FrQmWrrQI11oMbyqckLbjdth9dXlLG1uhNlFFBOZ6ryCvjSyP3p07PXbq9/7cM8YL/wr/4Zia+pt3DtVwSzmGPEfHEIltffpvZ4FnPgeNvFLq+XzG3X/0mLeSvVLTfo1ik9H9nZkAjivRy75V93vwe4B4IaQTIFDOjThcqa+t+iK2tqGHPWzxtte2ysFvHGD46JtH25pHQH373pVSqqGsT1/WjjymYlpTu4KN45uzD6c1ZSuoMfNIitoc4dDDB2NIz/gvjxxztmQcc83vhO48+3pHQHFzfYJ165DRV0zOONyckdtyAvjzfOaXqfW256lQqvv8+PTzgk8tervcqG0UeLgYExjwcAq1NZQN/unbn5lCIKOubRo3MHCjrmcfMpRU2+qVqyTyZka1zZLJvPWbzYzj16v3qPbzl1FLecmnj8qXq/xyu3YWzp+H+Uza9Xe5UNfQQdgHeB8cAnwNvAWe6+uLF9ku0jqKWrhnJbNp8zXTWUmn2kcU31EUSeCADM7KvAbQSXjz7g7jc0tX1LE4GISK7K9s5i3P154Pmo4xARyUXZ0EcgIiIRUiIQEclxSgQiIjlOiUBEJMdlxVVDyTKz9cDKFB2uENiQomOlm2JND8Waem0lTsidWAe5e9whVttkIkglM5vd2CVV2UaxpodiTb22EicoVlDTkIhIzlMiEBHJcUoE4UB2bYRiTQ/FmnptJU5QrOojEBHJdaoRiIjkOCUCEZEclzOJwMyON7PlZva+mV0VZ/3ZZrYg/HvTzEZFEWcYS3OxnhTGOd/MZpvZ57MxzpjtDjezajM7NZPxNYihuXM6zsy2hOd0vpn9PIo4w1iaPa9hvPPNbLGZ/SPTMcbE0dx5vSLmnC4K3wd7ZGmsvczsr2b2Tnhez48izjCW5mLtY2ZPh58D/zGzEa0qMJiIuX3/EQxv/QHwGaAT8A4wrME2nwP6hPe/Avw7i2Ptzq7+nSJgWTbGGbPdqwSjy56axed0HPBcFPG1INbewBJgv/Dxntkaa4Ptvw68mq2xAj8Fbgrv9wM2Ap2yNNZbgGvC+wcDM1pTZq7UCI4A3nf3D919J/A4cFLsBu7+prtvCh/+i2CmtCgkEmuph+8AoBvNzXyeHs3GGboEeBJYl8ngGkg01myQSKxnAU+5+yoAd4/q3CZ7Xs8EHstIZLtLJFYHelgwSXB3gkRQldkwgcRiHQbMAHD3ZcBgM9urpQXmSiLYF/g45nFxuKwx3wFeSGtEjUsoVjP7hpktA/4GTM5QbLGajdPM9gW+Afw+g3HFk+jrf3TYLPCCmQ3PTGi7SSTWIUAfM3vNzOaY2bkZi66+hP9fmVlX4HiCLwVRSCTWO4GhBFPlLgT+x90bn7A5fRKJ9R3gmwBmdgQwiFZ8ec2VRGBxlsX9Fm1mXyZIBFemNaLGJRSruz/t7gcDJwPXpTuoOBKJ8zbgSnevTn84TUok1rkEY7GMAu4Ankl3UI1IJNYOwGHA14DjgP81syHpDiyOhP9fETQLveHuG9MYT1MSifU4YD7QHxgN3GlmPdMbVlyJxHojwZeB+QS17nm0ovaSFTOUZUAxMDDm8QCCrF+PmRUB9wFfcfeSDMXWUEKx1nL3183sADMrdPdMDpyVSJxjgMeDmjaFwFfNrMrdn8lIhLs0G6u7b425/7yZ3RXBOYXEzmsxsMHdy4AyM3sdGEUw93cmJfNePYPomoUgsVjPB24Mm13fN7OPCNrf/5OZEOsk+n49HyBsyvoo/GuZKDpuIuh86QB8COzPrs6X4Q222Q94H/hcG4j1QHZ1Fh8KfFL7OJvibLD9Q0TXWZzIOd075pweAazK9DlNItahBO3DHYCuwCJgRDbGGm7Xi6C9vVsUr38S5/VuYEp4f6/w/1Vhlsbam7AjG/gu8HBrysyJGoG7V5nZfwEvEfTIP+Dui83sonD974GfA32Bu8JvsFUewYiECcZ6CnCumVUC24HTPXxHZFmcWSHBWE8Fvm9mVQTn9IxMn9NEY3X3pWb2IrAAqAHuc/dF2RhruOk3gJc9qMFEIsFYrwMeMrOFBM0zV3rma4SJxjoUeNjMqgmuIPtOa8rUEBMiIjkuVzqLRUSkEUoEIiI5TolARCTHKRGIiOQ4JQIRkRynRCAikuOUCEREcpwSgUgjzKzUzHqb2Q8yUNaB4Q+ZYpd1NrOPzGxYusuX3KZEINK03kDaEwHBkAIDzSz2/+SFwD/cfUkGypccpkQgOcHMbor9Zm9mU8zsR2b2w3DmrEVmdmmcXW8EDghn2Lol3PeZcPjnxWZ2Ycwx/9fMlpnZ383sMTO7PGbdt8OZpOab2VQzy48txIPhjlcBg8PtuwA/Aqak7CSINEKJQHLF48DpMY9PA2YTjOB4JHAU8F0zO6TBflcBH7j7aHe/Ilw22d0PIxhd9b/NrK+ZjSEYA+oQgnHi68apMrOhYdlj3X00UA2cHSfGpQSjXQJcDEx39xUte7oiicuJQedE3H2eme1pZv0JpiHcRDDm/NO1g6GZ2VPAFwjGdm/Kf5vZN8L7A4GDCBLJs+6+PTzWX2O2H08wf8Db4YCGXYg/Y9tS4LPhsNIXh8ckPN7bwL+BnsBMd38wwacu0iwlAsklTxCMMro3QQ0hv+nNd2dm44AJwNHuXm5mrwEFxJ9MpG43YJq7/6SZwy8FjgH+B3jE3deGZQ4kmEP7v8LHr5rZwx79hD/STqhpSHLJ4wQTpJxKkBReB042s65m1o1guOR/NthnG9Aj5nEvYFOYBA5m17f2WcDXzazAzLoTzB5WawZwqpntCWBme5jZoDjxLSWYC2EyweTktQ4D5sQ8LicYflokJVQjkJwRjuneA/jE3dcAa8zsIXbNQHWfu89rsE+Jmb1hZosI5rG+GrjIzBYAy4F/hdu9bWbTCSYRWUnQ/7AlXLfEzK4GXg6vCqokaPpZ2SDE5cBI4GfuviVm+WHAXwDMbBSwKoq5EqT90nwEIiliZt3dvTScqP114EJ3n5uC4z4PrAB2EHQ0/8Ldt7X2uCK1lAhEUsTMHgWGEfQZTHP3/4s4JJGEKBGIiOQ4dRaLiOQ4JQIRkRynRCAikuOUCEREcpwSgYhIjlMiEBHJcUoEIiI57v8BxxnWSFFoUwwAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"x = np.linspace(.2,.9, 1000)\n",
"y = [f3(x1) for x1 in x]\n",
"ax.set_title('V-I characteristic of IN4001 diode')\n",
"ax.plot(x, p(x), label='polyfit')\n",
"ax.plot(x, y, label='Shockley')\n",
"dfax = df1.plot('VD', 'ID', kind='scatter', ax=ax)\n",
"dfax.set_ylabel('current $I_D$ (mA)')\n",
"dfax.set_xlabel('voltage $V_D$')\n",
"dfax.legend()\n"
]
},
{
"cell_type": "markdown",
"id": "abstract-plane",
"metadata": {},
"source": [
"This shows how a polyfit will always undershoot an exponential so from 0.65 volts onwards it seems I am not going to be able to find a polyfit that will follow it for very long without going to a large number of terms. The following image I found on Quora but it would seem to indicate that no exponential model is going to match what happens in the reverse bias and forward bias region of the diode anyway."
]
},
{
"attachments": {
"diode-quora.png": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAaAAAAEvCAYAAAAD0BVUAAAgAElEQVR4Aey915MdWX7n90mfeb0tXygLj7bT0z09hhySS7N8kMjQwyqC+7DSn6A/RK9621CEXjYUkkKK1Wo2drgkZ2hmeqbRDrYcyttb1/u0ipOFQsM2CugCqgrIg7ioe/NmHvPNvOd7zs9KQRAEvMXl5o0b/N3f/pLtzU10XUeSpGNAI0BWVGRNxw2gb3sEBHzvmiWJfq9Hp9Ph2pXL/OWf/ynT01MgK8fQ56iKCIEIgQiB14uA+nqbO12tOf0+rb5N00wiTVwgPTCALMv4ISe/HC9LSEiqSrtSprayyIgZcOliEVVT8VyP78NCiizT7XYpV2Qsw6Fer9Fod0klE6cL2Kg3EQIRAhECR0DgLSagAKfXpdl3QgJSCkOkzp9HTPKe6x4BuqefIskyqmXRm7tLfe42l+IuP7uQwYpbuLbD99lvqqpCp91hc8dlo+NSq1VptjoRAT39VkRHIwQiBE45Am8xAYGQPordji8rKLqOYpjhBuVAVPZyAjNJkZF1EzQdLwiQfBddAUWXUSQFXm5jdfAYqSpxV8HSRF0BnueFbZzyZyzqXoRAhECEwFMReKsJSOh7ZPEKfHBdfLsPgY/n2LysrEwSZKao4Dph3V4AXdtFtz1c1/9+O6DAo+f49F0fP5BCcaHof1QiBCIEIgTOIgJvMQFJocHB8RgdvPytf6L9QJgrHK2Ia5+4/miXRmdFCEQIRAicOAJvMQER7iC+zwQuyQe7j8A/KmU8eb9F+4e7GEE9YjMmtknPq/GQfITRRFQiBCIEIgTOIgJvNQEd6oCeOdkLiwFJRlI1dE2YOns4fQfP8w92T74Umle/8I0PAhRVQVYV7F6PeqsbEo6qG+iGji7LyPf1U0/r233aE0x132LvhXsQXRAhECEQIXDiCLyVBCR8aSqlEnt7e2xubeM6LobyFF+aUL8SELh9es7BvQp3LIqC17fp1tvIioyejiOrKoEvti9HKJKE7/v0Wn32q3Wq1UZIJGosTiKZIZ80iGvygRrqMQYSuy5Jkmm329TX15GNJJockM/lUJ42hiN0JzolQiBCIELgJBA4dQTUarWo12ooikQ+X0DTjWPH5fr16/zv/+E/UK3V6Com+asfMjBjhruaBy5AwppNVlH6FWrri3zx1RauXuCHf/g+Y5NDbM0tsfDZZ5iJBLM/+VHoxOr0euGu5Ls6LERmkqawvrzF76/P4SoqI+cGUAOX8vI2TlBhYqLIzFieuC4jpHwPS/hk4XQqqyyvLPK3X/8T8XSBDz94n7/+q7/i/Pnz39X0S33X6/Vo1OvhtelMGsMwX6qe6KIIgQiBCIHHETg1BNTtdNgvl6lUazRbbRzPI1uqMDY8RCabQVW1x/v+0p9v3rrFv/9f/33oQzM+e5E/PXcRS9PhIYsyscuQVY2g3aG2foev//46bXOKc5dmGDs/RbfTYuXGlyQKRaY//QRF0zkgoO/ulix2MLrG1laVv//7mwzOnuPKR9eIyw79xjIbe/vMIREYFpcG48QNGd89iKIgRG+CgAJJYWN7l//yy7/DdlyWlxb54P33j5WABPFUKhX290u02t3Qsi9e2iefy5LLZTFMQUSRBd533+3o2wiBCIHvQuBUEFCv02F+bo678/NoVgIrXaBS63FnYYXh7CIf//AjRsfGv2scL/SdIoOuHijvxd/7krZQ+X9YkZhaxavnQw+VTE5H8j12t8rs7TYQhgdB4OEfOq0+RF6HdTz7r7hWhkAnHotRLKbI6jIpr4NlSXy177K002YyZ5GwVCTJe8R/KIyeJKugmuC0cF037M+z23vxb5aXl7l580YYeSGdG0SPxVlaXsZUJS5fvszE5BSxWOzFK46uiBCIEIgQuI/AiROQ4zjcvTvHwsIisqKTLwySyBTRzTZy4NHptbg9v4KHyrmx4WO5cZlMmmIhR63WIplIPBR+59HqhS2a7/nhan/qnavsV1XaK7eon0ug6Sq6FUMSPj+ivEiIgwBMTSJryUi9FuW9En7cpFyz2WsEqIpGNq6jytJTiEUohQKEwUI8lcbutkin0scaDaFcqbCxsUmz2SKTyzE4PIqqm8j47Gzt8PWdVSQtzqXzk48CFn2KEIgQiBB4AQROlIDESr7ZaHBn7i7drs2Pf/ZHDA6PhCFrRgcDLs1MsL6+xZdffEG1UkX/6SdY1svrIIQBwUGbzTCKgNi0hLuJpwB2MM1LqF6fhOKRG5rEMwKU3VvYeyvYqWK4K9E1+SUEUVIYyUD1e3RqNXa39ukmTO6tNtmr+syeT/LuuRQxXSHwxG7pKcKuQ2WVJOF5DtVqhVqt9sAvSIxLjPco5fBccX5pf5+F+Xna7Q4XL11h9NwkyVQmHOv0xBg37y5x6+4ym9slJkYHMC3ryO0cpS/RORECEQJvDwInSkCu41CvVvFcByseI5FMYpoq/SBAlyRMS6VZT9BpVdlem8O1W6GyX4SgedEiLMRUVQ2tz27cvInjumhi9M+ZpIWhtTCJFjqhVDFHMjlNq++xd3sZv9MiPT6ArBwQ2yNysu/sYIDrS9iSRTpTZHh4kLSpYEgGMy4MDaTIx9SQ2A4Coz5ZmeAfEbcORaXTavCb3/yGevNbfARGL0JAwjhC0zQ2NzZYXl3lvfc/YHr2AqlMDlcEUQ1AUxUGikWq9Ra+77K/v8/g0CD6KzAUeXLE0ZEIgQiBNw2BEyUgsT4XE6wgBlUTRgYivhk4rpg8wZJUhPuNZ7exe+0QezGpChPmFy3iOjHJitX+AwJ7zMT5yToPdhC+59LvdFBHZihM50KruMrKHfbKTdJBTFBUaK325PXPOhLgeBIdT0NPZRgeGySrw1AmjjBSECYHApejSfUOnFYPzxfjEy+B0YsQkDhXvBzXCdM9aLpFMpMLB9Dv2SiK2OkFqLJHwjgwTe/2es/cQT5r5NHxCIEIgQiBQwROlIAUTSORSiEiSPe6HRy7F676RdRnMfn2ex7NVjMkjtmZGX7+85+TSCTo9/uH/T/yXzG5inw/ot7dnS3+k6IiFvbfPcsLhpLCfDuCGFTdwsykGeptkk86LGCxZyfwAmHI8Fw2e6Svwn/INFRC3pX8sA0RRy4U/T3475FLHvkgCNoX9tmehxVP8vEnn/CTn/wsJDBBPi9C0oKwwkWAqrK2OkO+UMS04mzvlskkk2iaGtYrVgXNepW97TVymUx4L8K4d4/0LPoQIRAhECFwNAROlIAEKQhLqmQyxd5eie2tDWLxBLl8ChEPdO7uHHN3bjA6PMS1q1cYGRk52qiec1YmkwnFV2L+fqoE7r5uKPAcPMlAihfISBa6EaApMsbwJJMffExV2iJXzISTs4iO8Nz4OSHfBUiuRyptceHyECPDKXTPBffA30eQwZFK2PGwo6GJej6XJ58/2LEc6fpnnHTx0qVQFPrZ767zT//wX/nkk0+5cGEc24Fytc7m9k7oFzQ+Mkw2m42cX5+BY3Q4QiBC4PkInCgBie4ZhsHk5GSof2jWayzM3wmV3r4XsLZyDxmPK9eucuHixeeP5ohnCB+XZruD2AD1+k5oafYEEQU+gRsQ6Am0/CT5tIIak5F9myA+yNDVH/FJagNV0xFm3a59tBxCYtciCChfSPLRD2dIxU0MP8B3vBcQZ0l4jkO33QxHLDKkikR1x1GEHkjcj3tLS8wvLrG5vgxBn26vT6PVwXFcxsfGGR0bw7Ks42gyqiNCIELgLUXgxAlITHjT09Pk83lWV1dZXFxid28vFJeJdNPvv/cjBgcH0Y3ji4ggUhk499VIrrAyEzdfqHseNhoLA4IGKHoMM2cgJGxCVCiUPZ7jhibYAzPTD0R4nmvf3049XMmTT5XY4XheQDJhErMGHwQiFebeRysHuprAs/H6B3qxo133Ymf94Ac/CHec84uL/MPf3Q7JUUSmmJ6ZYWryHOlU8sUqjM6OEIgQiBB4DIETJyAhhjNNM3yJ90Hgk4jHQgK6cOE8ExMTj3X5+38cHh7mo48+ZnNjnfTIOJKhY/tPt6yTFBE0VDsgJ7ErEg6owvlUWNWZZthfz7YP5GdPbKOe3lchZRMWZaauhcYGofju6ac+OBqqhcSnwEcmIJ2MMzs7RSDrvPfe++Ty+QfnHsebdCaDCL3jBz6qwECSKRTyTE1NhIuF42gjqiNCIELg7UbgxAnoYfgHBgYoFosPRFGvKtXApUuX+Ld/8zesrSxTdqGTjNFznafrcEKrMrE7eUg3I4jS93FFArvDckTyOTxdiOJEJIWjqny+vc5HClzGRof5sz/7M+LpAX70wx8wNjZ2eMox/pW4cuUKly5dDusUCwTxikqEQIRAhMBxIHCqCEgM6HVMcqOjo/z5n/851dIeX9xb43c7Ffq2/YD4ngT2IfJ5+MsXZY+Hr32eAd5j5x5+FNZtnu+F/jg/mZ5iYuYy56cnQou0w3OO968wX49I53gxjWqLEIgQEAicOgJ6HbdFmGPnCwXy6RSbrR7afgP/JZxbX0dfH29D6JDEyzJjpIeGmZmeIZNJPH5a9DlCIEIgQuDUI/BWp9MU/kRhIM8XCFtzWu6o0M2IOHr9h8WAp6VzUT8iBCIEIgSOgMBbTEAHERFexGHzCHi+tlPELigUx52RndtrAyZqKEIgQuDMIPBWiuAevjtC5xTGidO0MMK00LHLYWbRl9N7iGgGmmGG+YFkRUVTVSxDB11D/b4KfFXBcER6cC20TDuq4fbD443eRwhECEQInBYE3noCEnHh+r0+TrtDr9tGkRW8wxw/L3GXhK+QL0n0ux3sfg/bcej1bWRNxenfz+v9EvWKS0SIok6nS7vToW+bqN/TCOIluxFdFiEQIRAhcCwIvMUEdGBS3G62WZlfore8Sq+yi6rIHMUv51noCwJSNIP91SU2790hW4Z/zmqYpoF9xGgJz6pbEQTUarG9s4kbG2IydymyUHsWWNHxCIEIgVOPwFtMQIRhdDLJBOOpBM1+l2SnjiKLaNvPMLs+wu0UIj0hepNkF3NshKQlUXIS6Cg4R4528PSGZE+m7wZ0tBzJ9GDofGqFqbGffn50NEIgQiBC4DQjIAVCm/2WFuFMWq7W2NotYTs2hi5SQhxDESkjPBff7qHJIgq3FobcOQ6khchQJKCLxZPkioPEE8lQH3QMvY6qiBCIEIgQeK0IvNUE9FqRjhqLEIgQiBCIEHgEgVAEZzsenZ4Tip4kRT6IU6YpqMp3W4IJM2DH8RC5bURssxcqgRcGBBWRzVRZpKj+7qttz8d2fFQpCJOj+ZKMpkgIO3Knb9PtewSSjGWq6CKLXVSOjEDQ6+J12khmAilmhpge+eLHT/QdAruLL+tIqomI3/q84ne7BL6HbFqI2Hu+a+O23PC9ltARkWBFtHDPk8NnTdGe87A8r8Ho+wiBCIFTgUBIQFulFreW9uj1PfS4STab4MJIioGU/kQnBeEIMlBMjU6jQ3m7ip5NUBzKEnvi7GccCDxajTr7PRlXTzKQUEh9p/TLZ7fWZbPcIaO6YSTpnp6gkNZIuC47q3ssbDVwdJPJ8RyTw0mMFyXEZ3T1bTjcX7xD66svCKZ+gPXBB8RivDQJ+Xsr9DbmcHLTqKOXsYyDRcKzcAxcj/bdOdxun9i1y+gpg87mMuXruxjZQYZ+OgOaQ2+vTGNPwipmSI9FkR+ehWd0PELgLCGglrfLlBoObVlF16VwR7NX6zCQs8glVdxej71KFztQKRRSdBo9trbryJkksmPT3mug9V1sTSOpKqQsnZgmEbg2lZZN15HIJE0S1gHD9Ftd9ktVtqot6mqC9GCSogzNRpf9So9sNkYm/VDqBT/A6/TptRxa/QDN7aOoEh0piVa36bWb7LZcHFXBw2Zxp0ov8Lk0ksFQj7D8Pkt369j7KsL69OmXt2jcWcAuZ8hkpzFmk7iBjV2tIPfbyGJnlCyimmqY+wh69Dd2cXoByugohqWFEbqd8ibtrz6ns75KcCVN4tzBTsXZ26Xf6CAPD4cLnG8tXxzcXoPWbgXXVjHsAL+5R3/uC/q3twhm3qXnT6Ej49b26c6vowYzMHb12JGIKowQiBB4/Qio87c2kIaLvPPOGIM6tGtdtmvdUPwmUhQ0Gk1WN2rUPYMBR6G/32BjtYQyJJFL6xjI2F2HtfU6IqH05FCakYJJtVpnab1K3zc4N1YI00+LmJblcpP5pTLbbRetaJEqunR7Ho2dGutbbQo9FyOWw1Dk0MRYJHqrbtfBVRgrJDFFqm7HC5OjlUo1tH4Pa7jIu5fj+N06v75R4u56wGQhgaE+uYN7/RCf4hYDF7e+hW8oMHkJt9TBXlokGL1Mr71H9fYNNN9BNvIouT7JiRHkBPi1bbqLc3TaMgoq6XMFNLdBd2OF+tI2ds3FPK8iSx6+06O3tkxjuwZdl+T0BKn4wX0J7BZ2dRNHMZELwyi6gb1VwtvaJTXg4Bd9GtU+6WICTfEwe3NIHQPXv0q0tjjFz1XUtQiBIyKgru7ZzAxKTKS0UISWHVBIJgxUXcUT4hFb5IFJY9gSS6slOrtVcoZEMiN8W0SuHJlAt+g6Ms2dMglFRk3q3NruUNlvMZaXqXQ93FKPrNqnbENNSaBJTVL06LVr3C27JDyX4WGLzXaH0h2HD6by5JMGPdtlYa1GYBjMjqexMLi9WuJ3ayXW7tWYycT5i9kxhi2dvprE8iq4ro8fhQl47iMgdC8h4Wg68R9/DJ9/jtpbIPDO4e+v4e/ewxm5iFfrIq9fJxYPsPsWnfkVkdAIczBJZ2WJ9vp1zFwM2x/AS40i9xZRjQC/XKK7tSSyjUM6Q/fGDZRGhfinH4fm7m6zSW97B6Q4xkASxfRpVz263iC5DzLYeob6rS2MS+Mk4jpWUsZxArpNiCXClEzPHWN0QoRAhMDpRUDeb/Tp2x6HanvhSBk3NXQJ3J6H3QuwNAVNctjaLlOtNilmDc6NWKSTCqoqEUtZpNIxAtun0+xS67ps9g2UVIaJsTSOpHBrvc3qWpkOMpnxQWYm0oxmArrdJl8t7LG018FI6LiBx06lheMeJIhzvIDdpkOt52AoAaYqhf2tt21sCQI1oFprUG47+K5KRpJIhcm231rr8iM/bUG/R+fuMr35TWTPJpbsIPsVuuUmzl4TXdawxqZR4ymC6i50Kji1Kq21MurAKMnLs8jVPRr/8Gta38yjpIdIv3uF5GQKPaXilkt0bl7Hqe0jnGilvV38nW38+7mV/I6NV+8gmwpqwsdt7tDdr9H3YjhBGndzj+DGFwTVMkoihprK4AUmIhHs93DVOjI+J3Wi7zrs7df5cqHEF/fqbNRd+k/Pl3hSXYzajRA4FgRUXe5Tt/usd33GDIl+u0+50ccScn3bplups9lssd1xqDdtsmLHIwUIYnAcP0wNkDCFU6dCOW6EKaolxyNuWGQ0HTOmE9gyna5D07cxVRcrLRGXNRTFJ2gENNo2zUofy1DRDJVz+QQx40BTIBw7dUvHNIQrJ2GYnLgV4+pkltSMg+k0uLtRoifJXBsU8iEbPySviIC+8wkRqcH7TbqVLv3SPrFAQZd8HGJU7+4SVFxi6WFi6TRStkc3kwFDZIb1DqzS+j5+N8APFLotBSoeht/DSng4loavKrhBgGO3CObvgNVEUVW0XA5Juq+bE45RwpIxFQsje7ur9/DrW6iyRufeDsHWInq3i+RewXYSBIjoFY+lTv/OQZ7NL32ny92lLf7j70v48Sx/8uk0n06pCEnp4+UgPcdhHq3Hv/3uz+IX8sCe8JEP331d9G2EwHEhoP7wo3Ostn1+9dtlBkwZVZhWewFXZookJJ+9vRorew0qqLS6AamkRMtzae336Hc8sj0PTQlwFSk0g/ZVLdTdaM0WO7s1buwbeAMFJscTDPgSq6Uuy8sV0l6XwdEMairJZK5DeavC+naT1GCedDEZTlZikMIUPBuTUeMKviLTt310VWa0mGYyr6A0NKrVTWqin4FPo+thGQrK9w38eVwIn9J6/NoadmkRCkPo2TjxyQJ6XKVdqlP/8hZ+rYb10SVUVUMRChdFw8NAjWsohkfzi9/TNAp0ewbKtXfwY1C/tYS8cgO1OYeSnoHpizA5hnt3A3dzG0mYWWvCKfcAlEBYWMdAUsHeb+Mu7mFYFqnLFwjcADfew2ns0KrW6bc66L0+SsFH0j0RMfaUIvv9uyUpGqamojt9FNklFVd4umeBxzdLJfZrDpdmCoxmrec2LnSqtVKdnS54iRTjOY1cYNOq9mhrBlraIKnCdxqlPreV6IQIgaMhoH7w4Qz2rV227u6xp8kkTIW4ZYQ7EFNWMJMWuUAhqVtkOg75eEAyF6ONhIpMImlhiZWxLJPPWKRzFomYTlF16TZbVCWP0WG4NJkkhUW5s02v0UZ2PfKDOgPpFKPnAyoJiZKrEiRiGCK8zH0HEvHDy6UkWrjstWziHFjaaYZEzFKJy2neH++x3+pRa7RpSybJZCKKDvCc+y8MAEQ+8Pg719CK0yQHYwer4ZVVequbeKqBns8iCQKKWeiFArKZREnHsEYHaH1zF6dZQZu8hnXxPJJXo/VVDXurTSxmokk6ajaPcvVDVK2AvdpCGGRriQTy/dW2HIuh5dN41Sb+fgvVSBObGSf93rth751mgebmKu1ynP7ePlLPD41fVCs4fDyeM8qz8LWH67h0fQVFUYmpoOgWowM5fjBRxsxbzBQMrG9NB8NBCf1st9tieaNGqQNj4xkCz6Pbc+jYHmoYhV2l13dxfUgkjHAH5ToO6xv73Ni1kQZcLCNPzvRxup1QDB40k1wZMsma34PgA59+p02n0wkXs67vh+GpYsk0MctAfbDtek33J3APUpcECrKI1Xi4AnpNzUfNPBsBVXh8XJ7MM5g5cP7Q7juVppNGKPJ6991JbC8IV5ziQRK7HUNXcFAJPDClBKalkUImfbkQiuJ0XSF5aZDpkTSSqhBLx0iH232Vy5NFhtIHk1BckFfcQM3lGB9I0PUkxA5KENrh869qMpm8SbXcZ22nzVQxzkghjq9o6AqolsHY5CCpep3NaoeWHEfLpEInxmcPO/pGzoxjWUUMLYliWQ9EMebICMU//xMC10XNZFBiMZTREaxcDiUeRxL39vIHmEPT+K6MnMqhpvVQ9JlIdPGvTaFqLnJxENmIERRmCaxR/PM2QvWjJuIP5D5qvEBswKG/che545F+5zKxsaEHN0dLjpCaymANQleX6cztEPMtYsL45cFZZ/uN266xU6oy30mSSOV4f/RA/6oIYx5FhkDCc0PoHhlou9Fha6NMyjIZnRK/X4tWtcnScomNhkMik6SYjbFfbYe/q5nJQWYHdOzApWQHVOtN0mpAt2UQpFMYBYO91R32NxuMx0bJmvFH2nuRD77fZ23+FksL92gHMj3XxUykmbryA2amRkg/RqYvUvcLnyvIp7MXivm7UoZEIknS+h7k+sIdiC74LgTCR0GYxR6axj5+ci53dKc/SzMfXG5kYmQEqT1WMgkT8Xq0aBiGxtNaErl50rk0GbeD2wZNVkN90IPrJdBjBmk5SR8ZKRsjEbOeG8XhwfX339i2Ha6SRLpusUo6jUXooZ1+P8wxJHIYfZ8iGSkU8XqsElnXMMfGHjkqqxbEvhXvyMksajL7yDmgo40mYLT46HHFhJR4PXpYfJIVAy0xiJRYQ1L6aCMFlPjDz4yCaiRRhWpxokindwkpWwwjZzxZ29k6Eng+vXqXPbEbWdvj62qVzECHJDlmhpIQ+PhBQN8J6NkBXihx+HaM7U6fzVKD5GCRqxPJ0IL17nyLxaUaRi5Oo+OwurNDKqZgJS3mtirgqSR0ia6ZQLe6ZII+rZZNyZNJCcmDEFu3e/jfK2hugOd3Wd0ts1bqcG5qjLyloxkWCfH3PvmInVgQ+Gj6Qz5/94cnnvPHn8tvR37wzrH7OG6AopvcVxeHX/i+hx8I8j7YZnUbVZq79yi3XOzYNIoeiwjocTBP8PPrXIu81DBFgjcrlmSkaJCMO6Ssp5ODJ2nEEgnShoalS899gB/ujFDk7u3t0e12GRkZIR5/+dXfw/Uex/u+EKu02rRrVbY2N0PF/uz5CxQHHpvoj6OxE6gjkHT0iXNIdo9AlkL7uCclND3kdALr6iU048kJ6wS6/f2b9APsVo9qpU+p7FCtOviyyn7NZGIggSzJYQBbSQkt3p/Y8fWCgLrnY0keh8u57ZrDfgf+8IMiFcfly7ldfvbeAFPnEvzqZol+xWZmKEOgxsgXcyS8NrtlGznpcDWvUoxZOHH/weT9+CAP09crsvDRk4Xlw+OnIPZqfuBS7/v0lTgj45MMDw+gahrxWBz6NuV6lWajQaDoxLNZ0jEDORCBgZvU2z1002Agl0EKAhrNJsm4Gd73StNGVwIsxaNSa9HtucRiMWKpOCKwcLvZDUXGyWQMU+zuOj12N7cpL9+j4SroY6Pk/af1+SnDiA69FgROPQEdopCM6Vj6oSf+4dFv/4pYdMLUV8SHe9EiYtqtrKxQLpdJJBKnhoBavR53l5ZYuH6d0tfXWZhbIDYxxb/5d//DG0NAkqQQLw4hVq6K8izH4QPryKQunFtf9O6ezvMlRcLKxhkajTPpd6gnY6QLBcYHU6GRjTAzFwsjXZUwjScXVF4gY6MjHCgOl2Q9oCtiOJoaMVkkMJQxDCVc8RuBT2mvj+a0UdIyQ3kTvw1bm3VEmsTziQKq5CF5PULZ+mOwCfJZW1uj1WwyUCySKxQQ0oIniyRsFfGbNarLS9xKwEZpnGxhiGuzE7R2Nvjy95/hKyokinT9Na7OZEia8OvfrrK8tsP5qQIff3iNasPj65tLvD+bZnhynN+v2qSpMZ3osV7XaXd6ZMw2bSvOvR2f5maXy1cvcu2qRGNjnh1B7nWH9toutmwQL3g4D9B6sufRkdePwJkhIDHx6NrhT+1JoBTlyR/pk2c9/Yj4odfrdUqlEv1+/+knvWNm44gAACAASURBVKajLddla3uH0so9qovz7KwsU5qbC6MSLC6vkvzwY5rN5mvqzatvRiyitYdEt09vUQ13tC+xtnh6dafhqCyjJ00GtDyBpaC24yRSWc4VVXBtqo0m2003zCs1UHdIKiLE1bcd1yThyqBgPCSK1U0ZLSbj4odiylzSOPjNOB6mB9s9maYjMZtQGB6I0W5rrG1VUXtN+kEOQWAiGWNoJPJtU+E7QUB37txhc2ODa9euYcXjzyAgcboUKvrFvRXGEo7j4Dg2rt9kt15ifrvJ+LlR0prM5sI91rUUucEC+80+vXYXv1lif3OFxa0ud+8skAiS+AZU+wXiQjet2NiNGvsbW1SlPbZMk8VSHLWZ4MIVCbff5t78Ak3XojA6Sa4/RLXjEoj4kMeRE+UxbKKPL4/AmSGglx/i0a4UVkMnof8RARtc8SO1+zSqVVZXVvjqm2+495t/wr/zDQO+y1AsQcHUaQuxWzZ9YCV4tGFFZ51yBCQ9QSanczEh8kZJyEGAbfdo93r0VZ2WrbJVcTiX1MIYi4fDiesyQ3EZSeS0cjzSqkw2aTCaj4UWrJ7qM1KIkYqJSHoycVUjk5UojGaYHM9QSOrYCRfnXBJXlXCkgI6wXLRSqGJ38lgRBDQ/P8+XX34Zit5Gx8ZIp4Vp0eMlQGisvFiazNQVPvr0h4yODoSm/IbepCvCM2XHGJy8xFjcobmxiN1u0GOEc7PneWd6jKJWZmV7m52dBsUs7NVqOKu7jFyc5uK5JFZrh9h6G3ptyr0WJa2NqlucmxllYiyH5lYoV220VJapiSHkeI3V7RptTUKOQqQ8fsNO9POTT9qJdufkGg/NMxUF4fj6uoogn7X9Cgu3brJ+6ybVWzdwNzdCk9hYvYJULWNpGoamY4hgr7EYrmGEosbX1ceonVeMgDCqsVQMw3/w7Cmqzuhwnp9aaXro5LMa92P5PuhMKmUyNJzi650227d3+Ggqz8RwinzaIp+yQvHdBxcGSae0cJd0+XyRcQ9SGZN8ygzTn1gxndnpAXpOn0avTV9WkPMFZONJ0ZpIhLi4uMivfvUrhGHQO+++y8TExIP+PPwmCDz6fRdPGD2ksySF5WNYfOj5UN+mW01T8RNU+gp5V+zQeqhKgoHBYdJBwM1//IZyq8snH07x9cIOC7dL/M07kLP3WLt3l5qfwBwaJ1VponRquL6DZunh4sySVNK6TMu2Wd3Yo7u6xF7DxjSuINK4ROX0IBAR0Gu+F30/oFytUtvfp1EqsXNvieWvv2Tlqy9o3b5FttPm3GCR/OAAwcgoThCEsdSEZZIwgxfpwoXIMCpvBgLhckcCkYfrsAjLruFB8To88uRf3TLJDWbQKiJySQ/b9RnOxcg/tClJ3g/6Kq4eH3+68UYsm8S0NZxKjULaQLZS6Oaj04LQkQr96Pb2dqgH+uy3v+Vf/fEf8/EPf8iT1pgSsmQwmM2i4yCFYbEO+x8nn8gykVYIOmWqmkZs8BzDAwHFRIy2I6NZJrpaIJ0fJlnwuXT5MhUnzW5NIicczLst+p0WQWyQTCbHQLqP3G5QCooMZeKh6NGyUsyen2K94rBXqtKougRajHzMwBS+G1E5NQg8+qSdmm69mR3p9nrcW17hy6+/ZvH657j35sm2GiRdh9l2C7uQRQsyxEzzfjQ7MTOJgHdirxSRzpv5VLz8qCzT5Nq5Au2+Ryb25K7lqDULZ+NkMslsSkXRVWKPzdHtdpvbt2+HJCTqvHfvXrgbatRqZPP5x5qRUNUU7713NUztkss86lwxNjmBFTNpixBLeowLl2bJxpQw4oOZlTFNC0tN8pd/8cfho18sZkllp+nYPiP5NJpsce7dFFbTx7E9zOxVRnQNT42jqhbZhIxmJhi59AFmtUGl0cIZG8SKJUhnsmSsKObQYzfsRD9GBPSK4RcWRhvbu6wv3mP71g12735DfXMTe3cbqbSLJAWY8QQJXSfI5fBkGU+EQ/L90Az1FXcvqv4MIyBLEqP5ROgvJGbrl55aRSZhYc78DPGzMM754osvwh2QgEv4zAljhN3dXVLCWfkhQwjxvSxrDAw+3U1AuEqIlyA1UR52eTBjIrakMD+HyYnx8Hvx34T1MIkZZIpJjHiTfs9B001iwpFahAIT/4IgjDWoxZIMmHFSmS6SYYWWhXK0iHuA6Wl5ExHQK7gTHcel3WzQE747q6ss3r7L2u27lG58CVv3GDEMJjIZglw23Om4kownfvxCQRrc/xG9gn5FVb6BCEiE/kLfZ2TP03tubm7y+9//PiScw3a2d3e5t7LC+OTEgX/P4RdH/Psw8RxeIkI1PYMDD0958Ff4BloP+yyHtnciWO23OlwR2V9Y631bvv3u22PRu5NEICKgY0a/3mwyt7zM/BfX2bv+OyrffINXrZIydMbECs2ySGha6Csh5P5i1Rr6fBz2I9LvHCIR/T0lCGxtbfHNN988Yv6/srbKjVs3ef+D91+KgE7J0KJunDACEQEdww2o9fvMLy2xuzBPd2WJ5s4O5ZVlqndu0VtZJaFIZIYGSRfyeHELzw9whF4nUuscA/pRFa8KAWF8ICKECPIRTqgPl1s3bvKff/Gf+fSTTxgZGn4yKoJTpVkusbTVplxvk4ibTExOURzIv1CUkofbfJH37v1V3WFInhe5Njr39SFwKglI+ByIrfTjsuXXB8t3tyR4o9PrYXe7tGs1Fubn+Jfffcbyb/6Z+NoSY4pCMZmiEDNxz8+Ekb1VRcEWnCMd5FD67hZO17eud5ANTYzhqEVENgh8IY+XEKKQh0UjR60jOu9kERD6lEqlEsZIFCbXwllbkJL4XWqahmPbtBpPc4r2aZfWuTc3z421Lpt7dXLZGA4GWixFLi6mnQNx2KHETLQlwumIZy0IJDRNQQpEahgP+X6KF79/YO0nKTqWeeCVG/gett3HF86vqgig3KXdbrBVCbCsBGODySg1y8k+Rt/Z+qkjoEajET70wim08MxwH985plf+5U6zyef/9M8sfPZbGndvQ3kXkV10tN1Ct20sTUVxHWRND4MtivBTwoxaBJc8a57Y3Xab3f0aLhKjwwNhOKTnARz4Lp3qLr1GB0VJExPOs8mnmwE/r67o+5NDQCwaBgYG+Ou//mvee++9cCe0v78fxkscGx2lODDA1atXn9j9uF6XGytV1nZ8JqbPM3tJQ5K61G2brZ0d4uNZbFfFcX3SCQUvUGg1OritMvv1Do5iMjWcRrKbrO7WiI9Mko1rVO58xepOE3VgivevTJOKadT2NlheXaTlW2QHpikqFXbWl/hsVWFo8jwDhQTWa8//cHL37Ky1fGoISKyuVlaWD0w9A9ANnfX1NbKZLGNjY8QeUSa+XpjF+n+vVmdnZYXmxgb766ss3/iaxc8+o704R1EOmBoaJF8cwE/ED3x3DsVr93cPr7fH37+1UmkvDH7aabVodB0cX2J7Y5PBQo6hoQLJVPLbzKaPNRd4Lt7eMp3NMhhTKIoVEdBjGJ2Fj8I5WywCxevjjz9meHg4jJl45coV3n///XAX9MQ4Aod+q8zidpuqneJnl64wXEwR0GduuRSaW7tek3ubfbp9jwvjBl1bYeXeHt7+KrZiYQ6O0Ky3aNf2WdkNKMoaQcpgp9Gn3qqjqWvMrVlkVIf+7jx7tRZlL0WtsYhtNajWG1RbFpm++0T33pQDYsdYbfS4u1EPzfAvjWUYH3jY4OJsjPRUEJDwsp6bm+M3v/lN+FCL7X6312dnZzvc7n/00UeIhz6MwPsKcBX1itWe+CvSRosi+EOIA/rdLjvb29y6c5vrv/xbdn71K4pul8lijvc06E+eQ5XlMEWEIzY44bVCvHDIQMfcYdHPQ7nFMVd9WJ0Qs9y9exB2xbIMcvkCnhuwurCMZZm8884FLl46Tyr1kNfj4cVhmgUJvVNBLe/Qiw3hut86WT50WvT2DCEgJryeCA/U74ex3YQpthDDPVECG6/TwO338ImHBjbiHAmDiZEBCNp4foXFzRLtrsdAKkaj7XN3YRW5tMHU1auMjOQJmneotloE8Qn86i71mk0jNs3gbArL2eXO+g69/R0m5Q0yMx+Bn6K18CXVjI86NMGFZJrxYg7tTYle+xjQrY7Nb25u8b/8v3cpdz3+p79+h/GBqcfOOv0fT5yA+v1euLVfWlpiaOQcxYFB8rlsKK4SCboq1XI4GQqSEmKAV1EE8WiqimmaJFMHiWvm1jf46puv2ROxrxbn8VoN5N1dEnsbWIqMHjfQLQtfOI1K0mvz3RHkoz/th39MwAh5+sbGVphPpjAyTSGXpJDLhHxaKLbZ2trmzvwKZizOtaupp+t2ZIGNFkZjRreQT3D3ekywvPXVHJKPIB5BQuLz00ypRX51xYihKgGKbSPifx4Uj3JNhNvpYRoO7T60+gdWoI7bp9nqoPV6YbLLbMrC7wrfpATp2ADy5hqlrUWWYirFjMGYoaFJKrYjUnh0yWSTGCRx7jZxXRUjniRrZEgnrDc29vVOtcPffbHJL7/YIJGw2G90sR0P/em52w9vwqn7+0oJqNFos7FVC1NpOyKVdtxgdCDJYC6GFjr4e9Rrde7MLeH5En/0s5+GDmzdrh2qKC1LZ2Njk7/7219Q/7wS5v6wrG8Tox0HmmLnI4wetnZ32d3c5F9++UtSqsqdmzdCM9Pyl1+Q3VhlIptmZnQE6cIMwsJGkE5XbHIeErG9Ui8DocwPoNfpsL2xQX5w8IHP0HHhIOrZ3Fjn1u27ZAfP8aMf/wHZdAwp8EJxm6oq3Lk7x42bd9gtlZloNsIMk4LAg36X/uoC9vY2brOHs/R7WpsV+maT+tYi/lgGKTWAOT6KNZw91EEfR9ejOk4TApKBkSpwbiCOulVhc3WZWiWB5zfZq1uMDscxdA3d7dLbrbC1otGXTQzTwIzHEM+YQoChasRVmb4mY6UztHZhf+lr9nwdf2KU/NQ46WICpaaiyi4JzcXUQYR663ValCsOpg9TYwnhXXSaEPrefXFdn8XNOr9brGB7cGU8TTGln8kQXa+UgDbWS/xf/9/X/Ga9Q0OJM1VM8N/+fJY//dG5kIB8x6HZbCGrIq13PHwIRUisMKOIBCIor8iUahg6pZ3t0BnOMIxjBVpEwbYdh/mFBe5+9RX/8n/+H6QqVbJ2h3zCYlSXUUeHiIlIBeLRkWREkrDQafR7P0pHq0CQZPgKAprVOrdu3qQruuA4oVXS0Wr57rMEiYjX0uIiS/fu8eOfxclnYoj06r2uf0AYAWE4kxFBxLihvs60YugiekOjTO0//W+U/+Mv6O34eL0WgS2SrFm0TIO9eA756h8x+G/+itG//EHouf7dPYq+PasIKGqMd6bymP0yt2/eYKfSIps2mLn8EYPFCRS/RsIuY2/cYK5vEh+fJZVNEtd8TDN+oFuUFHy7Q6D0yA1PYsk298q3KW3t4zXiKIqLHLegHSdADSUY8UQSLDk0dijtVkiqCp4/yhnbFDz3tpdrbe6sVlmr9sikDN6dSDNWEOR99kTdr5SA4nGLqcki/bhNRzEZTJkMpE0OjVKEea4sizhQIuyMGwba9D0xt4sVt/irHRzzgzDKbbFYDMVkQh59XEWYlIodkPDsjieT9Nppes0O+/slpFqZVD5NLp9H1U3sABwRDJTg9a+phJmqyJ1j6GRzOYqFAoHnHSsBCZIr7e2Fdcr4oThEQC3wEeQk8vGEIxdKYWFm7Qnj14Mi6Sb6ufMkflBFK7u45Q2cegdXzaPncuj5DPLEDGYxFe1+juvhPaX1SKhkhyaYCTR6VgMj0SCdjDE5WiAlRNZumkuzU8QVCUnXiQ+OEktkQgvSTC6DoRpIyREyfgdTTZDLpyBp8akwNCjtk8xkSAwXkLwkUj5NKl1E1Q3Ui+8iJpeWpGPJLfIiTNAbqAPa3Gly816Z/XafiWKcdyazDGbMI0eROE2PzSsloHMTA/z348UHikgxWymhEv0AAmGmnEwlUKQ+7XqDWqWMZcWRxdYngE7Hplqthv4Go6OjfPrpp6EY7rgBFPolIdsWxgQjI6O47R5Ln/2W2s3PqbVqyJqB2rfxbRtdO1htISuhf48v6Eg4vb3CEvpIhAQkkcxmwlD4H37yyStpUZC8SJ9smDE2t0phzhdV1ULRhut7VCpldrd3GBvIkAl/4AerLiWVJ/tX/yPZ/+bfEfRa9L/4BdWFbTrxD8i89y652fTBylakvHgDJ4VXcjPOcqXmAPmpIj+dOIzeLox8DpYrimpx/p0Pmb32frigEQsfMXseLmbCYafHGEgdmPKE3xtF3vmocCD9CM8XZ4kV0eQDPWTm/NXwUrFounDuwDo8vPYs4/hY34We5/ZGPTRzx/O5NJrm4niGREzH9fww5t1jl5zqj6+UgMTNf16mUqHTyedydFprrK8uibj05AZGQqe0/b1NttZXScTjjI6Nh+myXwWaYnUvLHrEhHrt3XfIZnO8/4MP2L23wOrCPKt377B/4yvi1RojMRNLUfADQT3ywS/kVXTqGXWKXCyqYbwyi8DJyYMf9I3bi/z+8y+5dOUyE2NjuK5NpVZlZ2cLu10hmRgglU5/2w8xgYiFgwKSlkPNplCSDeRkFiVXRH75YM3PQCI6fPoR+JZ0nuhrKFZWHiWdR04SpPTYZvm+KPrR0x6mrYP39/nskdPelA/lRp/PV+vM77YpxnQ+nMgxNSIi6OthNttAOXD+PivjfaUEdBQQhE5nZmY2tOyq1esszN1GWVk5mNi9HoYmcenSRUZHxw5EQ/LxyzmFiEmkDRaPb8KyKGQz4Wv60gUGNz4gJaJYz8zCxhpyvcbu1gbllRXkZoOcZZEt5NHCFAoS7isOJipMpIXO6lUV4QA8MzNDtdZibv4ey4tzlHe38D0HW3il43NhdpzRkaFwp/S0fgROD9cowICCyG0j+SLy8dnzUXja2KJjEQInhYAwPljbbbCw3aDtB7w3nOTyRIa8UGsoEq73aiUxr2LcJ05AwghgfHycbDYTOrnNzy+wtroUrqwnJyaYnb0cOsAJohI7lVdZhKhLiOMOi7A1mB4bYXyggPPjTynv7bM4d4f9f/pHal2HoNVFDyTiQgkvDAIcF1lEQRDiufvLMPFIHKfO6rBvr/KvwPnSxRlMTebe8jKLc8uh71GuUOD8+fPMTE2G/kDP7IOqI49dw8gL20ctNFl/5rnRFxECEQJHQqBS73JjscTWXjNMv35hKsvIYDw0sjhrc8zhgE+cgERHhCFAOp1hamo61PFM1WqhXDdfKDI0NBQaHhx2+FX/ffxGChJSdB1T10kkU1j5PLnRMcoff0J5YZ7qxibljVWqd24Qa9YYyReIxRP4soKviNw+hzLwV93z460/lUoxOztNIhlH7EyFOFUkLRscHHq6/8dDzUuSjBpPEhObnkBI5c7eyuyh4URvIwROBQIbe01+/c02y5t1xkcyvDeRYyQfE6ogfPxXvkB/FSCcCgI6HJiY9MTrtBYhohvMpBnMvAfvvUel2WJhYYF7X36Bls/hb62HSYh3Wk3aeyXUfo+kZZJIpZB1A7FDFiK0E7GiewlQY4kk08K09SVKSNziulAsfyCbf4lqoksiBCIEwqgsPvPbDa4vV2m2HWYLMa4Mp8gnzAPL3CBAf7UColdyH04VAb2SEb7CSnPJBO++8w4XJiepfvopm2sr3JtfYO6rLyhVm+g7JUZcDzORQHbdMFqCsASShbecyGB5jObkr3CYUdURAhECJ4lAELBXaXNns8Fex2Ega3FtLMVI3gpdJdyee9ZiHD9AMyKgB1C83BsR+drKZcnmsuRnZsidv8TwlavsffADSrdv09reYXlvB3t5kZRvMzI8SiyVwpUk7PsRsqP9wcthH10VIfA2IOB5PvOrFb5e3KfnBnwwnuG96SzFtBGqmsVCVvw7iyUioGO8a2nDID0zzdWZado//SnLKyvcvXGHtc9/R9UykJoV2jGhU2ngt9skk3Es0xRKMAJZPsiMKtJyRyVCIEIgQuA+AiIa/e/n97mxUEYJgtDybfZclpihhQGTzzJQEQG9orsXN03OX7zI4NAw7Q/fo/av/4z11WXmvrnB7V/8An27xBVdIxmP4Qi90NlcwLwi9KJqIwQiBA4R2Kl1+d1KjfXdFgPFGOeHkgwVE0iKHAYgFVPHY268h5ee+r8RAb3CW2RIEsVMOnwxM81A/UPiMxdIF4awV+5heH02tzfZW5hDqdYYiMcoDA6gxkROIfBEuJuImV7hHYqqjhA43Qj0eg4rW3VW9tt4ssT0QILZoQTpuEjwGOCecYFJRECv8fkbSacZ/PFP+OnHn4RZX+/evsUX//hrbMcn8BZpqzK6rCC1W0iOg/B9EmFwwhAm93MWvcbuRk1FCEQInDACm6UWn9/ZpVLtMjyU5IcXi0wMJhFxR51Dl8UzLD2JCOg1P2AiOKKiawwNDaIlEwyMjlL/6U8pLS2xunyP9bm7tK7/lly7wfjoOFZKQxK7oINwWffNml9zp6PmIgQiBE4EgbubDf7LVztsldr88NIAP7w4yHAhge36oc5YGDCdYf4hIqD7j5UQdYU+Oq9R5JWPx8lfvAgXL9L46c+4tbBA8vp16sNDqLtbYXDB7f09+pub0OtR8wJis85rTQVxIr+6qNEIgQgBOn03NL3+Zq1Or+swXYiFBgjZlEnXds4289y/vxEB3QdCePqLEDQnFT03ZRh8ePkK16amcP71X7C5scHNL7+k8ut/oF6tYddaNAiwRB+jH2eEQITAG42AML1e2a4zt1mj7/uh74/Q/QxmDQxdpmu/EfwT7YAOn2KhbxGRuUVYoJMqhiJjiPTV8TjxgUGsgUEmZ2ao/8EfsnLrNr27d1ELAyhqtG44qXsUtRsh8DoQ6PYcbi6UuLVcRlNlPrxQ4IOZHAlL5Eh7c6xmo5kMkdZHDgOeJhKJ58Y5ex0Pn2hD2LjMjo2FL//nf8TivWXS16/jOza5YvF1dSNqJ0IgQuAEECg3bX5zd5/5eyL1icEnl4pcnc6hKDJ9kYf7DSkRAd0noHPnzoUrC5GO4LQVEeJpanqKYrFA4LphfqTT1seoPxECEQLHh8BmucPna3Wq1R7XBhOcH0lSyMVCf0FHRB99Q0pEQPdvpBDBneaiAdnkywUGPc3jivoWIRAh8CgC9WaPhY0q2/UuRkzj4nCKyWKcmKHS7Xth9GuR7eVNKGcwfuqbAHs0hgiBCIEIgacjcG+jxme3tmm0+oyNZfjoQpGhbAwRpSvc+7wh5CNGHxHQ05+B6GiEQIRAhMCJIHBrtcavbuxQrXWZHk3zwfkiubRF3/FCNcEbxD8RAZ3IExY1GiEQIRAh8AQCAZVGj5ubdRb32qGJ8qWhJOfH0iRi2kH0/DdH/ROOPtIBPfEQRAciBCIEIgRePwLCuu3OaoX57SYoKlN5i8tDcXJJDVXE3um9/j696hYjEdyrRjiqP0IgQiBC4AgINFo2Xy/ss7BZJ2apvDOZ4cJIEl2T8fyzHHDn2YOPCOjZ2ETfRAhECEQIvDYEdmsdvlgss7peJ2aqfHipyOy5DEEgYdtvmOztPqoRAT32eImVhnhFaRAeAyb6GCEQIfDKEAgCn5W9Jrc26rSbPQopg2vTeUYGkngB2O6b43z6MIiRDug+Gp7nsrjZYHmrQTJmcHEySz5philvHwYseh8hECEQIXCcCIjF7k6pxa2VClv1Hpm0yUcTGaaK8TA0WBB4B5Gv3yTzt/sAvrUE5LgezbZNvW1TbnTY2O9wfaHM3eUK788WGS4mKKTM43zOoroiBCIEIgSeRCCA+bUq1+f2qXYcLk3l+MMrg+TjOq7r4ouEC28g+Qgg3koCqnZsltarLK7VuLVc4c56LVx5rO53abb6pNOxM55l48lnPDoSIRAhcDoRcFyf+c0mN5YrdPsu58cyvDNTIGbp9GwReDR4U/nn7SCgXt9FZBbc2GuxVmqxvN9mfa/N9n6b7VKL3UqHju1S7XiIYEsdzycQbscPp3p6A4xQwgdZjtR+p3Mainr1tiKwX+9xd6vJZrlLxtS4NJxidCCOpil0bfeNhuWN3AG5rk+jI0RrfcqNHsvbdRaFc9dGjfn1Olu1Lj1PQpLBkMEyVZKWiml4ND2fcrPHf/16i7n1Wih7DRBGCWf7OQi77wVYlspozmSsmCSdtM72oKLeRwiccQTsvsvcWpW5rYYIy8+V4SQXBuNYhvJUsduDvGViIXl/UhLpGfwzaqb9RhJQs93nX77Z4v/+bJ2vlyq0uw49kfHU8/BEOAvXRxEJ6CQZVZIQabJlCVKWghUoIVH9z/9PG13IXYP7+6AzTkDhKNyAZELjR7NZ/rs/mOEn74+d8Z9v1P0IgbONwF6ty5cLJRZ3GiQSGu/NZJkcjCMhPZtUJPEtBCIi6RlfGb+RBCTLEpahko7rpGJqKE7zei5N26PZd8O52FRlxCJDLDPEzQxfAcgBGJpCIq4TU6Vv7+9ZJiDxnArzcscnbqlYhvCsPrnEe2d7yoh6HyFwfAis77X4fG6PtZ0G02MZPrxQZGIohR8umB+edA7mKbvbpbJfolIp4wryUS3MRJpiLksxl3iNGZ19/MCl1RU6KoWEpYYL+RdF5o0koGTc4CfvjfLuhSI7lTYrmw3mVip8tVzli406+20HkfVHDgKc+z4/QjPS7Hs4AfzJ5UH+7c+nGS8mQi2Q0J2c5YWGWCgJlZYI9SGyKxYzBoO5+Is+K9H5EQIRAseIgON43Ntpcnujjt1zmSjEuTCeoZC1aNsi8Oh9Agp3PBJS4NJr11iem2dlZRU9bqAk86QKI1hWjKKUOsbePa8qh57dYHGjgyTFuDyRQ9FffFH7RhKQ2AGZhtDpqBQzMWZH0rw3U+Bn1U5ogCBMrrd2GyxvNljcarBT79F3g4PdkSyTiht8NFtgdPB13tDn3fDv//0Da5o3JZnI94ckqiFCNEOBHwAAIABJREFU4EQQEBKJUrXN3Ead7YbNcC7ODyazDGYtZEVG+P48WoQ0po/vN8O5Kp4Z59LlMVK5NJJqEk/Ejm334/sHbcvydxFKn0arzPxqBV3PhXOsGRHQo7fs8JNl6pwbEa80nwCtdo97m3Xm1mrcXq0xv9ei1OizvNNkp9pBWB4I7+M3rQgFZlQiBCIETh4B1/O5vVzh84USDcfnJ+fzfDibJ26q9N2nh92RZA9J6tO3+/T6KpKkkognUDUdXQ2o726xXq3guy7xTI5UfgCDLs3aPjstj05gUkhYnEuDF6jsdjViSh/h7tgNLNxeD9wuPTT6tgNOl1hMpeep/P/svedvHFub4PerXJ1zN5s5SKLyvbr5nbD77hrr2Z1dG/thAPvTwoAN/zf+7D/Ahj2wsTBgzCa/mJ3ZCe+88QZlURIpZrJz7q6uqi7jVJMSxUtKFKUrUVKXQHWFE57znFP1nCfX2gNymSjRsM7ubhW3vUmtXmJryyWRCQ59lU6B1g+SA3oZHsIhk8vzOvOTCf7RZw6lRo/tUotf3dnlN/cLTMZNBh+s5f3LsDN6PsLACAM/NQYaHZvfPijx3aOKbwB1YSrG/EQUU1dxhRvIETJ/wZGI241akYdLRRy7yET1PJnMGOMRj9LWJveXVpHtLqmpeUJ5i5i1Rm37ATdbYVY7cebD8CcLHj0pwt9tBskbVS6O6zQDc1i1MlJzm7aeZqdYp729RCyl0Naz7LSifHo+wXRa4fZShUF1m7Daw+sm0FQFSZgUn+L4KAmQwJMIbx5WdcJBnVwyyOJElNlshK8vZomEDeLhs52i+xRzPaoywsAIA2cEA5ulNt+u1tipdTk3HuXKVJzxTNjX0drHiF98oiRJBIIRsnmdydlpJsaywnqbRuEJza5FZOY8YyEZy3W59/AJgcod8lGLqckF7JJCd2uJVaNPW42yvqXRlpqEjTFi5zTi2TiWW6ZUq7K1skJh+QGRnELsSpjk5Cz9RpFirUIytUBq4hqqV6K14hISOqojCOZJUP3REqDDyFE1lXPTCf/v8LPR9QgDIwyMMPCmMNBq97n9pMJSoYluKHw6HePSeIRoUMNxhcHT0SK4gSucUj0i8TShRIovvr7kE61ycYedapeBopOcPs/cmE6xsE175QndeptzE0nOf3qNC/UOj/72Abd2HTpGh7hh0256rLaC/GEiRhyd7VKIULBPImRQxaPV7TIWD3Plk3Nojxr01pukLqaYzI7RaQ7QNqp4trAsPp3OYkSA3tSqGrUzwsAIAyMMnAAD67tNvlsqsFXqMJYM8Ol8gmkReFSSsPe0Kcdpa4UeV1FU8BSErYAwF9B1g3gyS3mrSWH5EUq5j2wYZMfzaOwiqw6WJzGWMuiPRfjPmwp9S+HnM7DmqFSsMJqr0C7ssLW2TXTyHLNz5+jurlKWqgwER+bKZHJZWlaFwlaFZqGM192g0FBJhvJDn6QTjP1wkTNDgJy+RWlrhUKpiiWHCCcnGMskSIROJ1s8PNDTXFvNCl3HQwnFERYe2mkaEXUGNtXyDtZAwozkCAU0tP0V5rVoVXZZWS9TbnhEk2nmZ8eJh99FlAKPRmWb1UcrtLp9JCOALMskEkkSqQyupKEqMvGwifLupuW0szCqN8LAmcDA4+063y4VqdV7XLqc5epCmlQ8gIgJd3ziOQ9J0jHMJJkxHcsOMBg4dCwHT9aIZGbI2dt0N4uUC21iuSmunpsiOK6BW0dWTcygzMSFK1y1LDxV4vqsSzqv0FbGCesabkAnmQyjmApaOsnijRtYqk0oP0dMVkiOTRFUJMqPijRqdUzdYCyfJjue9MMGnQa5754ACR8bt0+tuMXy42W2ixUsKUgwJqzR5onNZ9n/1jm2DbKCoshPTQREGAohMxXRDMTHURyCGzxs8CXYV9cZTpaiKih7BEDUd13XD3uO52J1WliejCM8kRt1XFlBM6OYCJPEAbbtIMkKqjI0URS2+iKVg6woKIfirNkCXknGsXqUNh9S7UtEZxKMGxranoVjs7rLyqO7PFytUmxKpNMNgqEAAcPA0PZHvjcoMbi9gYkxCmc1EcFBYmi1J4iFGJZrWww8CVnVDxAKD2Fc4++gGFCtNmh2+8TiUaIhcw+ffYqlLX71mx+w7AHZiQxC8Wn3WjiuTaVnEopEEX5WsjdAhDxSVM2H4bjFJ/ArXOgkAejoGGHgI8dAq2OxtFnn8U7T34SeH4v6jqdmQPPfORH260dvivhGIt51AzOYYWI6ieNKmAEVV4i/JBUllGJsUiEUMtltOhjRFPP5OKaaoNPv4xkmqiIRn7nKv0qIb5hEPCgx3pfoDzTfYV8JTxOJB9kud+naEuncF0QiETQjAIrmB0c1ZJ05Czq9KEY0zUIoRiQU9p33TzO175wAea5Fc+s+G5slqnKK/KUFQnad0voavbJEfz6LSIrQbrcplUp4SohkOkHUlMHtUSzVKbf6xGNRxhIRer2eb0USDIf83bv46Aoi0Snt0qxVsc00iVSWZETGtiwqlSrdnkUgnsBwW9Qef8vjhkM3cYFz2QRT8Qiqz/30sFtVtksdtECMdDqNoEG1WpV6o+kTqXg8TtgcLh/bbrO7W8aWAqgM6DTq9FwNuT/AT27oE6A2d5d3WX5iMTV1gYtxA6/XodVqsrobZDITJmioOLZDr9NG0TQMw6Rvden2XTxZRfFshN3+QDYIRUNoTp/a9hrNvkQwPeHvrBTPolnvUO3KhEIGMbXN3d//jtvLZW784TfcuDq/x91ZdDyFmj7F+ESCr25M+GvKoEG9WaJQ0Ilj+MSo16pTqXUJxtIEzACq5GIaQ1y7joSmy34SrVarj65pRELC9Xd0jDDw8WJAbNiE+O3+ZoNy12UyFeTyZIRUzPQ31Z54p1+AHrGplGSNUEjbU7kME2f6JEtSMMJxcuEIkT7Imk7QHL5zIVXz2xVfJkkJkE0860R7TqwTJpA0GDN6/mbVNAP+uytKC78lsfdVghHGpmd9XZVsBNE07VQREPYheOcESHAH24/uslPpYVz6ExYWJ8jYTbaNAQMzhOf0adULbO6W2Ch0cCyPTMokmTKotRzW18sMrA7T58/7XEhrYwkXidjMRdx6kVZhHScQxnFknE4PT93CUwZ0+yaVtYcUd7fxIknMjoPZLmKvPabQM2g6eRKqRzas0tdNtleXaW2vYWsx+mqHzY11wnIXx3YpWyptp8h4fozFuSye1aRaK9HsSvT6Nt3KJo3CDk44N/zQC8bG6WI1VlndrlEYZPh67grz+RCDdoG1yoByrcxScZ2Z6RyyovJ4eY1EIkYyEeX+7SUGksfk/CQ7m3UaDYeZhQkM2aLbqFCsNGhZEOj1aNck2h2L7d0eruUxPRHBTsg8WVvl8cMi89evPbfjEvlHWs0uLdPAGUgYwSg6FkbXRlN0+s0GxdUqPavHbs1G3tj1d0uRSICr5xJsNzzurLa4OiaRiAZ4XA+QiAkCtL/kRr8jDHycGPADj65UfN9DR5a4Mp/k2myCoKHg+tH3X4wXQZx8Z3JhdSYdiM4iwvaIP1VDM4PEDknvfcLz4qb3noqSOsEjNov7EgxBhPRQzI8kc6ImX1LonRMgEY6itFun0/eYSgQIqCCrEcYXP2EgyVi9DmsPvme71sMyJ3BaghCt89hQ2OrGsJsus2aD3liK9XIce+cJkqJQMcepLd2jsfQ3KOkUgcnPCQZS6J1tqhWL7UaUzVvf0e9USF79hkqxirO1TkbRSOXnMM0I/cIyO0oZO3ORuz+sQGmHq59labaq3P/hNwTdOvm5C7ixBTbW17E6DSZyIZxGkd2NTZToBK1iidV7v6Nq7RJZSJL0lYhAr0WvuOUnnJKiKVDFVkRGDmWZNAc0yre49f0tVOkKiVyOh8vrTE510FSX776/SzisMDkTYWllh61tl/xkDqeyztbqKhV1GtuVaZbvYzk1Nlo6lYbJuNojowbYIktXD5DOJUlEzAM5OVSkXpv++hLrOzLfR/vEMpNMJBxCqkI8alLeLfK4sEEglUVWg9TW7nNrpUggkSamzHGvBP/+91tYczbXL0xRlC9iRN/5MnvJazB6PMLAT4+BSrPHD8sVlrfqRAMa1xdSLEzGfNGY4wgh28mOo3yERE1BHMSzobrBxd0LIaYINYKuISLE+GlmfAI2lNScrMefrtS7/zIIpMkqkiJ0OMZTfQ+DPpIeoNWz2Fgr4agm565NY1gmD2+u8Gh9l5oWZm5snJmQiuTZVNs9kqkk0sDm8XaJlfUulPqM9ZdBS9CIyMjdOuEBKNEgtisRCSeYyOZZW68izBkTeZ1kLk/UTKFvr+C1tmkpQbY7HuHgNIncJPr2be41NtmwIRhIMj2eo17YxuvV6Hoummbg9m0KaytsPHrCzpNl3DiYQkflx3USjkgKsmogSX2E1eWz5eD4uqyuZVOvt+g7AzxZp9u3sXpdPLHzMYJIhuxzfO0B9BQVXVfp1YqsPl6iFtXx1DBSvczArWFreUKpHGNmjZDZpSBEeqpJJKESCxwUjbmYeoCJ/DTRRIQL5+b9QIdhuYbbb+NJPcr1EuVKhavjC5ybG2O7u8LykxaFosT3tz06nkTULbOx2SAUlUlevkIuckCX9dOt5VHLIwycaQysFFv8/aMKO7Ue31zMcnUqQTYR8l/+440PTjYkodsVvo12v8H9H26zvrYFhukHIA5Hkyxc/YRUVMduV8CMYoTDBJ99dE7WyU9Q6p0TIFU3yC/MYe1U2Xz0ENoxoo5NpbhLcnKaSCREKByn2bPpNOu4Xo+BpGDqOulUirGpceJKl3K3i+VIJGcvYm18T+F3/w8lK8/UuZ+RUx/Q7pbZLEnIdocpM0A8JmEYYV8Bn0lmKWyUsds1HDdOS3yg3R4Jx8VQPNy+g6Kpvi6p2qhjt9p4qHiKhh6JE88kSAYUulaPvjfwQ2F0WnV2Sm3WNrao7lYJGAFchlYuvpm/GsRMz5Ayb1PffcjWqozd1FCdBmY8z8CTCaoeteIudQsKxSa5TMQXxwXCUYyAhCfpeGJnE1LQTQ2lF8J2obC1iSuHiSsDghGTWDJBIJojrytEzBoFL0C3YyFVG7RaPfo+4y1Wl42rqcipSaYWZ7l+dd5fcm7LZmNzh1qzTcvqYwhjjV6TWj1Ax5VZmMmh1xV+d3+b8bTOz2YD/PpBkcpSjf/hcxgTCWZHxwgDHzEGavUu3z0uc2+nSTCgcWMmzkIu7Ec+6NmOL0J7XXqgKR6dbpuHy6ssP95memEKXXEo1Ry6awXG4yY5rYVhhukLg6xug3a7i6cYRGNxP4OAMLQSYvxW18bTwkTDQd8C+KeaundOgDQjyOTlK3S5x+/u3qS+rqNrQUr1Plf0FF/n0ly+PMsPd5f5/a9/oN9pkTAHLIxP4KSFlZZHx+ljeyq6ESAYTuE2K8gr/5Hs7H/L4pd/yqyUYeXRMpTbmJ5FVJUJajJtYU8vKTiSUNqpBIIB36a+3uj4sZMGTpegMDEMTZA2alg7SzxZatPsuvS0HFnFIqe6QxGWbxmnIXnQrlVoNxvo0RTRbB6rVsAwxLh0VMEM+Ly2gRoZYy5xH2v3EWvLcOeBR0jqcfXTEMlYgFxUoby9ys6TIoVSh4GnIyGjDTyUgZADSxi6hq7iW+DF89NMzBbZeljx4zql02ECaQUrEvYtbhRBNvUgATlGYODRrFeoNXv0PIa5j/Do41L3LNres0yMoh8kDW+gkYwmSYWatMpr/HJjl163x43zkyQnFG5t1LC9APMzs/zdI4diyUSxX/e1+qmW/qjdEQbeDgaEWOzeapXf3iv4H/ZzE1E+XUgylhASkKEhwZuBRGxxB1hKgGBmhuuffkIy5vJkp8jNYoNus0FySiOievR7bcprT9jZLeAYMcYm5pieyiL1q2ysPGBtt4Uan+TCwjT5VOTNgHdEK++cAEmyjBHMMTnr0nF0RPpsVJNk1mAsk/StvozJOWYdHccs0ev2GUsFyOcTeMEMPccj4F4gNlDwwhGiwmJt/CJf/ZN/DeNfMn5unCghVCNFMF5F91wyE2MY8SRpSUJTFKKBAPOzU2TNPyYa0WlIEeJtj5S6SCadZBDKkvAsOmkNRzaJSyFmZ2aJCQI0MY5qmsydX/Tlq8lgiF4yi3TxGpYRZTo/TffiNFpEITE1TzqqE/C/ycKiRWdi9hyqrrPdNf2U4EEdErEY8aCO+fmXlGsNYl2J2Tmd8wuTRMIxrl89j6ZKRENJPlvUaXc8n5PTQmPMX/4cYiXsrkM6FkCPazhaCNwAMckkEJSYkiN4n1yhPZFjIp8+oAMKkkuN8/WNKLlU/Nly0eLEUhKLqspgyiUiZak3m2g1D1kzmVnI+Sbjf+rGiQYN5uYz/HM3T8OSSIQOaUSftTo6G2Hgo8CA0LuIrKffPyxh9WwuTIxxeS7puzPYjntk3LfTIMbPGOQNkDpNOqU666txKnqPetclHc8S6FfZXX2MJXm4oTxt8U3IjWE5Lo8fPaS8vUQiorDThJZrknY6uLbYoEb8DepPIUiXvOM0WqfBwBuoY1ki5PgAwzB8M+r9Jn1/HcE2gu+zo+z54ew/f9mvsBIRfkCC/RCexMJn5rhD+AWJRSN8ew6WE+bOltX3+9f1g7qTH7ck4O0L+3sh3hKmii+C1/Po7Y1bFZYsqvrUb8aHxRugqmKvcDJuQtQRsIoAgWKsgoE5fAj4xJ+Ay+dwDhd4ybWwlhNLR8B1mvovaX70+IxhoNvt8otf/IK1tTWuXLnC9evXSaVSZwzKsweOeEfKtTb/y/99k//1L+77sd7+pz+9xP/8Ly8ylggMdby+n8/pYR/6PUokIiqtxhZ/8X/9R5YebjF3aR7Vs1HNIKkLX+JVVrC2viNx6UvU3DWcepvJtES9WuLv/v4OEd1m8fIsDTlHt9YkoTRJzZ4nPT1LXMH3hDw9lEfXfOcc0GGwBOE56hCEQH7JR/+oevv3ZJGC+3mj9/1HP/r1icURBEM4ZQYCJ9vRC3hNU3gwneCQpGPLDgnXntfqCZoSRUSdYb3jK/j4fAERPr7m8MmQIL6s1Oj5CAMfNwb6fYel9Rp3Nht0Bh6fiKRzuRCRoOZvMsXG+E0dHq4fEke4lSRnInz6xSfEwxr1XpkfVks0V7aZDZkkkik8FQo7qyxtCqOIBqVCk/GrF5mePk9hd5ebG7fZtmzmgmPEhTvgq32CTjykM0eATgz5qOAIAyMMjDBwxjHQFIFHH5V5uNVERDu4Op9gYSziO2++SeIj0CBEcCKQqdVp06y1qVWquD2JVr+FRwzdNJFkVaQ7o1Wvsrn8gHprm92uR7Gkc0kEmun3aBbWWHu8RFcKkb3Y96PGHC8ver0JGBGg18PfqPYIAyMMjDBwLAa2Kh1+/6jMbqXNRDrM9YU049kIwu/U9/3ZY4COEpMf2+gxDzxPRpEU34G+2C3zeOkBOD3MYJzFLy9j5IN0Nu4iHGKFxe7AMIgaGSRXZaB4yF6HRmWHljUgGM+TCUfJJyOY2kmF/8cA9oLbIwL0AuSMHo0wMMLACAOvg4Gl3Sa/XqnS7jpcykZYnEqQ8EMVSH7w0YE3GOq1hSXua4jEha7Jsj0MM8EXf/CHLFxu+hGxhVOqrgcZm86gSgm66RiYQXKuxGQsiCwPcJFpdz3iQY14WEVPTjG5cBVD10lkMpxM6XA6LI0I0OnwNqo1wsAIAyMMHI8Bz6Pe6rG0UedJtUsopLM4HWMiHcQ0VHp9YSgkTKKEi8MR0ZOPb/nYJyKXkBkIMbFwnmEUx8NFDYLBAzGxMkcbkcQOV/sJr38q0d5PCPKo6REGRhgYYeBsY0BENnjwpML9ZRGNxGNmMsb8TIxYRPjyeXu+gMPo9KqIYv8GZHCiiTdo0/BWEDzigN4KmkedjDAwwsDHhAGR2+d3D0q+86ky8Lg2FefiRJyQofnpY/a9XwTzM0ytMsyCKpLSCYvd09vGiZpH+F2cUeSPOKAzOjEjsEYYGGHg/cVAod7ldysVHu00SQVVPpmMM5cJoysK9oHAo4JcCFGcK8Rxp6c67y2iRgTovZ26EeAjDIwwcBYx0LNs7q9VWSq0/aDDi/kwF/Ii7qQ+jEh9BKURqST9SAZDAd1ZHNZPAtOIAP0kaB01OsLACAMfKwaKlQ7f3t9lvdginQzyyXyKqUzQj9PWd4dpEg7jZhhGR/LzAr1p/6DDfZ2l65EO6CzNxgiWl2JAhBgSoYZcd+BHEH6a6+QNKHFf2vmowAgDJ8DA8naTf7hboFBuc20hzZX5lJ+Z2LJdX9SGJyF0PUJTc1DqNky87flGcUfGzzpB3+9bkREBet9m7COG1/P6VKtVqtUGIr2x8KEwdJNEKk00GhlGGv+I8TMa+rvHgEhdfW+7yW+e1Oh1bGYSAWbyMSJhg65IuzAQaSePNhIQlnCyJCMf/fjdD+4ngGBEgH4CpI6a/CkwIIKnNlh5/Jj1tRqZbJxkzKDZalBpdEhlsszk0yjKR/T2/hRoHrV5agyI4L6C63m4VafUsUlFTRbzETLxALqm0O07PmMjVuhRq3R4/6gnpwbpzFccEaAzP0UjAIcYELvHBhvbBda2+kzNTDE9kWB3Z5fvllap1LuMpaKYmsgKaTNAQlFl37t8IEQeftRvsLqW/xEwTd1Ph26Jj4Ks+vmaRMJa17YQaeJFll5xjTcU+XmSiqrp6KqM69h+VHQRU0tERdd1kU59dLxpDAhxq93vI1IWiENTFUS0eElEs39D32kRO63X6/lzrqian19LVU8XeVOkkvn9gwL3VsoEdYVrUzEuzSSImIrvC4TgfoZJkcXpj4iQsE0Qf/tl3jQ+z2J7IwJ0FmdlBNMRGBAhSwb0dRNiUZJj44TTKWzPo/3dYwayim13aWxts3T/EZYqUqvHCQRDtHoG+bEMsaDE97+957/ln306S3Fnl5v31lGjGa59coXxmMLmg5usFxooiQkiOriNTcrVOv3wFJPnLnE+p1NZX+GHm4/oDjxmF+a5cO48odAJI58fMbLRraMx0G1UWX38gMcbVV/cOp0xSE8uEMicIx7kQB6ro+uf5G6n0+a7775nfatMKjvBtcvnyGcTJ6n6ozKNrs1f3drl9/eLGIbKlbkk5yZj6KowvR76+YhKwshAiI+FHkj8HdQD/ajRD/zGiAB94BP84QxPsCMSg75Fs9ZgY22VbmWTZquJHo4zlk9i1be5d+cW331/j0DEIFLO0ZMjdNsKP7s6Rmw2QbHRpV6tkw6U2dgsc+fODmYogGpIlDIJivfu07Y8YmaCXnGX4sNvKXchcCFNomdT21rjyf3b3H+wxUBkjrW6lNwAV85NMh4dEaE3ud6EPsWxHWzXoVsvs9Oo4hoh0ulzBHstPMfF1YIo2PTaLVqWSzAYJhYbZvAc2BadVpOG5WEEw6Siw6hmrtWkWGmiGCE/55fQJ4o8ZCJ/lxCjneYQjqWb5Q7frtYolLpcWEiyOBklnwn6UQ5s+1m7wthgeBzNxu1zQh+DXc2IAJ1mtY3qvAMMyEgi4GJpl937m9yU6uhuk17XY+yLnzM2maNXusNqoUrXiDKX1ukMZNa3O+hWg5K5TUyZIzlzEYwNNh7+LVU7QmpynHBvi9LOQ1YbE6h1m3PTeaYXJig9rFKSdVITYySnpzG9LsWHtyiXykTyk2SMNlWnxz882kYNx0cE6A2vCjMSY+7yJ0wsQm19ie37v6TdaWJ068idAgGR/yaUoVcpsbuxSsMekJ2cY948R8hQ6NTKrK+ts9ORiOcmCBoZdLVPtbjG8koRjCQTk1NcunKNi5cuoqo6kXD4VKNotCzurlUoNHvIQY35TIjZbMj3/XHtgW+1yZ7Ty1PxoQidc0RvggD5xgp74rojinwwt0YE6IOZyg99IANhvYocDBPOTTA1O0vC7FDZrVC1bDZ3yuTdLlo4zXgyzfUrESotG0faIdhpcPPBMv/fwzZ/9K8usTgTZWuji54Q4rMvSDQfUfdgtSP7Ij1VlYnGYrjTF9ECISLpCGv1PvdvPyTb2UENZUjlrnAl41Bt1OmVgn7K4g99Bt72+ITOLaINMw+HmKSxFWd1a53d/rcEYlEWZ2JEvDq37qyyvbbO7EKEjmOxWmwyFbapVKoUmzbxaBCdDt/deUirUSQV9Iil0lS3q6z9UGDxixvkcrnXGt76ToNv7+1SbvQYz4S4Phsnnwj4ih5HiNwAWVAb/0Qw857PbYlgpH5yyMMm2Z6HM/B8fZAiDe3mjiJWrwX0Gag8IkBnYBJGIJwEAwOQVBLTs1yIhfjiq/NMpKG4vsp/+O0W21sNxs9lmZyUqHVVepIgHCZffh4h3A3wqNrhh8ceX3W7zM3HUc9fY3uQQBYfh0COsUSYqOOx3SmCouF5EtFkFlN1cQZ1KqVd6h2budwc8WCMXdemY2skU3l+loyRSRyIMnyS4YzKvBoGZBlV06hv3GV5tYZ6+Y/IXoiRlivs1HsULY2vcjEsTWV9u0g4VmWnUGejpnItpRCQO/ywtsH9O0vMTmT5oz+aRnE3WV9dIXVuhnQmtc+gvBpce6WXNhr8+l6RUq3Hzy5m+OxCmnQsgGUP8NU/+9I2QUX2YpEKraZgio4yefBp1V7ZD9mwc0SATrXcRpXePgbETjHIeC5HNBok4iv9ZSLJcaYyVdA0Irlp8Lao3HzA73ZlJhcv88m1BeJejj/sR4jOdLk4FiMUSzHz6R/Q+uEuD3/4NZ4R5/KNa0yNxdGt88iqgaHKSP0qO2sPebxTZhCe4ouffc18Qqazu0b57hL3NlWy84ssXoqSCRydSv7t4+kD7dF1kaw2ntui1w/illq0Sm0GGQikIkQUFT0S9ZOpdRsNenKJWqXI4xUPt1fn/FyUSMAF2+Lx/VVikTDYLexQCMfQsYHTzmC7a/Ngp8m97RaO5TKbDbM4myQWMWlbztCy7dC0CP3k+OePAAAgAElEQVTOUKs5fHCYuxFuquL5ntTuSFHdoSbfy8sRAXovp+1jBFpFkSLMZE1sR8XYW7mqEebiwjRoBrFYipBISTzXYqfuko5FiZgBVAJ8dv065+b6REMBUAwCsUkmJlv0LbCNBIlohHg4gj47j+tJmKoq7H6JRBOkbIP4+DTn57MIMwMTh9lWG7MlE4nHiIUMREj90fHTYcDudem16kTGZzgfOk+rVKD9sMkKeRxFJRk2fB+wbtfCdmSUUBZVqdDavM9qRScgn8eIJ5jJRansbLPx5CGtnkskmcEdDD/2p4HecVzWtus82GrQdgZMp0Ncnoj6kQ+EG8CgK1IuDHU9gsj4jNAeZ7NvZOB6A9859XBKhn0iJOocJlCngfUs1hkRoLM4KyOYjsCAgiQFnloy7RcQPhv58cn9S0jluZbIccXzkGT56Q4yHAgh/g4e+blFcjPnQXif72mGo5GhBZVfLpxm5nKKKQ8U3yloWNtMjLHwWZZ58VWQh+HzD7Y7On/zGBB+WXpsjNncPBey52j+8PfYgwrN3hiRQJB00CRoGISDCpISJTYWZ7zncmmyiMKAoB5BD2a4elXBmYmw04D1nTZhM0RQVjitJ1e9ZfHruzvcfVImFND4ajHN1ekYQmzWd9ynEXXEUjmg/nl6IcRwwtpPlUQ67X053TP8+bZzwiphL3TPsycfxtmIAH0Y8zgaxQEMCMJzlFz9QJHhqQh9oryopIQkS0e2Jfr48efiRz2MbrwhDATiGWY+/cdI4QRaIIyjfkXP7uKE4gyyGgHJIxiSCUQlXE8nFjUJLFwkHE74fl9qMIpsBAmoNrg95roDrnVsNE0nk06eGspircff3Nrh/nKFcDrMlfkEs2NRZE/yw0WdpOEXcTfCX0g4PCuyhyR9eFz2iACdZIWMypwJDHieRXF7l1KhgiM+/3qYcDTJeC7mR0A4HZAiGUufds/BGqiETB1D+/GL3un1fI/8gGmgC/Hc6HirGNDMEDHzAAebneQAr/oUFnPo6uNfa5EYocjRCaajT2u83slmpcutjQbNhsWFuRSLk3FyyZBPNByR5OdFx14mbsF8C98g4aAqktEdPIQxzPDp8/cPlnmfz0dv0vs8ex8V7MJstcnS0j1u31ohEAlhRlPEU3kUdY6JbPzYYKRih3n49RWOg0OZu1BMC4upDlUrxNxEEmPP9Hcfve6gw+rGFs2WzcLsFKn46XxF9tsb/X4YGKg3ejzYrFPuOpixAFfyUWZSIQKmRrNn+5GvD6+7pyMXi1IQoD1fH1dYYw4GaEJsfCA6wpDPPr2O6ml/Z/RkRIDO6MSMwDqMAYeB16Zke3SCeS5fmGQsatOql1jfCtKVApzLGX54FhH2RPjyiJffdhx6joSmKJh7gn5vYNFq9lCMAAHTw3LaFGsNP+LB5NhwxyxMZ0V9RbZoNgo8vPeAek0il0r7BEiIRrp9z48xZx77FoldrZAAiZArnnCbxPZkVAn/7/AIR9dvHgNioyHSd+xvOIYxAY8lCycGYDDweLBW5XcPCtS7NvPjET6Zi5MI637KbccVup0hgdlv9Dk90P7NA78vEsW9PsQHOjpDp8e+OmcIxhEoIwz4KlzPc+h2+1g9D1U1UAYdnE4dR3eoVUo82imjBsJE0lmSIYVOp+uHXBEfoFA0hBky/JAtTreD60h0+hIBwyYa7mI5NuVymc3HbbSJCK2BQatlobo1bKvE9tYOXSuEa7XptAw2t0v0O10810Y2DZITM2iSR2PzEeFIlGBqgt1CAcnpEIuFqLccCuUGkjwgN5Ynn8siJH0f6oflrCxZwVU0m00/8GwwGCQQCOxxvq8HoQhie3u5zLcPCnS7NouXMlydT/rcjzC9dt2h9dvhXvYYnyPn/UVrQXBI4vlhEd3h9t+36xEBet9m7KOFV/FD8fSLu+zc3eIHqUpAE5GsDa5Nh6C1xbd/85fo+Ytc++ZrTLvN8lqJh2s14lqPaD5BRwtR3y0Q8iAcibP8eAdJ6vDlV1N4DuysrOOs9egsJFDiSVa3W8hWk3xKQdJ1JEml395la6PG/ccVzH6VZnGN1abLzDd/QiaksfsP/4H85DSJS/+Yu/cfE/KKnJ9PcXdjwN3766T1Fhc++QI9miUTejMBNT/aJXGCgYvNR61Ww7aFwYHmE6ATVHtpkVKty9JWnY1iG1OWWRiLMj0WwzRUevbgaVTrlzZ0ggK+fmgw8C3qJEVYdn44AUxHBOgEC2BU5CxgQMgzJPRojPi4zMT0NAmzR6/Tot+tUioUqPVdpqIRgoEB9fIyD5bWuL9pMx51idgd+lqSqGRjaBKVcpGlB4/Qwyrnvpiltr3C+m9/RWV6lvR8ijmaxAM6UnyOsYkQlUGFlccbrD+4S3RymujMNBNymof9bdbvPKIT+I72WIpKqU5nsEXCeEK97RIMa7iOhasECUUi5PQOkt2mXG0R1YOoRxg8nAVsfygwCNGbCDL6OoFGD+Oi0+3zcKPKva0GfeBSPsLieIRIWPdN/wXXJWwJRDw38ftCF7E9lkgYIvhGbseyQcc+OAzee3U9IkDv1XR9zMCKWHCCdYkSnc5y/tJFpgIFNlcesForslG3UVMTjM9OkkkY7BZ6tDtt+q7CQFF9v3LZFUpeDVX49AwsvL6F48i0VIOOC4O+gxoKgaFj9VroaohwJkc0biB7FRqVKiX6BMYniWYSJOUwubkFck/atNfvUOvE0LIzlDsNqnd/R/78N0zNZjGUAvFUgmAwxryk0PKg1WjRTwQIndYB5WNeCq84dhFr7U3pfkTXlXqPb5eK3Nts+GLdz8+nOJeP+PJUEb9t35BNuO8cd4hHPknZK+PXEdZwwhjhkM+PcEgd/hvWeUGzx3V3Zu+PCNCZnZoRYM9jQPathvrtNvXdGjtbUQZqmcJuF3UsTywi0axXcPs2uh4ikZogn7OxJIfptEFuMkKhC6v3CjTMIFPTaaazGRpOx5erxy/e4OLPA6SDLbzqFt81HVrdLlONNnJDZ2ttF3sgkZieQjVNVm/eo9WvYIYDXLjyBSu/+n/xamUyl6+xs9qltnKPc9e/Ip1NMqhsI3vCKVHkhXFxfZfEoUz/+TGOrt4HDOxWu3z3qMrqTovJ8RiXZhNMZMP++hTGKS879h1SRbmnfM0e8XGEz4/IFfRCtullPbw/z0cE6P2Zq48C0u3tbTqdjh+dOPxcaHwFWQ4zk03hdeoM7Db1gYaWmCU3MUM2bVEO6CSjYSQMIql5zp0zCYTrxIMyuVychKwhWQE82yOWiLN47RLWoM9UNMlgLEdWTxPrb9BqVelXPUKWRzQ4wO47ZNIJchNzLF6bwBu4VIsbtC2IjeW5Npsjq9TodyuMXbxIPh6mkggzP5UhHo3Ss8dJKQE/REzAnUKVgkhRU0T6GR3vGQaEheXj3Ra3Nxv0LZe5ZJCF8SjxqEnfFmnjT8afPOWADoxf3BP1j3N+Frog4Vrki/X22awD9d/H09Er8D7O2gcKsxA/LC8vs7W1xZdffsnzBEhGkeN8cuUysxMt36RZ0QIEQxFi0SAyLlY+hyaMBUQAHiNBfkL2M6I6gwFmKEYuFiefmqBRb/gJyGLJFOFIkGhYQ0Tj6k+nMLU0tu0w3raRRfx8t0e302bqnEk0kSAcMLA6LdTLASxX8dM2JGMBJrP/wre0MgNB5san6F/9jEAgiAgVJKfOMRUVegEJTc760ZE9FAxhjz063isMFMptbq1W2WpaZOImN6ajjMWDaKrsR75+kdjtJAMVdOW4VSEcVcU7onxA4Z9GBOgkq2JU5q1hQJjMFgoFnwt6vlMJSTJJpHSisTi27eKJCMi6thcqR/HDqhysI8yhDdPw86poqubrAQLCH8jQ6PX6yKqIerAfimfgR8AW9TVVJRgYZjf1vAj9fhxVU5+KRUTWzbxu4KD6/kbCjkBTg0+7VlUV03yWHVU3DHT9mVmu2OmKD8kHsol9Ou4P/aRvu9xfq3J7pULfdbk+FeXqTJxIUPPXmJDBCcmZMD7YJ0TiV5hki/svnO99p1T5WQTso/Ap2jsZj3VU7bN3b0SAzt6cfNQQ+UrYgTBjPe41k1FUHeUEK1eIMnTDZJjS7BlahS5G+IM8f/w4/I54LrgWwzjUgiz5nNZJ7Qf8He2Bba04PRz5+HlYRldnEQONdp8fHpW4s1xG8eDiVILzUzFMXXka983nYHx9zrMR+ERjL+zOs7vPCMn+0thfJ4LTERRMrJH9Z6KeuBL2Mx+SL9DRb91BLI3ORxh4yxjYt1o62K3Qu7i2NfRqP/hARBfo2/7fc7efXng4rjtMifz03ujkY8KA2Mwcv6E5OSZ2qx3urNXYLLWJGgqz2QjZZBhVUXBF5IPj9kxHdCGKCmOEo0wWhNOpEBsLmA8SIEF4hAXnUVGzj+jivbh1gn3kezGOEZAfEAb8nd8heUWvssnO8h0aWo7Q1DUmEhoBxaNd3eV3v3+MrAX48qurmIGD3IpLrVHm1r0tdEni0rlxoskkQv9y8MX+gFA3GsoRGNgnQK9DhES0g9WdBo9KbTxF4nw2zFwu7ItzheGAIBgipcehZXsENMfc2qdIewvzKMIkavqBS1+B0B3T25m5PSJAZ2YqRoC8CAMDp0+vVeDWTgO1HiN6Y4pAuEej8IT7j9aIZCf5DJdWtUCz1ceIpYlHdXq9NneXVuiVtvGqeTIXPyWazhOhR7PRpOPIhOMpohHTzwnj9TvU6w2aPQfFCJGMRzB1aNVqfkruYDRJVCQ/exGwo2dnBgNiMyP0cUIvJ3yBTntUal3urlRYK3f8VA+fzCeZSod8fYzj+Fl9nuaUEn0IQvQqHNFTxc4eATpugyT0S/vtD8/e7/9HBOj9nr+PBnozOUH+6hd0125SvnuH1nyUrNegVtwiPp5jbOEcA7fDxtJNHq81iM9f4+rVaVCEvkilvLHC7dZjUk6EmcUQGWeL1SeP2Wgp5GYucfnieTKmQ21nk6WHj9isdSCY4eK5aeYzKmsrT3i00SAzeZ7zC7OkotqIi3oPVp8gOolEwhfdilA8pz3Wiy1uPipTrHZZGI9xcTrhW8EJfc3QdHrYsiA6wuBA/ApisR8N4bT9Hqy33+a+nungs/f1fESA3teZ+8jgVvQA0ew5ktp32NY6KF+wW2lR3KkyvXCBaEzjyb17vm+GGTapbzxgO91HjkQRJmgBQ8cIeqghg+5AodFWiCfy9NUe9SdL7Eh1nLEUdx/v0mwNiMVDbJUK/PKXW2zn4yRSCT8Kdmv1Nut2Ff2Tzwgb6tOMqx/ZdLw3wxX6RGHOvy9+O43xh3AevrVe59fLFTx7wJV8xPf9iQR1eoL7EabRh7Yjh0Vxb4p4iHYOt/3eTMYRgI6MEI5AyujWGcWAq3A+o3Mh61JrVvlhrUO5FySbCENtm/s/PECLj3P9809ISGWqOw/Yadbo2A6RZJrZi4tcuDRNIKRTaUM4OcXUWI7O1gpb935DobzJelfFnLjCF199wVRS4dHt7/mrv79J3dKZGM9Cc4vC5mOa/WE8gzOKqRFYexgQBGffqOU04XgEcVndbvCbRyVWqj0y8QBXpuOk4wFkRfJz+OwTt6OQvk8sBOEQf0cdR90+TgR3VP33+d6IA3qfZ+8jg12kwZ6dn2Tg1Ln3w222mmEmc/OEonGsWoGWZeMMFMJBg3BIo9Xv0a00cHo2hqKgaxqxoE6n0mJj7RGNiuaHxlnaKLOgRhhXZVKZFMl0nkBAIiQiDzttygXHzwc0aMcpOwoRM4a3/2X5yObgYxtuo2XxD7d3+P5hCVmVmZ+JMTUR8Y0PjiMor4Kjg7YH+9yAH5hUOKQKPdKrNPYelh0RoPdw0j5WkMVuNjqxgFkosvI3f0ktsMDi519ihsK+scDEWIzCxiOKu+vUi30m5zJk9CAR1fTjsA2sLmsbO6ztWBQ3H1Hy+jRsg53GgNnQFKFojnS3TXf9JjfLHktrVbRgkomUQb9b4s7dAj0HLkyEfM/3/Q/GxzofH8O4N0od/vLWDvc3yoyngny9mOL8RMz3xxGOqfuH0AMJU+zTWMIJInOQ4/GjYgsd0geaA2gfZ+J3RIAOYmN0fsYxIEEgSzA1QyIsEUnA5Hjcz8ESzea4fGGamw9WuL/cRjZinItNM5PPUS+qOEaPUMRhvdqh3rBIxWOosotq66h6kon5RULBOF59mdLaMluqyr3VNkp4nBufT6IrA9ZWSmB5BE0TU3mxx/oZR+RHBZ5IjyDEZEIU9yo6oGq9x9/f2eUfHpfpuDaXJky+XEgwnQz7nLMtArPtHUM/oAGaJvtE6HW5IwGvO/AQ2X+EqE8QqA+RGxoRoP0VNPp9TzAgkZ6Y55/+q/8OKRAll9T9SAdyMMrY3EUGwTSZeQvVCDM9mSERDnD9ionbS2DoLhFXZ27MJXBpElny6A1kXFchlY2gY+GqAUKpcZKqy3oB1FCSxQtXiId1Zqfa2A7Ek3GC6ulNet8TRH8QYIqEdI1G47mMqIIQvewQQUf/+vtN/s///JBHWw3Gc2E+WUwylRk6nvYdkWD9ec7ldYmO3+AzmvYyED+I5yMC9AFMY7vdp1Lp+MnPUonQ0xF5Aw+r06Uv0gMbJqYu+2mgnxZ4T0+C4SiLn/7BIehV1HCKafF36Ek6EwXEH8QPPXt2adGtlYjGE2iagSH3uXwpRiCWJp/N+3qlTPpZ6dHZ+4GBfQIkEtIdjtF33Ai6lsNv7uzyf/zVY/7uXoFwQOWPL43x5fk80ZBJt+8MTa8PNXBYLbh//UqESVC1w5TtUD9v7dITUUYsWn0PSzYIGTKRAxTD9RxKlS6SJ5FMBId5tl4RuJdvBV6xwVHxt4+BaqXFD9+v82C5TOdA9yKq8+pKgfsPCxSajpAejY5jMWCgBxNMJIIElT49V2Lh0gJffnaRUNA4ttbowdnGgBBlCeIjUnKL42UiOM8b8Pv7u/xvv3jAX9/dJRjU+dn5NP/VYp4L2RSmqvqhnfx4bS8ZumC09pmtVyJCL2n37T32sLptljcr/P1SjcdFkf91//DodLrcelzk9pMKVv90rNsBerbf8Oj3fcOAjIfn2BTrNuu1AdMRmYACHavPdytVuo7EP5rOoR3UdJ7hQb7IrPWnBFvRgyTTaWRVpePKJLNZwsaI+PyUOH8bbYv1dJI1JTifX9/e4X//q0f8u++36Fg2f3Ahw59+McmNhQxhXUdIFYYpt9/dyySI2b6Dq89l/VQKIpE+RDeoN6r89vsCXM7xaX58OGXdPu1yj0JbwggZfhbX08zliACdBmtnrE4sqnF+LsTNqsTttS7R+SCBkIfV7rNjKci6RiQgY5xxflfsTkWU6mAw6OfSeRdoVoMx0sHYu+h61OdPhAGxrl7E+XiDAduVLr+8u8u//S/L/OXNbWxvwDfn0/w3n0/w9aUcyXgAxx2G3HlRWy8bgiAe+6K5l5U97vk+N/W67RzZvudh9fq+FNAwhfN2mJj4bTboN0MIHkjEk2iVmmyv1RGpSTLjCT8tyZHtveTmiAC9BEHvw+NgRGN6KsC3lQ6rm3Wuj2mgDrBqPZLJBMFUGFM/fRiSt4mDfYsl13XeZrejvj5wDAgmQXywD6cyEByNMLf/d79e49/+ap3bT6q+1dkXMwn+5RdTfHN1jFQi4HNQJxG7HYdG0fc+4RDcy75o7rjy7+p+r2ezsbKL60F+Jks0bDKRCvGzSzG8mMFWF/IB2Cy2ebxZI3MlwoWsjnFKm5wRAXpXM/0G+5Vkg2A8juE2UepV5EGcerPP5laDsXiSybkYpsiadgYPIRqpVCpsbG6xvbXJ3/7NX7O7u0uv1+Hy5WuMjeWYnJw8lB31DA5kBNKZxIBIXzBMYaASFpHS99iGTrfP0lqNWysVfvmgwF//sM399TrxiMEfX8ryz66N+ZxPLhX0uQFhFfcmjlfhgASo+4K+t6G+bVsOO7tNHq9UsRyXtqIzMZkinjT57HKUX+94/LDaIjJvUhxIPO4qTGgymYMB6F8RSSMC9IoIOwvFxUe713foWa4vezUNFVONMBU0kJtN2p0OG9UOKztNLmbjzMbkHyVlOwvj2IdBwPvtt9/y7//dX/D9t7/1s6HevHmTn/3hP+JP/ut/Rjab3S86+h1h4JUw4LoD+s4Aq+9SrFlohkS50fXz+vz1t1v8l1s7PCq0kTyPxek435xP8U+u5bkylyIZG2bTFVzSSQ9BYPY5nZPWOaqcT3wEx3bUw5/oniCy5XqPUs2i27dRSx2CqTipjEYiG6LxsMrW1g6XQwm8oIGSSaObhxM7vhpwIwL0avg6E6Vdx2Zjp8bDjRZ9SWVuKsHiWJjFyTiy43B/rcL9zQaa5fCpLvEsWfSZAP85IIQ8PRmP4zkO33//PY+WV/3npXKNyelZotEoodAz0/LnKo8uPiAMDA0FBLHYd/AU7pfCwVMQD5GC3T/2WYITjFxTFDrdrp9AbqfaxlruU2kNeLjb4NZmg4dbDSp1i5ih8OV8ij++nufGuSRT2QihgO4zS75I+AR9DUVsIhqC4JRkFOE8ekDsdoIm3nmRgKESDqoo6gBlAKGARkSXUdCQAkLCUqO/WWAz2sMcz3DlfNr3w3sdwEcE6HWw967qSvhiBUNXkCUFzfeU9oiNRYnWW9z662VWmwO++WyGRPIsk58hAsORCJOTE8RiMWRFYeC69G0bQ1OZnp7GGFmivauVdmy/J+EJhHLfsl26PZtO16FjOXT7Lv2+S892cQRn4eHvtjs9G8sZ0HdFBluh7BehaCR6/YFfTzh+iuMV6A/IGv1+i255jWqjx3Y7ykpJRMNoY7se6ZjOH1xKc30yzlfn01ydS5JOmCDJPhEUxO9VDz81g+T5BOhV6oqexN8rje9VOjhBWUOVySSDZPMxfy7y6SDxgIjzLeFJBouZMDtL2/zFL9e4+LnMP/95lnTo9SAeEaATTMxZK6IqGlNjCcYyQ7dKVZVRhVZT0jGiOqbjMBML88mlCdKp12OR39bYZ+Zm+frrr9nc3GJnZxtTU5mdmfKNKN4WDKN+ToYBEe9MV58Jh/YzgjrOkAPo9W3qwjm62afaEiKdLqVql3LD8u+LhIG1Tp+eLULkQLNr0xSWVyJcjmAb9j7E4vtvufhESaSpPukhWhClewMF1WuTl7aJaDJ1RaHhasSiBgvJEDfm4nyykGRhQkS3DvqO2o6giSJ0zyuI3U4K14vKCXiHvNO7JUKRcICp2THf10kYXxjKs/m4NBdjfTPJf/5li1C1R0r3MF+TZI4I0ItWxVl9JnLDqwrqEbOXysT5F//kIpJuMjceJPjsO3FWR+PDlc3m+PLLL/nNb35Do1Hn0+vXufHZF+/MHPtMI+sdAScIhKAPguMOmUOryma7z0qhwUalw+Z2k2KpS63bo9ZxqHYdKh2bWtui3en7zoo9x/V1l8LnxvE5DA/XHoAQXSkyQbGZ8pXvHpqmDK03ZelEfjyH0eK5AxTFIxwJMp0KEExl0CNREhGdqXiAiWTQTyoXDhl+nDjBeUl7CeUOt/WxXBu6ykQu6uNb1yQUEZp771DjQW58Ps2/SUVJJwIE3oBh0xGfsP3uRr9nBQPbO7sUimWikQhTk3k/pMhxsIVDQT67cTgYzXGlz859oee5dPEi6XQaXdf54uuvufHZ5/6H4exA+fFCIgiPrko+d7Bd6fCbuwU6Xo2l7Sb3tqqsFtqsbzbYLbT9tBiSJPu+Ia4sIckSim+NJmFqEomQjqGHQFHxJBG8E0wZgopMYI8ACX4gZOgkQoYfefxFJtBD5ujHHJI7EJyaSybokE8FSKXSJGJhoiHdb9PzhI5pKCbEE8QKVEkeipw+0qkW8xw8zqZalslPxPnXE0PJi2Pb7Ozu+rH2hP9eMpn0xeivgroRAXoVbL2lsmKnKZSfnU6b9fV1/uq//B2/+u0PfP31l/yP/+a/fyEBeksgvvFuBNGZnpoil836C/nixYvMzc290IHwjQMxavBYDIh01qYZoGHJrNyrsvvtPVZrLtttm+Z+bDRngIuMHjDIhA3GYybRoEokZGCI7LGyRNQYkIsqRMMhJDOMq6joqiA+IqvoUytp35TM0DU/66wwo36hSGxPbHcU8BKenzpBKNhNU2Swlf00B0NBl+cTR9kTzJfkR7JWXkli8Iw7ONi3ILbiT4B1FGiC4B7lByRaE9376Rj8E3EtjAB+DJRo15e67+cM8vClIq/jJHtwDCc5t/p9fvWrX/lSC7GBvHbtGjdu3CCfz/ubyJMEfR0RoJNg+i2VEYRndXWVR48e8eDBA5aXlykWC9y7/9C3DhsfS/uRAt4SOG+9m/zEBN988w2KqvLVV199kIT2rSP1DXWoCG7FzLLS2Ob77T6rtSodW3zUNTKJCOPJIGMxg2hQJxzQyERN0lGdkK746TKEyFh8YA11QDQgExCGJZrBQFYQ6iRNGvrZiP/31T2CKAjd5vCj+mMOR5QTz3RVGOIMB3qwlOhPlPElfXs+NUJP5Rs5HCwoPvy+WFuItiUOSJ1eiL3jCIzgpMSfaEdIFt1naYP89o4jQKK8ED+K5wI88SdIz4/Jzx6heiF0P/1DQXREnD3hMrGxscHf/u3fMjMzQzweZ3Fxkc8++4z5+Xl/Q3kcNCMCdBxm3tJ9y7IoFos+4Xny5An379/n1q1bvkmyIEYHj8dLd/lP/+k/vTdmyfuc3MEx7J8Pd4Y/3kGWyyVf9n/n9m06rZb/Eu7Xed3fH/f2ui3u1X+Fhl+h6OmAO2rLfZqWxNdvbwevSAqOZPDrBx3uVeOsVOt0mkXiapsxU2fMNUlbGqmeQVzRCckaZkvD6kpYBwjKPhiHvv3DL+3+wwO/Pyp34Jk4FetLcFXCYMU3ihga1R0qJS4F1r3hWjqmUUGoxIdfGPQIHdc+ETyisae3RIZe0f/hQ9wSXIyYChH1QPwdPPafH7wnwFIEERQiSdaR5jcAACAASURBVElCJHx3Bq4Px3Ec0D4B9Ifkge7rzNS3JjVot9vcuXOH7e1t7t6965/vj+ncuXP8/Oc/59KlS4hz8Tc+Pu4Tp/0y4lfyxCyOjneGAeH1/4tf/II///M/Z2lpiVar5ctUxeQePoR4amp6GpHb/qxPm9iZilD4IgrxcbAefnXFCz1wLF/PIKvCa11sBQ8sz8MVDiPonV6/e+DeCAQHGhGnYh4lEf0rNEt/7BvakQv0rTZm9dfEuzd90VlfmFe32/5OXbgGKHsfZm/PD2Y4hcN5FOd71tf+3Io+DszwczN4sN5zD567GCrK9+nAUW0N07k9JUHP1T58Ica739bhZz++Hvr6/Pj+3p29wR2G6QCKn6vqExShgZIkHGHCbtm+Ofi+ZeBzhZ/vwr8SxPBFZY+qf9p7PoyOQ7lc9iOXdLvdHzWVSCSIRCK+SE4Qoz/7sz/jiy++eK7ciAN6Dh1v/0LI1oXiXewUwuEw9Xrdn9SN9TWE8cHBI5lKcfXq1feKAAkidGgD6BMkx3GHUYUPmXHGYxFMQ6fWaNHrif3z8IPlf6WOe3MPIumYc0EERYbJg9a1r9Hc016GH9TBcBQv4D5EX0KRLiy/hD7jBUWfti1OxMdLfEBPUl6IloZOnMNazzV0wgvxEfNFX6rsW4T1LZtC1Wa9rNKRLPLhATfmEnz2+XXyWoLBwKXR6lOvtRC+OuLDJHDtE4/DX94TwnDiYgKpPtezx90cU3E4z8P/X1xyv71jGjry9hGDPHxr2PWz2oefP3synG+xeRsMsPtDX6kj5/6INsSt4zZ7B7r4/9l7sx85rjXB7xd7ZGTkvlXWXsUq7qSulqvR7enb62AMo3tmPN0PA9h+s41+NjDoh3nxf2IY8FMbYxuw28sMZutu37591VfSlcSdrGKtWVVZua+RsRonikVRFMUrXRYlUswAqjIy48SJ73znxPedbz+TUzHPYnMpVG+C+TzJgETw+NzcHDMzMxQKBUqlUhzPJ+jb08dUAnoaI9/xd7FgfN+P//r9fqyKE/afX374C375y1+ws1tjOBrjOA5/9md/xr/6V/8qzhb9HYP5Gz3u9GXwhVPFox7EuyjiRlzXxxfR7U+9nKdlk0+TkorbhA79ZDf868F4xnsZPyKIhEpDxKmcvKTP6u8pUH79w2J6dRL7EhPd0zsEEI9sDqc/CSIimI/rnTCgp8d92u7pTwGT6C72AnsW0LGUcoIfkb9LBHgKWASBePL40rdHX0QbcSqanrYXMTAiJYtg1mMn4LA15ObDNh9vdLh/NGS5avNf/nSJP/3pKivz2cfM5vH4H03AryX0TwL3Es/FWhNqboFF4egitAev9PHEAn7i9JUEWWhphPbmL/7iL2JnBAGkkHreeuutOKRCfJ4/fz7eYItigOLvafxPJaDveWrFiy+kIPEnXBmFNHTu3Dnefecd/ov6P2d/r8bnN27ETgmnk/k9g3xmjxdM6ZQxnXYav3SPUtaLc3H98W76UWPx++nf6X2nn6Ltkzp3QVxPjbqx9COM0oFgBiLg8IT4xvd+iUKf9vbrP8Vtgsh5j4zbT97xFA+IxyEI+8k298mWX38uWITYDTtikyLiVJ7FuQQQEVjhCeP4ygO+wgxPBnvKeITnV9xvGNEbunGm48PmiO3GhDtHLlt1idZYJvAGFGSXteICSzMpVO31qJUkmKOQuG079fWInl751hgQZVOE67XQygjaVK2cJA5eWV1lplqNJR/TNJ/b75QBPRc93/1FIQGISRV/ly5fjgEQjgn379+PJ1SIuoJRvQ7HyW7aj9OxCGFHMA1B+p4kzE96CAnaHF8X/2P30ojokXeUuDlWXcUMSUJExp/ssk+IqehbHIIBCcby+Fw8T7i9nrqtCokqloTCx0W9Tu457U/c+YjMi65POz7p8iv/xVhEk1PvqvhuYXwWjDA4UfmdQPho8I8+fk23j58jNiiCAU08P4b7VFJ53CA+Eb2dqOlObQCnzEV8FwRYSIAxIxfthSrSO1HxjLwgTnUzHHo0By477REbR322DwfUWiM6Y59yIcVaRUezJS4UJ+RMD89z0BOvfponIf3s7+/H6iKhLhQeWt/EPfjL+J1+exYGBC0S6jVh3xHqttlqlULx29WtnzKgZ2H2FftN7C5OY2KEpPQ6HqdM5zExfjSILzQiEsoj4eALoi9aK/HXSIqIZMFZJESooCzSpQgi/4hHPCbosTop5l+x+61wgxXtYoJ8+szYWHuiiomZTywVCYb0iHOd8p0Tuv5cdJ8+V1VOgi1FYwG1YJBxEejgxN7zdFdP4+HrHxKhCnh19QsGEmPkix5Oz2IWegrQI8lMNPX8gJF7wsAE8xU1X5y+S7/vcTyacNgaUz8esddx2Hcm9ETyzyBE5Aa7upDhD340z3vnbDp7Dt6gGbs8u37E65IiVjDtZzPur8f69Mqvx4CQboT0IzY4gi49rV779T3AlAF9Eyx9z23Eju2HnJBTGL51RY6j0wXDmHhClRTGEkTgn2RJjj2qTljRibuqIsVShkjj8gXbeET9T+dLuNaeMpNHjCi+FAtYp2T7pLFwgRXeW4J7COLrPrKlxNzktL/nfD6pGhPMTthsYrvNaaDgKRzP6ePrLon+hJrM90N8Md7YieELKU2ciYBLRyT5dP2YIAgcdoYiCahHf+zG58IGNnID9ttjjnsOIydg4Pq0+xOGAxcRqZO2VVZyCVbm0lxZynN5IcvVpTyllMzH7ga7buuRRPV10L56v58yoCkTOtu5Efh8Ubo0ZUBnOyfT3n4NBk436EIlFhcKk+XY5XQ49hg5Lq2eS6PvMhi79B2f4SSIyeujnIgxC4qj1lU5lgjiLMlPixdPwHDKZk6f+8Slx6cnbb4g6KLP2JgvJKJT0e1x629+8gK3fukhp2MQzgHCM0rsOE/krBNJS8Q5RkHEOK4R5ceMT2SdbvZduv0J3cGE/jiI1ZBC7uu7AaMwRFJlDE0hmdKZr6ZYzidYLyZZrNhcWMxxaTlPpXAi5/jeBFGTbeI9pVb8EqTTL1MMfDsMvJEM6OQFfuQqGnsCfTM312+H2t+gdWzXEDTvlOQ80cfzrj3R7FU/FSMTw3tE7uMd+3F3zIaoz7LT4WGtx0FrTGswoTHy6PshhixjPuJAMemN1WwnOHpuihaBjFNUPo8DPW73qM9T6eULOv/t0Pqb3vdrnnKiLoxi92gR3e9HIZMgwnvk3v14GLGZ58TlW0hyQgUXhlKcEXoupXNlLkU2bWBZWpxrbXHGZmU2y2w+Qc7WySbNuBaMKHR4egipK+Z7pz9MP5+PgUfvq6A1p+/z6efzb3z5V5+3PJ937WVA9sUKexm9v2J9+pMxjd0N9o7qdHwJWVaJvAhJNTl3bomlucr3CnHncI9Wo45cWCRXLZGOCbVDt9Fkq9bFTudYXa4+pqknwDp0Oj0ODyekszlmZ77qa/+9DurRw8XCFgRM1+TYtiBckg+PB3y20eLvNht8stVhq9aL7RFCbSQJNzVZRtUVsqaKpYu9+wkRFH3FotAjZvYyxvd9EQvBAuPxPWNQ4lrMvCWJsReeSIcijY12EpEvCrDZCVF6WsPQToqiJUydnG2QSepkEyqVtMFCwSKfMhFBo0lDpZg1KeUsVO3ryYGwHX0dXM8A9Q3+yaG2ucXm7R1cEVNl6bF9pLywzOz8LNbphug7wtCwuUen30fKz1FIp/FHbW7d3EeSdN66voKma3iDHq3DHQayhV5ajtWtX/iu+bTbHQ4Px2TzOaqVE/oi1sJZDOXrV9x3hKDv8jGeM2Lv7ufc3a8xzlRJaiZB/yTgUbx7wgU6aSj4vhcHQWp6AllViAIfTSQXFGnhQxFPcgK1KoW4kwluAAnLilVKhKJUtksoKZimgRz6uI6DF0moRiImvvguI2eCh4ppGDGxED26wxb1nQe0ujKzepaLOQVtuM/h1ib3arC4YrIq+nccAlQSlomMT6dT55OPa9imSvDOEpnKfNyv7I/jaOpIPnHxPkm0GBFMHETNlhAFwzTjFB4QMBoO8UOZpG1zqvI6q/kRhFMY6nVFYjR2ub8/4G8+O+A//mqfDzdbdCYBaVMjn0+wZKbIGQqFhE7eFhmRdUxdOCN8d7vws3i5vi3uRDE+RVbi4E4RwPus40Q4lmKngv7Yx9RkMpaOqonyHDKphBaXG0hoSpwmJpUymCkkKaZNLEON2yX07y5dy7PG8MP9TZDlAbv7O/z8wzskCzbl2RSarpMolDmpNeQxmbixg0zCSiDHmUfBnzgngdmaiaKKFKRfPoRNVGyKhOp6It7fiY+saiRMM86lJ6okCxufommoYpFEPoP+kM2bH3Pc7ZC6nsROp/GcAXd+9TE+Fotrc5R1jX63xe1PPmKcnmM5u0g+CBm7Ln6kkEwE9PsdfvXZTpzD7+r1BYxcJQ6aTyohk/E4rlir6CZWQj+BO/AYC/oWSRj6yUZHjCb0nNgBxpNUEqYRp096oxiQ7/mMRyPSmSwXfvw+ZSOB29ynvn2byajL7nGf5WqKfuuIvYMWqWwlJtC+06WYz5IyNQadJqNQQ9YSqF6P5nGdvicxv3KOUsaie1yj1ughWRkWZwsoTo+D3RptXyVfXWC+mGHSrrO5c0AnSjI/V2W5motXW7qYp9AtxiW1x9oBS5cLDHe3qO/vYJfepVgt4Q7q7OweMghs5hfnKWdFTItP/fCAzd2beK0qCz/9Z8xWF1Daexw3W/hahpnZRcoFCyYOjb0tDhtNJopNvjwXx3TIXoftjW16jsbKuXWKhdRXXoIvvxLf/Jt4LUVSSZHOfzz2+OjeMf/b3+7ybz894LAzjj1h3pnP8JPLZa6tFSjnrTgtv1C7CaaaMPSYuMY78PjfN3/269TylLkImE/UxM+APpaKwfX82FFC2NEShnaS1VnkEhNMXlNiRw3R30lNHTW+/ozepj+dKQbEpsFlpCZwS2tcuTTH9QuFeCOQSGUwA5dB+5C92hETyWBxZZl8Oh1vKHsHOwxGE0hVKZSzJPWIwShAVUJMA3oDkfdOJmkG1I8O2DnooJk287MzZBI63U4LB5VMqUzB8Bh3mzzY2Of2jVu4BCyfn8QSrCYblIw+x5Mxh0OPbFYUBByycTigoAVUjQB52GVzp84wMllfyRDK0Oq12P38V/T3MmSu/yMuvXUdzRhS299jvz7AzhZYXJqnYCn0mwfsHRzR81Ts7ExM49J6yKBxwNb+MX1JlJWZZbGSecO84GIdRkAUSgSehCtHhJKKbudR7Hwc21B7eITnjAlDhUZtD6d9hCz5hFd/zMDQad/5FDOTRS+fY2uvjjsekCtmabdq7Nw/pnPcwDfLlKoJOrUHjEYTal0JKRphNXc49m06fY/OyEOKjmg3hIutSTFlYmVLFOcdglufMzzYI7yQQwQENtsTlq8WUYIJd2/dZRQqtEcOnWaDt68UUTWNUJMZj3oMWjK9bpvQyKB3hphyhDPucu/eXSYLeSxViheBYLiyNeHmpse9baiYLkKF43su92/dxlmaY2Fx7kzEbBGLIqQvYY/48EGD/+nfbfD/frhHa+xyfTXPH1yZ4SfnS1xbzbM2n0EzXk9X8xelZf1uk53dbaozVfLF6ot2N73/EQaEe/2TmTVeHmIEgVHwXZdht023ZTJ00iTsDEldxe21uHF7k1azSTqfZ1sz6Vh19LBPq+2wU/cJgjZvnbMZJhP81QOfvBnwD1YNGmOb/kRmxp7EJc2JJMbtPR4Odwlkg8FIozizRDLts7u3SafVZCxo3MRlMOoRem7MgCzT4tJyBrnhc3Dcp2yLGLMhrlnCtFKYfpta7Zja7hFaQqNmDGiPREkLBdXtM+o4qI7LsD9kOG7iRUq8ufE6O9TkIXuSwej4CNkb4kQyW7U2rVaTK4s5On2fjuMjK02O6xKdnvtmMSDhZStLAZ32gP6dhzQsHafbZOCpXHu3RNYMuPWzj9HMDLNrF9mvbdPe/IxMIcth5wK9YcDg9gOuX1lEL83w2cYBSdNkZT3NQW2Ln//d3zMcw8UfL5DLZgga+zR7PgOq2FGP8cF9mvsBR+oSppZgQW3T6zV4IBXj9PSWbqJbOUqGS+gfMugvcegk8Y0ShYTMwc42d+8ccOWdd8hHHTY++wWH2QsolVWkVJrs3BLVxRz5lEbPGTEaw1opybjZ4u6te4x7NnPzs7QRO5A86cSE+59s8fHNXZZyaf7RT98nkwz49JNPCSOP2cW5M1kgQn05cHxu77T5i7/e4n/95T7SxOe3Lpf5r366zH/+/iLzlUychfhFvM5eHmH5bnr+5cef8pf/91/y+7/7e/zxH//T7+ahb8BTRAoYIVG+/ABUoTjTiEZ9Rnt3eBjUMS2fXEnYflKM+iKd0YhsMkspn+He7gEPBnuslmCcukQrMhlvf0JFqPWTRf7mRhBvDOekLE5qnc5EJzFqYSQzpC2LTvMuW5sPOIpsDPsalQULLXT45PYm3WHIu++9BSsLbGzcEVWQ8AV0us7M0hqHfoMHW9tsjHzSCZhZOUcuo9Cs77LbljHTOWbtMQ/3t7h7EIkqT8wvLFEoG1gLZdTIYdTuIBsVchmJyf59Hh7eZ8/NYigZPjhfoaQH3P7FJv36Lll/joZaZaLbLJhtWv0WD7bCM6Evr80Sjr2IJI2knacwv8BcXmP7doedjRb+eIhm6ext7uIENQLDjI13ejZDbq5IvVvj0/sdvLbCOc1G99tsPNzAdSSqBZXQHeH5Kq6owqgrFPMZZGMdV9mju1djr9FB7e8iBV329DFhIs/IGGDYBnYqeGxzMY0E67NWnOL83u0bNEYJyvPrpJIKD8ZDOp6JlcqTMxz61pixPGEUgicraJqBZafI57MoI5l6q85Wb8ROZ8BuvYUu98lkU9gz1ygt57EnR2Sjz3Frm2zWM9wpFynmdNxgQqhI8YJ9ER2tUAEJnbWkKOwd9/jXf7PNX/7tNpOJzz++VuG//oNz/OHb88yWpylShG3x1s1b/Mf/8J+ozszyx3/82rxWrzSgIjhSZD8Q+RZffhC30A/7aOkk+dU11tfmuHxhlYSVQovqjJwuRmGGWaGqyviMH+xzvH9IOVXCmMlQLEoMD0P2Djr0dShpIYrvcKsWsXBVYbGUQTtqcHy4y/5Rh05tl8aoiZdTY2/GrC1sRH2Oxz5D3yadyZFdruJPWhimEb/PyCrGzAWsekDn08+5uTNm/doVllbnyHqH9JuHyMkLzC3PU47q3Nx5wPZuh3RqiayeIJHUSWdMRIE/r+FwdFyj3WnjHO6z367TMRaYO7dCavYiGW1MMd+ld/CAo9omG36PiZpAzglbVR7bNt4sBhSKbMFuiJXMsHJuhaWsjt6vcbhxF+GBpklVZFXC6dW5d+cWAyfg/MUVMovz7Pzt/0Pj0w1yl/8Io7qGLHUx/DYH+w1ufK6RL+eRzSQ6PoYSYRoKUmTjuyMOdu5wb7tL2ZZYKiXwOnW2N2q4KY2l8xlKCaGrP3mPFVVnaXWZ/a27/Pv/8/8gd+F3uP7+j0hYEkktxGTA/sM7NP0hfckmb9pxnqveYII56OMMdNrdDp12wPHOJgOvw1Y/pNVTubAknCxMmp0aGzf30H2HXj8glzDB7VN7eIfjRjJ2oJA0/QzUbyI7gEKrO+Gjew3+7a8O4pLN1y6X+Be/u8o/+WCJbObVT+fysims2J232+04EW1tb5+jwyOGwxHJ5BQ3L4p7sf4ymcyJgf+lZ0Q4sQG5qo5UnGfx4hUurM3EQ/D6DlKrizRuc7Tl4qVkXE8mmUijRmqs4pqrpoicWf7930/Ybfl8sC5x3A/52U7IH19J8E4mYm/jgJ2tI+7XRgyPmoS6g52X0EwNSVORFYlsQsIZddm8f5vBrRvU6ocsXJo8ep9lMHJkbQPL2eXDnRGt1Hn+5KpFScpy1Ntn3KzxcNyhJY/wgwArqdMZD+nTZdg36NYalOwEeveY+5s9NnYPSIx2kZIGpq0hT1oc1B5yLGLOBi52Jk8iA6ONI7Z2u6gzWZYu2pQXkm8WA5JkBd20kHUDXTvxcyrkclxaSHIc+hw7Covnlyi1Tfb7Cp7jgZrDSBRJDmrMR9usX5qnOrsAPYvr5+ZIylFcbthXFIyUEVd/tBN67DnndI44bnZouhKRrFKenWHl0gzOg2PGzW1yMtgJBcNSkE7dzmQNq7KMZGSo7+2RXe5RLKbQtYhq2qJhDDjYvEHdsdCsGS5qxbggl52w0NPCey2icVjnqBUwFulULIuUF+IHBgtLaxTzKR78zUc0atuQTLM1SGNW1lhPdlGsBPWJApKBKmsvvjjiGCuF29tt/urTfY46I2aqKf7RlRk+uFiZMp9H1FV4Xd6+c4eNzU1EmePDoyM2Hz7k0qWLqF/kKnpRWvxG3i88x4QKThyC0b9c9/oTG5AUyUgiVdQTnoxacgY7OSKo/4y7+4dkZxZJVdeolGyyegsv9MmkLKyVZaStgLHfo1KQcRWPfj9L5Bsooz6DToNAVkkXZ9F8l0AGM2EjqTqTMBGrsdfyCehus3m3y62f3cDzfUq/7/Jk6thCOsG5pTx/17bYdxIImO38HN6ww+d3PmHjwS7ZfIqlqytcu5Zj40GTlGsgywYHtS6BPaAajPGUiECOsJMm+aXzkK7gNbfZvfmQgW9wZ3PIW1fXWLp0juPhLbrbDYzJGE0OMVPqi9OY12lVG0mblWvvESkqaf3E0dEqzLH+zm+T9218I0tqPkE4GbDYCxgMPEqzc+QzGS69/0fMrn9A6fIaGVUltPO8/8FPOX+pS6RZYBiEgYccRpTKM7F7pZZIM7d8gZ/klvDHHrPlLKWZLOl8j3Pz5+LYFqtcws7ZGEJXdXooadbe+i3+eZShvHyerC7CNiVKs0tclxUa/QltP4FpZ5gp5uL6LX/4voY8rlCyYaKnKRYjWCxjGDLDiTA0Kqwt5zCVgGJ1kWzSwMNnb1cnm83x3vUcmq7QcSCSVKozZU6ypZ0C9Zt9ihIBH242+Y83DmP36z/48QL/5CdLrM5lfrMOf4B3jUZj/r+/+U/88qOPGI3HbG5s8MknH7O4uEAmnf4Bjvj7GdLLZT5iTIKmpDm/uELK8lh4UrUsa+SKs7z1o+vMz81hZIoxE8olJLSwi2fkSNgGhrXI73yQ4nLP4cKMRNUJKazonK+kUAyFyto7GMs6rmQRDNYJGSEnbYxUlVJSQdctFs9dJJkr0BwEZKw0sqxwXsQgPYF2K1/l8gd/yJ8uBgRWhWLSQFI00uVlLl31yeUqmHaSubVFpESa1VKHpL+EoatkI+GlBxklg1KFi+cHpCUHu1BkHKoc72fIGhP6gyFbeyP8SCNXmOPdtw1m8yWSpoo9M4ORs6cVUZ+Ykx/+adin3+6yUx8jeQNcd8TtYyiWZvndt1eIYz3PEAtix7l/POB/+Itf8T/+X3eZSWn8yz+5xn/3T6+SFit4esQYEKXX//xf/vf8L//6f4+/VyoV/vRP/5Q///M/Z2lp6ZXAksh8LGq/7OzscOXKFa5fvx4XG3slgJsC8YpgIGA0HrJX66EEI8bjHje22uQLZX7vH1x9FG/4ZVBfxMb85Z6m3159DMhJJGVM0Ntka78JyQIXzq+yWi2fOfMRyBDBchv7HQ4aI3RDYW02w2o1TdqaMp8nF8vR0SFHx83HP9XrdW7cuEGj0XhlGNBj4KYnUwx8LQYUhOVYm7TY3DliqFgsX7jAymwRTX22PmXKgL4WmT/ECzK6aVMoFnBCHTlZZHW2TDbxchiCSIJ5c7MVB6qJdDDXVwoszaTPJofHD2R6ms0mN2/eonFcfzwiITnW9nfZ2Njg/IULpJ5Ryvhx4+nJczEg4n9GoxEis4TI3Cyqor58d+zngvSDvigrGplsmuI4JK2nWF4QqsGvj+ubMqAf9HL46uCEE8bc6mVmV0+uvUy9eH/ksX00oN4ZYyU0Fssm5czXL8avQvvD/0WotoS7+tWrl/HcCb3+ENPQee/dt2NCKdK2pF7N9H6vxeQIxtPpdOKCdKJc9Mt3xX4t0PLSgBRB9fnqErnqier419GXKQN6aVPxCncce6e9fPiCIGTi+nheSDIZYek+hirC4abHKQYEUfzd3/09rl65wocffsjHn3zCxQsX+P3f/33KlRls+3Up+3Y6olfrU0hAInei53mPXbFfLQh/gNB8C/oyZUA/wPl/VYYkVB0iV5k4Ik7cYbVHLrGvCozfNxzJZDKudisq3poJi4nr8Vu/9Vu8+96Pv2/QfjDPP03F8+t24z+YAb9GAzmhDq8RwFNQXx8MiEqnqjA+xgk0FQzDjt1EX58RfLeQCnXcZDJBuGVPj7PDgGA8U+Zzdvg8y56mDOgssTnt6ykMRDHzEYxIRGjLisjKPF1yTyHp8VehJhI2CxGYOj2mGHgTMDClBm/CLH/PYzzNCRdF4deXGfieYZw+foqBKQa+ewxMGdB3j/PpE6cYmGJgioEpBh7ljpgiYoqBKQamGJhiYIqB7xwDUwnoO0f59IFTDEwx8F1iQAT2ir/p8ephYMqAXr05mUI0xcAUA1MMvBEYmMYBvRHTPB3kFANvLgZEOYbTktxTSejVWgdTBvRqzccUmikGphg4QwyIgnQi2FfkgDutC3SG3U+7ekEMTBnQCyJwevsUA1MMvLoYOC3JLSQgwYCmiUhfrbmaMqBXaz6m0JwhBoJRi0bjmL2Gg+MG5LI25fk5irYG/WM291tstSOMhM3KXJHZ0jcr/tbY+Jj6zm30hfcorlwgrZyUIjtD0KddnREGRAYEkQV7eryaGJgyoFdzXqZQnQEGvE6Nnduf8XcPJ/Q9iYvLZdR8jrQaMtz4iBs3jvh5TUHTrbhgVjl/CZmIIAwJIxmRxk4iwo8klCfy2u3d+mt+/m//Ncq7/w3vpNa4VlYwnihoewagT7uYYuCNwMCUAb0R0/xmMFJfkgAAIABJREFUDjIch6iRxfz5ZcxshvM5m3zKplXbZPPWLmaiyHuXC7T2tnC6B+w3S8iDJseNPr3QoppWUAg4HCtUZmZYn8tC1EdKl3Eq73JU98nd3+JSZgHDfDk1ld7MmZuO+k3BwJQBvSkz/SaMM4oIJgP6gzE9J2B81CWSFXL5JHLSRESCqFHE0cDnYVPi8nur/PTyEg9+2aTlt9mp7dE9OqbfbKKaFn7PJpi4dL0ANZGglNGIju+hF1dZ+sOrOL+6hV+7RRDOAGfDgKYxK2e/UE8938TnNDHp2eP3RXqcMqAXwd703lcLA1GI22tQ2z3gQcNDnzSxpD61jQE7By2yhsYHf/CH+IqBp5ugKOiqimFqqP0u3W6bjbZMUTU4Vwppejq9AcyaTZLqhI1al+GNm2iFCpWFefz0hITbo+tOsKwkL/oynRLKVwuprzc0wvnAdd3YDVs4JIiCdNPM2K/OnL7oO/PqjGQKyRQDkoRiJEnnisyqPrqSwzYg4/iUlZu4wzadnkO754E/xNR8fEli7Li4rkOUlEBPY5kyhZxPb5xBnozJ6A0M2eGgB7vbx1jNETNamqzUpz0K+NVWh3AlzVLmxV+nKRM622X8ZEXUbDY7rYh6tuh94d5e/I15YRCmHUwxcEYYkGT0TJl58Qe4ox4jZ4zlR+SiHuOWwbFioEUupYRPv1Pn03sWh4cuVsokk7GY8WwsAnx5gmbqJFOArzPu1hl0DfpqDhkd3XVIF6scT/rc+OU9UrLOwvV5XiS1iKiOeu7cOYrF4hkhZNqNkID6/X4sBdn2tLb5q7YipgzoVZuRKTxnh4FhncONO9xtOBzWu2SMBGtVjR9fLtFXZ/n4YY37n/fJKEnemU9Tzpi4noY60ZEkD0OOkCwLw8/QbB7S76pYc2ssLy5waSmFKkcMo1vs/fwWo4U0/vX5F7IELS0tkc/nsSzr7HAw7WmaBeEVXgNTBvQKT84UtBfDQCipaEYCK6FgF2wy6RzVQoZK0SQrv81hsMckIVEplFlcSZPJCZdsjdBNkjHHGFGSMDSwIg3ZTBBlJLTCORZnK+Qf8YjzlwIix6U0kxWFX1/oEBH74m96nC0GRPCp+Hue7SeMAiZjB1Uz0TTlKwCEQYAnbElCgtblb23vmzhjPF/EnFk8o/uvPO9l/CCkwfCRI0aMj5fxkG/Z55QBfUuETZu/PhgwC0us5udZCiPCOBmyjKYKJZmEUVzjg3+4yo/DCFlWUBVRthmElubEWwpy8VAFW8mRm1lgWRR4VVTkJzhNZaFKsVqKK71+lWy9Prh6YyGNAgKvT7vTpdF2CTHI57MUCzaqqN4bhQS+R6fTodUZIjY1mVyOQjb1DRhJFJdYb7W6DIdDgiBE0RNkM2mymSSqCDT7Dg9RcdfzfVTDwHhFKhNPGdB3uACmj/qOMSAJpqIS85yvPFpGVb+6kxVM6Ks7ZQlJkZ9p3xFtVU37Su/TH14PDPjjPo0HH1JrDdlzChwcdpgrp/nJ7/yYgp0k8icMj3bYa3TZaYwIuh0qlSrB1XeYyWp8/aYjgqDD3tYuH906wkqYpK2IRrNNJl/hypWrlIr2c+4/e/wJCW7sTLAUDekVofyvCBhnj+xpj1MM+J5DbzABxSRlG2jf7Ybz0QQI0SvE88VXKd71CiY3PV4NDExGI/buPqAXaCSrsyh+h9Zxj+PBdZJWkjiJjyShmyYJ0+Xg/j7hqItRKTMJsmTUBJmUQavVptcbUSnnSdkWYeDR2dnkcGcHT7KxMxmKsZekj2pqCJVeOB4yGHRoDSZIRops0kD3BzTaQyaSQbWaR/LGHO4dMnJDTDuJZeo4ExdJNSiViqiSS7/TYDDy8SQTw0iQMkEKxnT7Dj1HJpnKMD+TA9eh2zhk7A0YJnMQqthahKZGjCYh4+EId9TH8QMkzUJVNdxhJw5XSJXmyaaTWGfMMc64u1djUU2heLMxEEUhvj+ifnRMozUiUm0KhRzlfBJNUfhutQ8RYejjuIIRKSQT8gvbit7s2T3b0Yt5OWhDMpvh2vl5qmabvUafjhPS9aGimdiVZc6VIgrZQ7ztDYb+hH7/gP2jFnkzydXzZe5vbnP/4TE//eB6zIB812XzziajyYR33n+f2WweLfKZmcnjywZyGNKubbKzvcnm8QQ/UWIhp5END7m/P8ZNzfM7aYnB4S5/9e8/ZBJGlOZnYwYz7HdJpnJcvPojUqbL0dYtdg97tEYmhmkxmw/QZIdaw2e37lKpzmP99juY/pD24RbhKIFnzuI5Jitpj0wyZLsZUNvawWnu4ysavlkgEJumYQ3JTJJehSvnVzlXPFtpf8qAznY9T3v73jHg0zza5+bdLbwA8ukE3qDO3brBdnaetcUKM/nvNjllGCmxLUHo/J+0H33vqJoCgBdCx5VQ0cjaCeScRWs4iddOvGeQJGRVj70bC9kkpXIWxZeJtBxHB3tMwk3WiiuxrWfk64ScEOjQD2m2RriqSqGQJWPA7u37bB41UQvzpJIJ6rfu06zXcc0c7b0dmvcOyKRcgsw6s7NVzITE/e6A3aHM+ZUMmaLNxp5DUgpIWwGt7ghJTpEpL9J3D2k1D2jub9M7GpNemEPNrpDr76CNdmk7F1AnY4adOrKSoRfkGXR9coxRJJ/jbsTD/TrmZMja5XXaY5nN3R1W5220TIGt/UNytsW54sKZrpopAzpTdE47+14xEIV44zrHextsbh1TrC5QKRcJJuDXPVzBkaQIdzyk1eowCWRS2Rz5tEngDOh2e7jCv0mCyHPw/IAIFUlWwHdiBwQzXSSZUMAb0Bv4jBwPQ42w0sJ7QWbY6uCMHfR0ilyxREIDZ9Rj6AZMfAVjoJBJGmiaymDgIgUuquzSd1yGLiiyGu+UozAgUBKkM2ly6cT3itbX/eGx91cYfk1Z7hCiCaHkMw6h1x0yGfRIa2AJA08U4E0moBqxA0Iub+G5Jn2yJOUdnMP7/P0vjvFzF1m/tE42IwLHTuyIqaRB0404bjmYOZNJv0nt3ud4xS5Wvsr2nW1SpsXFy+vkazts3r5NQ9OoXlhg5eI6qWSLEQnk8jqX3qmQTZtsd5pU0haLsyYPOwPcesRSKc3yah51HHD/6C77jTbh4jnOr1xmSXMIOps40YTJ2MN3xhjhyVoNXAjcCYE3YeLL9Cc+STPFhUsX2a/32dmqsXrhAoad4e6/+5zukXD9nDKg1/19mML/kjAQhT79g23G3SYz80vMr6xRqthEYRG7GCAkkVRizOHWBr/4+7s0xxIXrr/Fj66u4hxscvfmDUbJMh4RkwMhQYX4ahovkFAnbRKpFKnldzm3kCbh7vHZvTZbD+vkE2NmLq4RRBb7H9+h2zqmfHGNi+/9NktFHb+3Rd0J2W6A33W5fqFKPpfl5o1D6O2TT/XZ6E7YaoEZyBRUF98P6MkZrly/wgdvn5+q7V5gzTzPDVvYBQsW6EZAyxlzcNzBGwzImiG2AsFkwqB5iGukkTThzh0RuWN8x2GpYrJ74PNvfrbB2gcL/PPfniFnnOzpVU1mfi6NWx+yf9DDMtOU55e52quz54bUu1081yORNSjmC8zYKlrY4NgbYeoGkhTFuQt1w8ROKui6ganrZG0b2wxRlAg/HFLf3SE4klm4eBU7k8bQI1QnRJJENncJQ1MIdSF5nxgexe+x16cko/kh8tghNCcgGJ2qxv0KxxrFMNFSWRQzgRwGKI6DdGLIfIGZ+OqtUwnoqziZ/vKaYkBIDZNuO35xKysrzM4Xkf1j9uvHHA0VpADsySbHezsc1Ef0ewO2dRdXCfDrO4wbTdKFeQZDh3q9xcxMCd1KsLl1SCUtjLkWB7UDLAMuVAuocg+3V49zyHWVCUOlxGQUUcyksZIyh402jKGgdXADhXpzQq/WZqmSIJk02T08Yrxzi3NzIeSX0Q0f6rvoM2Vk2carHTJo5xlH6ySER99rOi/fJ9iC+aRSKXzhfqx+ldwlU0kuXj7HbrPDxx99wqAO8+VF8qpLOO7TmwRIuHSPN9k+7jNstrDSFeaLCaqJJSLnEmZ9n3Qyy4ylPY4PEmq78spFHO2Q+0cPudOpkU9ApBawTJs5yWT+R+vgT6jtbqKYSazCAivRAC2TOAmCRkjLSSpZkVZKR5Y08pkk2YREwopI2zKR1UNyGuxu3KEzcBmYZTKZDDPZLBlTxkqlQK4gJwyYuKj5MnZpkYScIDzYonFcZ0gKLWmzsDRHQfZQNTVW/5WrZUwzAWFIrpQnlTn7TBJfnZHvc7W8rs8WRu/JKPb1dzwwLRsroeO7Dq574nsfeuPYc0W3C1gJDe2sqEngMOz16Y480JOk0mksXUI5q/5fpzkRqXhEIOfApzUYUxxPSNOlfXSHv7s7od1VWPE/J5vSyS6+zbzfRJcG7B8fMToespBIsbyyxEGjx2Brh8tXrqKlc3R6E9bOz7K4PMe/++vb1Ld3uVi5yOLyMmY0wW9tcKPf4SAymF28xNsX0hTSHp/vjKh1HbILoGo6UTjCmzgQ+kgyjAOHZqfJQiXDwvpVSqMx7q0DKlfWiJIVEj//DyQYMAwjTBGn9DrNxSsC65MVUcX504eZSrNy9UcMbtxkZ6OBnl9mZn0FW5WZuC5+pJHJ5ND6TQbtJl0/SbEwz9p8AUuTCRSZ/yzRplQofCkLhqRomMVVqpLNaPgZuwfb7Cg2dm6WUnGO2ZxJXi+zv/uQmw/buJ7KQnGGuZSPWcij6woyJuVcLnZiydoGuqFQLRkUE0kySZV5RWUhlSbs77Gx32DkS2SWrlMoqFQXquQzCTR5lmiSigPcTGSCpQukZ+bxAx+5KdNoWfhGiXKpyly5ihV5WHaavOJzfnWWbCYTx9CtXzlHMfvNCjY+jePnfZ8yoOdh55teC32Gh/f4/NMbbDYkVq78iAtrVboHD6kdNqg3GrS3P0crLrH8D/8FV9eKlM7ImSTq7vLg44/52e02UvUq733wD7hU1WL1wTcF/4fSTlIUUuUq0bHD/Vv30SOZxcs5FmaKJDZrbHT6VBUPc7ZKdvEiSymXrHTMtpdhu99DCk7UE4JQCTWFpuvouoaiyPG5iGIX6onW1i1qdhtt5T2qF64iHzjsbA7xe1FsJ9IUCTl0Cb2IIBK2B8E8TtlHhISwLQV4EfgRJ2UiNA1D9xE7B5GxOTL0ODhWvP1hAMKPYXp8ewwICej5FVFVpFSVlUsmmeoIJZEhl0mhqx5yKGGgoKkmlbmLvJ9awIsM0pkM1qPYr2JxjvetMqqwEz7jsHMF1i5dp7I4xEVHS6SwEha2KYKfU8zrKRKFIYFsYlsmSQ1UXScS2RswqRRUcukIQ5fjTcvKbIQuE7vzz5gScpQi9HNYlSFrvhRn/jANhYTI8K4ZSHoFwiJoOoFqgp1GNRJEkY95+RqzTgB6AjORIF63CLdsBVWPsJM2uqbE6/fK+okH6TOG+EI/TRnQC6Hv9GYJWTNIJFOkXAnT1IlTv+sm6YxNf9zio8M2ipNjjRBLCxm299nab2FkqyzMl9H8gE6jRnvoolg5srkcWfOEaPmjJntb+4R6msLsApao6NmuMxiPMBigWDaZbIhkJzBU6ZkBk6eQ/pA/JUlBz1QpV11mW1u0d+/ycZhFlSXsVJaVBZsLlTK5tMnDbp2DYYQ+m2d5tozpTBi0GrHuPJkwKJSLKLqJJKsU85k4/kKKIJdPE7gpFMa06vu4mKQnMrnUDOtmnnzKwlBkdEkjl7bQ5ZCkZRDKFgt5mdxkxKDf5N6OjGommV89T66socsaQeQiJwpIsh7PYcLOYCZTqKe864c8eS9xbGLT8PxDJZUtkco+2Up55M928puVKiD+nj5USSGdfDbzEW2FA4st1F75p+8U31WMZI5ZEZPzzEPG0HWMJ0pNPZnGx4gfqyAalJNfAv6L3uQvbo6ZpHb6XSOVLXPiMvFF89MzEaqgqV/skrVnqC9P277I55QBvQj2Tu9VVOyZ81wrrnI5BEXVUFWFXCZNadQmmdPZ7WjY6SpXZpPITpOtB3e5u9XArHgEYq8zadA62uOoHxEaeRYXQxILOeRoSGtvg+17m7h6kcEkxFZHNI4OaLsyi2urrL53idUfhSA8qDQV9evfh1OIf6CfEsgp5pZWyCZkPr91n5t3Gpi5MulcieUFm4src3idOgd//0tq7QmqdoW3Zm1WVlZoZrPYVpKEYWJeWCedL6FoGufXlshnT35fWaiSXMpTSIYM7tfYOzjATVlUSuss2kU0M0spC0nNZ0lIT3JEJhWiRQmMhRxBBvaaxxy1hsxVZ5k9V4n70pNpTDTc2fMkUwUUw2JmYQXVSmGqX8hPP9CJ+96HFQY+rucjK0JyEOqv0yMi9P3YKSQITxwDZEVBUUWGDZFf7rTd13/6kzFeEKFoRixRiJZR6BFEoua7HKvLpSgkFBdkJZaVv0G3X//A1+jKlAGdyWSJVC0auvLFjiHuVlI42tvn/u1NFlbXuHbuArYl8/GHG9QPHJaW1xlPxnzyN39JFPYpza+QLi1yvL1PMxxRyV2jvb9Fe69GbnEFd+Kzf+OvGbhdRmaZZOUtVLuMJYqrnW5szmQ8r3cnipokPbPEeSGdtB1UK03KTpK2TNLJBJ6hcvWt68yPApL5MumEiZo0SSTtWNUmRp8xRVJKHUl4Ei3Mx2oJoeJbWdBjzyJNDlmT0uQrQwyhk7dtTNOMNwG6UKNIEdWEhCxFCMcoNVRJJUKkgolZmKHsyaTsHGlTQ/SFqmPrBoFw0TaF5CWTWDyHpKroUweEl7wgHfYf3uPmgxqJwhJr6+tUMyc5/0QqnkF9l+3dGnuNAV4Ykc5XqMyvMFcR8/f83d6k1+Lh5x+z03RIzp/nypVzZI0JTveYpq/hBBqG52CEDnIigZKuYBoaiTeEA00Z0Eta2oHnMu4esrfxkP5A4d33F1iqppl4TX71yT2a7YCV8+uo0YDG3gZdd0xm5Qori/OMdh/i9Y5wJutsb+1zuHXAtfl1LG3MqHdEfdBEWZqjMrMYE9aXNITXu1s5SWl2ldLsV4ehGSZzaxeZe+qS/UQZBOMJlYNmfZGhOi2U9I+OyuwilWf0f3o98cTbdSKVCnVJjplkDlHE+yuHaGR+sZPQU5mvNJn+8O0wIBLLnlZEFV5w4u9JlZzvjugf3eXoYIfWwCXo3MPAI339AinDODHQCelExGUFHpE/ptmQGIV2vOn4OgYk3v/20R6txhE930dWFXqDBp/ehuWiSSWtIIdKHIjaPagzm08xt5iK3aX1N4T5iJl84hX5dhM7bf08DEQM2nXu/vJn9PsRixffJRcTkwhv0iMYtznaPuKzXyUoVtIkcwu4/S5EGkL2lzUJKVTi3XekyLTaTe5+9hl2NhOn7LCFm6RtkUqIhJrPg2N67RQDcaXRZ0gSkQhQFNHu30SXctqZ+IxEauznUwrRtwiCjCT512Q+jlN1x7ninnzE9PzFMXBaEVUwIeGeLMpdPOkNN+p1ufPxR/jJNFff/hEHn/493Ycf0To3i2kYaKpOsrTEenaWJdch6O3zYLfJ/qBLq92hkqvE8TaifxG7JRwehNOK747Zu/l3HA4dctd+ypVsnkZ7h19+voXTqzD/k3XypsLu9hY7e0fYqTQX0jnhXYBYN67nMXEnyIp64gotPG09N1YTihxthmkgE8XZrYWnrViOopSIsBm9TseUfL2M2QqHNGoP+fkvbjGIEly0SkyGR6RyRdK2ykwhSS8zpn64w4BlAiWFZrix7SYQkdfCRTIIYgZUrmY5KOg06jVqjT6SFGBbEimFOCjuZYD/Q+rT9TrcufWAo5ZPvrLA+lKZdFIFt8XNm/fYPR6Rm1lidWmeUsb8RkNv17bpNA4xyyvkZspxwsqnWZFIcvnw9ufs1TvopXnOXzxHztJo1etxUkjhYBAaaSKnizzpIAn7USqDJbJxfyMopo2+CQYEAxKlEASDeFatJWfisbPfJTOX5opI7llKsnc4ojUMSGcgp8ixM4pQc1vJFAcHG/EGUlEjbmxuMZqMuLJW4sHd7Tj7xntvX2FhoRzbiDJJmd2DBrd+dZtGcZFKOcFlYU/UA8bNbVqhQWsc4AYSveN9mo0sUn6B+tYux/c/BSMiUb2AopcImw8JR0eERg7fyFHMWcymAnZ2m/zqTj0uoLh2YY0Ll6+RTz5pw/omWPr+2kwZ0EvBvY+wF5iFBfxJQOC06QQykWKSsOa5dPUS5bxOJzRxDFFLRoqLn80UciR1nUKxDH4Q78AWFmYJ377GQWNMsyt2ygGZdEg+XyRtKGcXT/RS8PD9djruHXNUf8j2/iFH9RGj0ThOZxKFCs7+TfZ2t3nYCDnujLEMlUJm+bHxWWD66xhB6/AhNz/5BGkl4rxZZDUjf2keup0WtZ0dDg4P6Q1cVLXJ3kGasUjT4kyQ+4c4gzZO9hxGFJLyREqeAKF6OX2mIJxP7tRFLRkROySLf08dz4P1qaZv5FcRhCrwKVRvT6rfBDJEdoxJkCBwFMwwJF/I0phEjDyFsS8Y0CnKIvqtYz75fItJ5FK5OMeNew1uN2vMWsvs7De4uTNk/aIXJ6sRrs6Ll95mFFl07nXY73vo8horyzPkpSO69W32ohQtz8S0kritPWrbYv41bm3scnDjAYvLecpFF89vs/1wF2ncpjqr0z0a0Dr0iBZNNg7G3Li/T0rukLA0kjOrGEaK1GviOjllQKfr6yw/ZZvqymX+KLuMH4QIv3xBWVQ9gWFYaLMpFtfXmQQiIuRE7aYQYApjuG6QvnItVvGIhSknEySuZ1h2fCYicyLCPRI0M4Fq6BhfpUdnOZLXuK+I+sN7HBzUyJcvkLMahO2HdHqz1Bshozs3Sc0u8tZilebdmwwbW3TXFkgoCt5whB9JmJoiUsfheBG6pmLFBmcHNxhx0BtxvHEAhQbzl0poTyjut+7d4sHGAyqrl/jg7QV8t8vDg2PGA5+LCxlUt0atecDQmEHNFTFTwvHAeOT269Lr9PB9SGeyKJrKaDBgNByiGUac1l+oC0W2ZUFUJ0EUu4onDeH9OF0M33bBClxaqowhS3GuOD86KV4Y853T3YDoNOgzaO1zNAywC3MsVpbwGkP2795h6/MWYWKN9XcukSmdumpLSKl5Fq8VyC2NcXrH7B82+NsP68xmPdbmVBRJJRKedZH4g3Dcxe/s0RU5C8uXWLu6xtJSkYHTYqtWQi2ssn6+xPGD2+wf7NIuLaDNLHP13SKL8i56UqXR6pNPJUhlv7BVflucfJftpwzopWBbJWFnmbe/xjdfuKwlU3xdYgtDyP5PHFZS5wk7+BNXpqdPY0CUHJ5MXDzXIVIMitVV8mtXaNz8GRufP0Ceu8QwTLB/MOBHK1lWzi2xWb+D4xyx9fABnaMR7qBDIqURSTrj3hgJj9m1debnyujjfYxMhvLV9+k8aDPZuYu0ngbhifjosDQwwjGtoyOIDFK2TCGXjHPLbW/vovQOiXSVUJIYdo5p+U2smSU6h23qtz8ickfY1UW09CyjQR+nsYumhGjZGZK5MmXbY9Rrc39vxKA7YqacY+XSefLZ9GMJ7hSW6edJhdvYFieo/FOHoYYxPiNpzNZhj927R/THI85dCmPvxUCEVcjQOdiNPeXEhqG0LjQYZRKLO+x+1uV//je7nP+tOf7kny1QfOSv4rsT9jY2GHuQn19lNqXQbjY4PDhC9hVWF4qxfccZD+m1m9jKEKIEkRfijiZEfkBSZExRQ9rtDsN2h3JWJ6VLdDSNIJRRIqENEUGzaWaDVpzQtjFyGE++Os6nhv3KfJ0yoDOeCmFAFCK/MGyLiPYnN1Fn/Khpd1/BQITrjGi3WnE+t1z1HMVcFt/pc7/RoBNmqVomeqSxI5sEroQtEddvcQadOEnpg/sDJL9HZUamNUnSrfcomQOMcgE5lSS6fxNfNclWFijfe4B62KY/voZhmY+rWy6trsf1Xm7d3+XWZzfIz85w/eoi4XDIxzdukwjbrF05H8eF9LZvMWzcIK0rbB4G3Prbz1kqJbhYLNJoHLC1UyfsNViq2vhek63dYyblMcJWeH8nYnxwgDTIkJqdJZFJk5wuuC+tCqFyi99D4WjyjEJQZkJnfqlMY6LG9rq9Rkg6ZZGzZDRCHB8Sqky/PWAw8FhaXmTp3Cy6AYVKFnt2gZ3b+yx4Mgv2F15dIq6oV9+j1hhQH8vMZA3URIrz51SKqSh2LDAjE9tw8RM6lp7CTFXQ7DIzSYfR4JB+Y5NAmWXvOMT2HdLDXVqHEQPJJF1dppLRcbSQuiwx9hQCVbj6a5jPLgH8Jby8Kl+mDOjMZiLC9x26nT69Xj9O3W5nC2TTNicRy7/Zg052biGKSPXxTK8r4R4a4Hpipyay5j5WWv9mD3yN7xLqDG/Ypdes057IpCuLhJ7D9qd/RWs0ZOYnf8Tc4hytre2YUGvCJiBS4QQynqA0FmQrM2S1DOW8g+LkSVo5Vs06mYxFq+1Q+/Q+7sRBqtSZ1G/TsovcO54gZ6D06G2SEnkKK9d4u7DEeqdBr9dm8/4dam0vDiRO2yJe6ERdJoIco0mfIGjiJnJ45TVy63Osnpuh2z6gO0wQVN5mcblAq7bH9san7I09iucuMHdhDiWrkpYHDL2QjkucKHXKg75YxILp5HK5eFMoGNHTh25lmL36AXKzzaQZsLh+nupMhlLSJHpUpkDE95nZCpUVhdR8heJpOalUlR998Dv8t8UBC7OVL7kUizQ48+evYRTaNIcurfaIVNLmreuLZCydhOmjuxLK/9/eezbZcWRpmk9oebVOLYCEIChqmlVT7K6e6bHtsVnrD/MH+pf1/5gPa7s709tjXbU9VWQVCRIkZGYitbpahxzzSIiEJEgmQIAIN7t2Q3p4vB43znU/57zvcpFRpUpWC8nkM8RCGfVjmXFLYxpJEOlcWVnhUq3GtNfEE8SgpTzLhSUqOYlppOM5857FAAAgAElEQVTYoAVXELSpsZYlLyJZ3pGSGqBz6aiIcNpmb/+Aje1ewiOWsVS6J8f0yzVmF+exftT0fMzO5ga94YS5lWXy4kl7psh0Bk2+udOhlM9z7UL1mSPemw2SYKFQcTMZJFtjenyXr7dv8sX1r4mKF/h0bgk76zCU1ikaE8ajNt+sH7J+r41hBpTmXEK7Sp4u9XwXLywxcaHGGK+3w/Yu3DmKyJs2V1yb2pXL7PXh8y/W0SWZyqVKAvXJwT4nrU6S5FqfaWCEXW5tH3D7wMfVssSmTzAaJPT2yT90EdGYGEMFNRYRTCERQZL0GPiBCLZN6IREYqyIRJhOJ0RIZEplMkoLbeTRj4TjPJnxS0fdZx54Ecgh2LCFn+V5QQhC2tosLlKxiqhWF9XMkS9kMOWAiS/+1Z3y+GUrDcx8GdN66KsTrAU5lpbER4Tln7mo2KVqFBvzZCozuAd7DIcj3Fyeaq2CmgSSRBiGEJaTCBM2BImEZyGOMUoWNAocNEfIuku1fErV0+9XaHd62I5DsZhPplvtWETFijNPj5ERUg2pAXqyN37pa3FIMDpi+/4dvr49YWF+gawWc7hxh8FwSK5eQ1bixOEoHkxdJBzGURIaKuaYVU3M9Yr4/5BpEtMfJ/PDYTjm1s1bNFs9nGKejKERRKfx/lIUJSqMcdxjfXubf/3qiA8vrHBttZz4QIJARE3JyIJIU1WSiCoxUhI/RJGMJ3wlYqpQPPaiLSJYIkLkq2gYQiTluaOtt7sjhdaJlS3RcAsJrcnB1/+d+3e+Yj9wKWg54s4+w/wSWsamPpujG4zZ2DjmsB1x9UKeWilL/1DGE+FPUZxQ4vuKitAjG3TuM+loaI2LLK1d5Hf/XkTMBfzpzze4/4ddOg0XHhigcXuPvVu3CXLzVMol7FChUq0zw5RpT9QtJS8hVZFQbQPNLaJrFdxQJTc6Zrx9wGZhSi/MMei1kYc3OJJPiMwSlYULlI19NAIGvT6GF2HqNqauIrotLU8iIIzO82QYnjwKbCuD2bCTP4+nj76aMF6IrJqkDsVAN40XG/cXvPPFb6/emEnywRIKn0dRjDKyKqM/MQR4WIlIWDao1vJP/A6FIbVt+/R3/eAGEv7DJwZ279ZD8MTtP90p6fqrIxBFHtPxmP5wwmA0YWgr9CYeWTVCGre48d1NDts+c5c+4NJKBa+9z/Uvb3PYj1i4eIEPL83Qa53wl+vfJQYkV6mh2hYH/TFq5EH/mLu9Hq2pzOW1RaJBm68+/zMTv8uRJzOcmNgmTLoHXP/qFus7LVTbxXU1VpfmaNQbSViwNx2ysrpEfyJx//4+tjwgmPbYOxrRmRrMzS/w6bUlLKEf8g4WQf4opiLFRGS2usz8lQhtaqKZGfTYwx8NcYoV7I9/y2F7gt9RKGc/YnXJpVLOESky4dTAtYVxdhKlSDe8gjPuIJclLihF5mZmsO1TldKV1VWGfZipOonREz//Ym2W5Vih68nEcYRs5bhYnWV+RUmCBhx5SrGUQ8k7hPoCFG20bB1Hl5n9u0+YjluoRo5abpZSrsi0tZcYFy2fo7K4iKss4AcRTuhgxfM4RkycySUkCg9fYe9g1/2sTRa4nQ17F41JRkxnWvVjsRX1Pl33mWpfsCghDNbT5YfX83QNb9d6aoDOrT9kDNMkn1WxbRNJTKvoBpqlMJp0uPHtbZpdmcLsEoOjAbv3vuWr2/ucdDwm/hjViAm9UcKI3W132D8+JtId4lETM/L5y3cbKG6VnGvR279Lu9lmv9VD1wNUzUmYlyPBsLB1RKfXZjDpM+0dc6fTZtBpEXwY89233zHoHmLrAX3K3Ns5oSLvIzFl5yTm+LBL7I9YWalTPTvVcG4YvdmKMjOXuFpe5sJ4xGQyJgQMRcJ1C4nOj17oURz5WLbIkNeQpZAFQ4ThlpIpMTc6DXuXlQpSHNOIhIyClGS6P7yTaqnI33xmoAjalgclX59HfAbdLr1+PyGnLRSFxouWjHLDWLiAlGSQGTomYVhL6lRzEvO1T+n1u0y9mFwhhy4rTMaNpB4Rhi30WSSqeEFESeQKyRKKqjxicvixL8mHbU+/UwTeJAKpAToPtEUcfxSjGwalcpGZuTkq2ojuzj0mfp+DsEALh1yxwELFYbzzb9y7cxMvt0bD9dAmR1y/s0G+WOLi8hJ+ucm9vSZbu/eQh0ccBTGHBxG/+d0Kv54vMFr/X5x0I+Z/9RkrdYOT5iEnXxxz95sbZJZtFq79FZccncNbX/Cvv9/l3uYmsqazvbvLsLXPt66BMfMJQozL8Q8wMjWW6/OUjT9iKSe0fQ8RTfqiIPLzgOxN1CFLYBp68nFDNxHWEglZgsVYFMfJYVvRmX+aapJj9bhtZ6czxKv97PrpUUIzSFCgiPKUGwA3m8UU/HJnpoHECO3sj0605cmgJaHgWcAJReDJ6fUSrRZdf+IfuS5OevLEx81Ol1IE3hEEnv1FvSMNf6uaKZLXwgBFN8jUZqjMLVAt5slrAXE4YkCEZzhYuTxZW4dxF38yJVed58KVayzNFdFo0Tw5YexnWF5e48JKhTgacNKfEqFTtkMsQ6LrK4xGgyRPXyvOUSw1cC2dQW/IwdZ9+t0mZrlKVfgcsgqz5Ry93oDP//w5XjBAMgz+vz/d4c7WETO1DBklQIpiMsUK5ZyBqUyYRiH+WwXwT2+M4NQ6JaN8PK0hplieN83xw68mjNNzJBOE4dGENMdZk/P9tYvaBJ/Y2SKmXp4XRnz2mHQ5ReBdQ+CH/TLetbt7U+2VpMT4CN/DaNznYG+XiDaerGMZGVTdpFx0MYXSpaLiVJaYmZU58D38sYGer7OqTtjd99jda5Kz8smUjp3PM4hyLM42uLpUwNMm3Lt/SCMzS14xaO6uc2s4pXXSTKZ0ZhcXyJdsTnZ3OPR8lOOQxZWr9Djgzr3bzM8to9sF/vn3twglibmihddSaPoecuQnSomqlMUQc9ZvCrv0OikCKQLvLQKpATqPrpdUDLeErbYZ7N7i640bFDIumlHhYn6JipVnPOcho6ObNsrir5jHpfnlXbZ2ArzVVS59cJmc3WHj65vcunuYZMrXKouU6y7zc7NcXKpyvL3P5LiJcXk5CRPtffs161sjJlaFCyvzfDD/EUWty62bd7m/P0jINz+8tkam1knCNtfW5snky0hqkUqtQcG2GBVnCEMDKWMS12eJvTyabjwxTXQeEKV1pAikCKQIPI1AaoCeRuTHrEsysl6gVJllbTGg2xtiCLGx8gy1SpWCrSAvqASRlAieyZJOdeEiq70pTntMtlqnlJ/BLuTQ/Cn7xx1i1aZYLGEI/fhcjnzeRUk4yXTc+ixaPEWaOcEee0TZBrXyDIuNPAh9k9aQWJ6QnVulXJ9hVq5QLBaSDG/hk8i4pWRqSHDUyfVVdFQkywZ9EUKRkGml+nY/5jlIz0kRSBH4QQikBugHwfWygw0KtUV+U54niqMkYVBEOsnyqW+gXDQeJMOd1mE6ea58+lsuCVkZWU34psBl6dLHzF8U7uxT6pAkFPRBaFOuXidTrSZM2xI22Y8/Y0lkJshC1vfBQbrNhU9+zYpogphKS1wJGo1G41HjS2eICo18jUfZDUb50THpQopAikCKwOtGIDVA54iwSIRUVPmF/hNhTM4W4Rh/0tUsjJHy4uCmp5zm4vznlaTeV3biPNmm59WXbksRSBFIEXgdCDz/DfY6rpTW+QIEPELPpz8RrAUaGVtIBr/g0Kc3xzHhdEgQxaDbST7Ij+3QKPbpDj3iWCLnWEl+ydOXS9dTBFIEUgTOE4Ef+746zza833UNTzg+OOTmkUa2WOejC+VEGfWVQIkDBkf3E8YFtX6RXNb9kcEDMUE45N7mAVNf5aO1BTLO2y7tK0Lfw0QGWUxYJkz7CfOxmM58elz5SmimB6UIpAi8YQRSA/QaAH/4QhSJkE+WU741sfnhrt7RATe//DP/tq2w+sGvuHZBCFo93Pvk2WItikKiWHogPhbRP7zPXneAk5vHzZ4qDAn6l1gERpw5XchECG64p8uptylGikfs3d+mO1BZna0+1wCJDH7Rsmfv6+laX/d6DMGA7bsb3F3fwY/BjwUTqcna2kVWV+d+pCF+3e1O608RSBE4i0BqgM6i8ZOWY8b9HkdHxwzGE3QnSz5fSni6vFGHw9YY2czQmKngCDLSpMTsdTw29wconkg37dPsD3HiMb4fIGj9TdknnnZpD8aJTLCQZLaUAM3JMxz7HB6c4EUT7NjnuN2l2zvB1HQiRWcS+AmlvJDXDJHxYpVMJke5mCP2h7SazUTEys4q9HtNNm+vM+kFHCzaqNIqqpkh4xpMR31arTZBLKOZNrZpYls6hpBm/VlKSOh32DvY5db6Po5ro5kakTTkzoZOrOiszJbRH7BzvorhFAZaJBNLipYEjrzothJpbARZ7MM+hMD3URMsXvzH4UX1pdtTBN5nBH6uN8gvEPMBxzt3+ePn39Gf9inOLJAprlC1hvi9e3x1P8KuX+I/lUu4iQESY48+WxONrlHno8aYYg5ubh5T8rbEWIeWvkQ+amEO7rLdDzieZDAVjarRo68V2RlncY9HrM2ZuJrE1voWrZvXma+XmCBxd2uHcNKjmMuiumUOezHlSp3f/foqvaMNvvhffyBUFNyZOt2Bz9bOEca4y+GGRnM4RS2s8OFakebeBn/5y7cYwvgUqmhmltXFBvO1Uwr4N96ZseDPGzHRbNyZq3xwocF83cHzW/z+83W+/OompewnVIpZBsNRIqktWIkNTUpC4QWrgGD8DnyPSFAo6TqT0ZDBYIhiWImcg67I+N6UIIoSKWwRQOKNRgwHA1RNJ1PIo0owGffo98botksm4z4x6nzjuKQXTBF4xxBIDdB5dFjk47W36bWPmJoFKvUZso7K/e1N2tERxUyAlp3FzRdJOLzENcMRo5N1Dnd32G31KGp9Dtc3acoyf72kkzN9DrY22WtvM5MJsGvLlCYwPNjiuN9kN5pyOJmy6E+RZJcYFcs00JWAg+Nddk463Lu/n8hAXPvoGnOlMvvNXTqHW3iTGsfdHnvtgNXVGebqS+TGQ26V22i+Q7ZW4sCD9vYRdbfD7uYG17/bIp/TcfNtIqWI7drM1AovjPg7D1hfVodQBB0FIZNYTnKlqtUCwShAk1WGoxH+sMnhdMDWXgs1npLPqPiKznZXIZuxWK1rbO336bSnXJoRU5cx2ydjojikmlVQpYhbu2MUK8PHl+sMW002726QyG1XF4l7EcrwED3oEioug6iL47gsz5xqxrys7em+FIEUgVMEUgN0Hk9CHBKNhwRxjFWeYXllDjfqsbH+ZcJM3SjPcmHtKsXqAu4D3754od38/Eu8wx6VbIYBBq29I3xBTnntM7JZD+nLf+Hudovgygf8zcIK8nTE+vCYydRCmygowRT8CRNvwiCcopgmbq5If9Ri6k3whJCN42I3Flm5cpVRe0D/ZJc4HDONVDCrNObXWFuepTM44v9vNFCVGWauLNHZiujd6zLsDxmPxow9mbKioEkBvYlYDxL5gccTUecB5CvWIfxbktDtGdA6arO7I1PkiHa7hWllKFVMwuE+d3a7fLvZo2xNqdVsWrHL7Z2Aubw4PsNhS2dnd4Q52ETRTe73DYJRm47aQtzdV/sWlbk1rq76dI52uXvjOrmsTU62GTChdfNLnHBAeWWVw66Pbljk8zZ161Fm1SveUHpYisD7iUBqgM6j32UVrVBD2R/QvX+fg7BLo5DBsrMocQ5bjoVeNorGoxHDwWGHL/5yn0xtlv/4n/8PJCng3pd/YndjB288YWKA7R0yiDV2fJ1RZwvJUxnJNRoFBUZw0pMQigGqKlQzu2zuDejvDFmdL7NaD2jtt+lLMpKiomgqQgBNklRiLDRpiOL1aJ5ssVsYc9RuMxiPqZTyqLqMRIBQi7TzWXIjj2qpw/JMkUKpyMFIJ+NYP/t0kyJ8MZHPZDxiY/OAvb19jKW/otAoM2x+wdbWNtsHEWFRYuqadCMJud+EwTFtu0Jp9lMUyaa7cZPOJKavz6ONWhx4W/R1DS13ldm5WSwzm8hg5DIm/YmP4fVQ1Cnb93cJ+kMuWRmGQzENl6Ef+AhN2p/FMJ/Hs5zWkSLwBhFIDdB5gC2pKE6dYmVKeW/ApHvC0NJYXlnElco46oSpImOEUaInk6iQ6hZOY42ltRUuLC0krSjgU3VMVMtA1VVWr1xjPOsgFeZwjDHTUMbKODi2ylxWwjd1Mr5Fec5Csxyy2oDA0LCsDO6CS6BkmSoKi9UylizTmGmQy2axnSKzdZXxpVmCaEqn00NWHC4v25SyFqZqUSsIiYEcpXIZ1zKZ+gpZQ8EtFMmbuYTt+2d7yYoovyhEUXWcrE2+WCFrqAwHLQ7abXZ1mXlViEoamHpExtYxnRKxkmU1bnN4q81/+/2E3/6fn/LJaoU7Rxr7gzGKKWNppxF1sm2SrxQpFXOoqoysadhZl2A8wo88esOQvhdgizY4dqIlJGvSWxAheB4PdFpHisCbQSA1QOeGs06pNsevPtZodzqJDky1MZP4ZbzJmCAS8ruRkDNL/A3V2Tqf/ee/x3XsRy3INpZYyVXx0TAMmXrt75n1hTq0gWtIiQNcd7sQWbimQ20pg66sYZoKiq7jrGp0XIVJKKM6BX69eg3DULEtDUM3sC6uImS5Lcsmn89QKFns7x+h6halap0LCyBFPhlHYWUmYrYsk7MtlMwslm7TbDaRDYN6o0r2gQbOo8a/4QVJ1sjmS8woOebnZ1iozjJTdPl/vtinuX/MlasNVldLhEqH2YKGW6siuRka8wH/0uly8/qElU5IKWsyWb3I2BrikccKJHTNoOq4DJU8KiI5N8CTVFQ7S93VGZkOx4HB3PIi81mVxcUF+uNhQr+U0/V09POGn4X0cu8uAqkBOse+E8JhM7Oz5EulRIQs457m5WhChiEMHwiKiVBdKXFYW07miYwfVTfI6gZhFCPJUjLFpZ/JB83m8himQRCCpukYhvbE+UaxTMZxGHkRshhh2eYT02RCT/5syWTKKIqQllYSFdfTfWI9Rncgdk5licX2UrmEbprEkoRr6E/Ue7bON7IsaZhWieX5DDXfolJ0UDWZ0swqn0wc/BDK9QJWdoKkHKMrMdm8IIctkpVcfvU3WdQFnwsLdTTDob50jdju0h/4qHKRbFZFszUGvo2hq2iKSrFUJ1iRCaYDYivH3FIe7eIsRjwiRMPOF7Adh6wtpPzSkiKQIvAqCKQG6FVQ+gHHKJpGRjtVyHx4WpL+eSZvRChrim3PpoWeniFklp9XhCCZZb3kBafoaLZO7kk787yqHm2zn/vClJKM0ydbIfHQoD46+WdbUFG1PI1KTCh8YA+B1Fwura0kBl6ETWvmBFXX8YMQy3bImjaCxHVtrcTa2uO7E9Nzsw2X4XBIrBg4joWhQSWKEmMvBOXyeQPDcJIIOzG1l82c/rkIgjHttpDdtpJEYF15XO/PBk964RSBdwSB1ACdW0fFRCKZUfCyPShxHCdCcU+rWz7c/9JvIfMtDpCeo7T50hPfh53iJX/K9P2UcCiCEPZhMUwTwzARSD5JBPuskdBN4XfTTlnMH+wWBl9/XB22bSUjUPkMWZ+qWhSLQi5bfmkC68M2pd8pAikCjxFIDdBjLH7CUkQ4Pubu3Q2+vbVPLCkJg0DkR4lfaGltjULOeHXfQNRnNJjS83RM4a9x0m760Z2TDOaeNTjPq+9VJK+fxzMnElvTkiKQIvDDEUjfbD8cs2fPiEP88TEH+xt8t97CdjMs4hBNJ3THIUMsPry6TNGKGXTbDD3QrQyFrJnU5Y37dLpDIlnBzbhYsoc39RiMJQwjIvRHtNs9YsUkk82hyzHRtM9k6uFJOqrh4JpqGoH1VM+EvmA36NHu+4KNKKHmiWUd17EQIdVBBH4AlqE9nsZ7qo50NUUgReD1IZAaoPPAVky9BT5WtsD8tWXmajWuzFoQ9fnim03urW8wU83hFGDj1jdsNSOKc6t8tDaLo0zY3bjN7Y1dJhjMLS6x0CiiqC4iAEGXxkkS5Fc3Ngi0Misrq+TUScK8cNTq0Y5cCvVFLi/XsIXjIi2PEJh0Nrlz8xu+uDtlGuoUbSXh01tenuU3v7rA0Ffp9EPmq1kyVvpTeARcupAi8IYQSH915wG08NMoKqHvM2gdcRz65JUMiiY85AY5OybsbHHoG7TiDJrVJ/SO+GpTYnBwhH+yg5U1GI9H3Lr+Jd5kifLMIsOeT29nl2jaJtYtJhOPO9c/R5U6xIrKaGoy7m4iTQcMZzKYRu6FgQ3ncZvvVB1xjNdr4w26aNkGhVKFUuhx9/o3dJUJwdV5UC2kOEAOhxzuHLOx08JTbFZWVpgr2XidQzZ3DhhLWSq1CjPl08CDdwqHtLEpAm8xAqkBOo/OESHTsoI36tPc3GdgZ/E7esIiXZj/gAurSyidr1k/jGnmrjFf09HDY77aGXLj+iGLrsV//ewTRifb/P5f/pXDTEScsTk5GNG8dZNqyeWD3/0av9vk+v/8b2x39tGXfkOtsUx2+AVqb4OB9zEuOUQQdVoeIBDLWGaG2eI81YUZssMRnY11TALkOCQIw4Rw1B8N6HeP2d7doz+ViMIJ0bBEv3nAxtYxkV5CtWwq5VO9pVfzKKW9kCKQIvB9CKQG6PsQepX9sRBHC7DdLCuXy9Rn5qhoTXZu/BEUD8lxmB6MOdraYt2UGect5rNDHCnAcGPCTAnVKZIbt8naGpoCQThlFEw4HPloroJrmuR1k/0srB97CNntYr2ANjAJB30GfswEUgP0sL8kCcVQGXsj7m19y+bmDkU1ZmcosVguEMkjdg9HrG900OZ1avUGH9slett32Vv/Pf/XTQk1f4F6YZ4ZBzJmxCgEW4F0ovMhyOl3isBPQyA1QD8Nv9Oz44gw8BLa/srcMisXL7DodChpPb7a97m9vsuK6pKxDfp3b3A3VtHXqmQXqlycUYj6J9z99jqj4wNa/YB6LAuWM2TFJF/KIjPk5lefowrNn7FGxsqQdwxMQyWUY/w4ZBzGeOdxL7+gOpIweElG0w0M28JSIlwtAHlMO5py0g9oHTU5MTXsnEgK1lHCMZ4I8JAKVJwsji4x6R/R7hiohQZWOsT8BT0h6a383AikBuhcekBCVgx03UQQF8RCIsHMUr/0CTe76+wenmBfm+dSPsdB52tGzQ6mauPm5lCDA/ond9hf77B+v0Wr2SG3PEdDdylnFRorPmF/i/ubdzgc6FhagYUZi1q1iBzLTFUby81hqWqqAnq2L+OYcBpgaiZLFy5SS6bgBmhHd5lOjhiEl1GEgZdjglGT2zdHbB1OmRyv41bKXLj876gYGse3b3B3+5D6FYPC/IuTh89eOl1OEUgReDUEUgP0aji9/ChJRc/M0lAq5ENBgSOyF2Vkq8GlNZVKbURjpoSpRPxHrcR0OMQqFDGLebaDkLAekstlGUzu0e2NyTgllqp1woKCTo5gUqPcHNCdCl43i5oLTi6Hr7oElz5Cijz0XIYfQIDw8vv5JewVyaIKTKY9jpt36LSa2IHHdjug7ObIiJB3wSEehijegPawyf2dId7JCTVZx+i2CUOP3Z0DjrtTyrGMqqYs17+ERyO9h7cHgdQAnUdfSAqqWaRgwpMaoTKzjRqzjccXWbmSf7xCwKCTxwtk8lmblUtg5YusLK1QyWYfHCeod8pUZ8+cdnYxs3h2LV0+g4Ceq5ApzeCMp4w6XcaqjD17kfpSnZpdgIKPvNSg6tjY4QTPmBJ0ajiuoOJRkBSTysIqxQWd5cWZRMspDUA4A3C6mCLwExFIDdBPBPCnna5SzRqE/Sntky5WrsCvL19hJv8SvrefdsH36mw7v8jqB3VmL4aEoWDZkRKWCtPQsQ2F+fmIeq2KJoeEccSFICIOBX2SCKsXfjiSdUGzI6h6jJTw4L16ftKbff0IpAbo9WP80iu4boZ6vY7RH6PnSlTK+TTK6qWIvfpO4ZczbfF5/jlJou8ZtvE0vuD5OKVbUwReFwKpAXpdyL5ivbLhkKuKzyuekB6WIpAikCLwC0HgDNfvL+SO0ttIEUgRSBFIEXgnEEgN0DvRTWkjUwRSBFIEfnkIpAbol9en6R2lCKQIpAi8EwikBuid6Ka0kSkCKQIpAr88BFID9Mvr0/SOUgRSBFIE3gkE0ii4d6Kb0kamCLxLCMSEQUAYhI9k5U/l5RWEeqympOm871Jvvs62pgbodaKb1p0i8B4iEIUjbn19g81798GwMGydSaAy1ooszs3wyUoZTU0nX97DR+OZW04N0DOQpBtSBFIEfjwCMWE45t7mJt9+t8nCygJFLctoOGJzb5to3OPi/G/JqxrDbotOf4QtuPmyWTzfT2TlDVXF96cgK6iaRjDq0+v1mcYGuXwe11IIJz0GYx9Zd8k4Bv50wEmzC4pBsVTGUGEy6NBpddHcApl8Fj21eT++W1/TmakBek3AptWmCLyfCMREhEwlE7M8x9WPPmG2XqLfaaG2/m/0yQ6jcII6nnD/znds7p1QmV1ONLTavT6FjE2tlOP4+JgImVK5SPdwhzt3NuhT4OLlSywUVfbXv0vkNAqzF9HQaB9s8tWtXSS7xgfXbOolnYPte9z5bgOnvsrK5atUCgbp7N/b9VSmBujt6o+0NSkC7zgCEpIQhp+MGJ8csLe9ReCPCSZTNCdPuVpGiSbc3W5ydDKmWC7hT/t8/sd/YzCe8tG1KxSyLruHHSajNqrUpz0JmWp5igZ4g13+bXvArev3KJUbFOs+e999w8HBHmZhBSNXpnW8R/uohzed4lRrxMMmx/dvI6sXyWVMjNQF9dY8Y6kBemu6Im3I+45AFIQMRx7dkU8sC4Z0C8dUxOv8HSrCAEnI/pRx+4S9rfuMpy0GA5+BXKdcWEEJh3zz7W1anYj/cmGJfosRKggAAAyySURBVLfJ4f4OGhHDVo4tReGwNUH2OnT2O+z5VSZGkZXihPH0gBvr+9zYHPLb4gVKOYvDvRFBEFOtlIlkie1b33JwsEV16RILiysM1m/QPNhErS1hCQP0DqH5S29qaoB+6T2c3t87g4A3mnD31j7/7/VDfNPh7z9b5ZOVTCJy+M7cBDFiEi52chSWr/DRX31IvRZz7859/rApcdAPWfBHHB5sc+NWm5mSTq5YoD63Qt2cMGzucWdzHy2/zFK1yHR0j+3NY44mBaRZk0LRw3HALejIuozlOsxe+RRt7x7bd75lv9nluHnCsN1mOpYY9Qb4/TZ2oU45FqYxLW8TAu/Wn6u3Cbm0Ld+LQBSDH0RM/JBpEBFGMUImOy3PR0BSIhRpyn53wkbTxw/jF74wjzsj/vTtPnf2ugTPr+7R1m5vxPVvDri90WPgRQxHI46bHY46I8Ze+Oi481mIieKQqaKh5MrMLq8yv3CZ1cV5jPZN2ptfM/JUSo6ONdnn3q3vWN8+xswVWb64mgQifHPjDpEEy8urFEt1GHY4uvk1d65/y0mnj110KRVy2JqOeJxkCQbdDut3bnNnfZtpoDBbKWMEI+7e+Ia76zv0JwGKKqVM8+fTyedWSzoCOjco04qeRkCVZSxDwVRkFCRUWUKW0/88pzgJQ/zk/3HdlllacrhwUKPpudRz+rMvzBjCMGBrt8Mfb51wYaXE4kzuaejPrEecnHT401/2scolfp0xyEoTjg57DEKNxZkCVukFehVnajm7KEkS4vOiIssqOdchDCKiOAIscrk6l3JDJKmNohb46PJl3OmAkZZlKoGqKZiFCtnaAuXyhFo5S12oAjshF5YnTHrrOIaEZToYxRrzNYlGoUgchPQOt2keHGEWqtSLGWrFHJdqOr1eh+DOHsP+mJxl4hoS6oub/aLbSbe/RgRSA/QawX3fq3ZsjZVGliv1LIqmUnQNdD1VdYsiIZAXEcYQifczMoauoMgSpjDYloYpaejPyZURyZ3He00GvTHlepFqJffASD1r0CDGm4ySkGbdVRhGAce9KYWyiRSPODkckUuizmyhXv7S8tDoJN/CdL7wRS6hKhk+uXqZqRdTyJyqLDm5Mp/+3X8hUnQyuQKVy9eYrdcYhTJTdLLZDI6T4dLVj8iXFyjXa8iShOzWufar3zAzfxEhEWiUXCTLxS+Ca9johkqmOstFzWFJNogU4TfTKboK0+mU4nwPzwvI5vIUHf177/OlIKQ7zx2B1ACdO6RphQ8RyDo6v75cJQrj5GW7NpdDUdIRUBxFjCZTWgOf3sBHUzVmqy45R0qmKcXIITFQYg7zqRKEIXsHbSbTiMtX5lipGIzHU3aPeli6RKVo0/ZVZFkjr8cc7/fo96asLBfYa/u0DjpQqSWGR98b4AchXgym9PR47MkLm6aJ+Ii8HFXTMc3H8n1RFJ0Z2YpRrslso/5EBYpuUL/4yeNtloGbLz5ef7BUqVQRn8dFpVhrJJ/H24Azgz63PIP4PF0MF7JiCi8tby0CqQF6a7vm3W+YqatcXiqy1MgllCyWyA5MixD6Tl78nf6Uw+YEy1Qp5M3EAIl//Q9HF88bZAib1A8jpkRkjBhXhu3ekP95fZ/5XMSnV0vc7WeQ9QxXcxFbOwP22xMuXMpS7E1pH3do9/OYKuRtCU0mMUAiNPnp6wl/ne/7id9O5OUcHBxwdHTEVnabXC5Ho1HHcRw0TXtprwo/zcN7eumB6c73DoH0jfDedfmbu2Hx0tFUJfm8uau+/VeSZQXbNKkVFRzTSGhpHGERCJBlCUmWkSTxec69iI2Gha7EOIacGA3PDznpTSlqAVLsMw1jYj9m4gXsdSfcb3nUxhEZNWYkR+x1Qmw5QlNIPi8KQxAG6PDoiD/8/g/88z//D9bX1+n1++SyOfL5PIuLC/zjP/4jH3744XMaerppNOwznsYoQvnXEZ7AtKQIPEYgNUCPsUiXUgTeCAKSMECW+DyZkRL4U05OJnRbQ4aRzGAqOAV4wm8hfDC2oibGSZFOPTfCsW7FMJlI7LdDWu0BEROOghg1a1DQDHRDo+xkUC2T3WHA4WBIWQpxpZc75oMg5Is/f8E//dM/PYPNp59+yj/8wz+cmX57cEgMwaRLr9fjsD1kNA7RdYN+oUAunyNjnbb/mQrPZUNI6Pv4kYKsKM/1o53LZdJKzgWB1ACdC4xpJSkCPx2B6TBib3/KuDUAW6YzCfFjnqCPEY54RwrxvIhOPyBvKklklxnFtDsyd/ZC9pptCD0qksXiQpmrmSw1S8WQY7Jjn95ml+P+gEiXqEpS4v95nmdORCzWa1UWFhaSaTYxHfewzMzM8NlnnyG+ny5xHHC8fZutnV3acQmFED2acNJuUJtTuDifT0ZeT593LuvjJt12m92BhZMpslRzSQMvzwXZ11JJaoBeC6xppSkCPxwBRdPJl4r8+2sGWCa1jPYMC4KqyNQqDiebXf58Y4/oQpasqVCsZpN//fVKlozrIUUejbJJo54nZz4eaemmxtJwQqenMwhlJFl9NtT7TNMty+Lqlcv89re/5S9/+QuDwSDZe+nyZf72P/wH6vVnnfxRPGFj/4StvT5za8uUsyaSP6bj2eiqTxh0OTqaJNFpxbxMLAti0inRsMXYl4jtPKWCwbDX4+B4RH1xkUrO5Gj9FofNEVZ5huX5GpY04mjvPietASNsNDtLVT2gebzPn3ZdGgtrzFQcTJEolJa3EoHUAL2V3ZI26n1EwHRMVi42WLn4IPpNBCQ8BYSsKpTqeZyOT+f2Cc2OQnm5yNyFCoaqcG0+x9no7afzdUR9jbLNIIw5GcVkTO2Zazx1SWbn5vnbv/1bdnf3Hhmg+bk5LqyuIgzUkyXAm3bY6ca0oxJ/PTvL/Ew5OWQw9ND1EWHY4db9Y4bDKdcumPixzv07J8Qnm8RGFmtuFSmO2N895OZOzFXNQhpL3Pzma7Z2WxSXLglvGW54zPHdzzkYxqcjLUlhtTxk6k84bsc4xTFRkvj8NIpPtjhd+/kQSA3Qz4d9euUUgWcQOA08+J4Xpqyx0MgnPo5i3sLQDRYrp/6OVxF7U1WF+YpLNVZwXyEvq1Kp8MEH1yhXRCDCPQxdZnFhjsXFxWcj4KIpfr/DeDTFw0VRtUfBFBlXB3xGY5/j3pDhKMALFPrjgO2DFkq7y9JandmZAsroLlHs49aXkCZdmpt7tD3I5wyytPju/h5xb5/atEd5+UP0OM/o7nWmY5Ar8yyQY64sjPH3YPlMD6Qb3iQCqQF6k2in10oROCcEynmbQtYESU7ip8uOnFDSJPHuL3nnnjIhKWSTQIDneX6ebWAmk+Hy5Uvkc6fJN+VKmcWFhSQS7pmjJdEOG3M6Rpt6+CSZtnjjDnePphhmSMEO8NAZC5dSGDEJoOXF2B5YGZdiOcvofoCKRDZfQBneod/cZ2IvsDjXYNYKaLWh2RlQNyMac3MUcdnd+BNxpCI5RXJygbzjpMwHz3TQ27UhNUBvV3+krUkReCUExEhJ+IMeFfX7uAxOjxRTcsorHvuwbk1Vk9FOvV7DtCyuffgJc4tLz0a/iRMkEyPbYLZgo5606PWb9J2Ao71dvtqOqdQcMvMarqYx8AYMOxM8zUXPZzECN2EB9yJQZBOdANUfn46y3CzRGLq+Qi2TYalRIu8fYwjJBmF1lRjNMFENPUni7XW6dDWNMM4/40d7eF/p98+PQGqAfv4+SFuQIvDWI2DbNleuXOE//d3f8de/+x1z8/MvaLOEalhc/tUV8pv3uH/3O259HWMaNjP1Rear5YSTbcY6YhIdsX+gotayLM1X0XMKdr6IKmvomSKVooauWVTzF/HaDltf3uT++j28hSUu/rsZlteWmOyHSKqVGKlCtYGbzTI0bHZ7mwwMj0k0g6akr7kXdNbPvjntmZ+9C9IGpAi8GwhcvnwFYYg+/PAj6rVno98e3oUYnZXnVzBtnfbX9+j2ToXnPl5tkM+5CArrxXoBPagyjA3cQoVcPgteGdt2sEXeUq5OVcsnU2nZgotvW6wdtmAaYFg2uYxFxc4yMkwUt4CkKFgra7hiWxAxbnQwRPTdS6YjH7Y3/f75EJDilB//50M/vXKKwDuCgOd5fPPNjYQJYXV1lUa9hqp+z//XOGAwGDH1oyQR1XWEQTi1CKE/xfc9wlhOAhUEG7aYSRP7EzaIOEoogGLkZKpPvKamwwGTqQ+ahu3YaIqMIGcViT5JrVGIYJmIopjpdIKkyBiGmZCaviMwv3fNTA3Qe9fl6Q2nCPxwBAThaKfTJYxCctksui4i2tKSIvDTEEgN0E/DLz07RSBFIEUgReBHIvC/AbdfAofb8b67AAAAAElFTkSuQmCC"
}
},
"cell_type": "markdown",
"id": "legitimate-definition",
"metadata": {},
"source": [
"![diode-quora.png](attachment:diode-quora.png)"
]
},
{
"cell_type": "markdown",
"id": "trained-masters",
"metadata": {},
"source": [
"Out of curiousity I plot the inline resistance with the diode against the voltage acrosss the diode."
]
},
{
"cell_type": "code",
"execution_count": 32,
"id": "hairy-ensemble",
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEWCAYAAAB1xKBvAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Il7ecAAAACXBIWXMAAAsTAAALEwEAmpwYAAAiwElEQVR4nO3df5zcVX3v8dd7k2WzsFFCIhGzQECw/mhDhAj6iOIixRu8AtJYG+Viq8UUW67WliZ4tZVrq9bgraJoY2wpYsW0NUCiTflh7RKlKAENS8IPG1IkS8TAskAWN8uG/dw/vmdhZnZ2851ld2Yz834+HvPY+Z7vOd/vmTOz85lzzveHIgIzM7P9aap1BczM7MDggGFmZrk4YJiZWS4OGGZmlosDhpmZ5eKAYWZmuThg2KSR9KCk36x1PSaCpNWS/nwc5Y6S1Cdp2gTX51xJO9O2XzuR255qJIWk49Lzcb0PqWynpAsmtnaNxQGjAaQv7v705fKIpKsktZXJ9+6UVyXp0yXtlvT26tV64kzEF0VEXBgRf5ljX0VBMiIeioi2iHj2hey/jM8BF6Vt/7RMPQq/ZC9Ny79dsH56SptfUu4gSfdJ6i5Jny/pPyT9Kq3/zZL175H0c0lPS7pe0mEF694l6T9T2c4X8qLzvg82ORwwGsdZEdEGLAReC3y0TJ7rgEOBN5ekLwECuGES6zcqZWr2WZ3o3sEEORrYVkH+x4FP5ngtfwbsLpP+LeCnwGzgY8C3Jb0EQNJrgK8C5wNzgV8BXynZ9xeAv66gvjYFOWA0mIh4BLiRLHCUrtsL/DPw3pJV7wW+GRH7ym1T0gck3Stpj6R7JJ1YsHqhpC5JT0r6J0kzUplZkr4r6VFJvel5e8E2OyV9StKtZF9Ax0p6X8F+dkj6g5J6nCNpi6SnJD0gaYmkTwFvAq5IPawrUt5XSrpZ0uOS7pf0roLtXCXpbyVtlPQ0cFpK+6u0fk6q7xOp/A8kNUn6BnAU8J20rxXpl3lImp7KHibpHyTtSq/7+lHatEnSx9Ov9t2Srpb0YkktkvqAacBdkh4oV76MG4BngP81WgZJx6T1nylJfwVwIvCJiOiPiHXA3cDSlOU84DsRsSki+oA/B35L0kyAiPheRPwzsCtPRSX9maRfpDZ6f8m6596HtPwBSdvT+7BB0ssK1p2RekNPpve9tOf8/vR56pV0o6Sj89SvoUWEH3X+AB4EfjM9byf7Z798lLyLgaeA1rT8YqAfWDhK/t8GHgZeR/YPeRxwdMF+bwdeBhwG3AtcmNbNJvvCORiYCfwLcH3BdjuBh4DXANOBZuB/Ai9P+3kzWSA5MeU/GXgSOIPsh9A84JUF27qgYNuHADuB96Vtnwg8Brwmrb8qbWtx2taMlPZXaf1ngNWpTs1kAUmlbZ2W55P1zqan5X8F/gmYlcq+eZR2fT+wHTgWaAOuBb5RsD6A48Z4z59bD1wK/CNwNrAj7Xd6yjO/oMx3gXOBDqC7IP1c4N6S7V8BfCk9Xw+sLFnfB5xUknYB0Lmfz+oS4JfAr6f36ZqS11L4PrwlvW8nAi3Al4BNad0css/xO9Pr/Qiwb/hzALwjte+rUlt8HPjPWv+vTvWHexiN43pJe8i+KHcDnyiXKSJuJfuHPTclvQv4WURsGWW7FwCrImJzZLZHxM8L1n8xInZFxOPAd0g9m4joiYh1EfGriNgDfIqRQ2FXRcS2iNgXEYMR8a8R8UDazy3ATWRf1gC/D1wZETdHxFBEPBwR941S57cDD0bEP6Rt/wRYR/blMmx9RNyatrW3pPwgcARZYByMiB9E+hYai6QjgDPJgmZvKnvLKNnPA/4mInZE9qv9o8Cy4Z7KeETEBuBRsvestG7nkgW168oUbSMLoIWeJAv0edZX4l3AP0TE1oh4mizYjeY8svf8JxExQNZGb1A2L/M24J6I+HZEDJINiT1SUPYPgM9ExL2R9Zw/TdYbdi9jDA4YjeMdETGT7NfjK8l+gQ0fddKXHv8n5b2a54elzge+PsZ2jwTGGhYp/Cf9FdmXC5IOlvTVNOTyFLAJOLRkjH1n4YYknSnpR2n44QmyL4U5OetR6GjglDSk9ETa1nnAS0fbd4nLyH6d3pSGxi7Jud8jgccjojdH3pcBhYH352S/hOfm3NdoPk42BzFjOEHSIcAq4H+PUqYPeFFJ2ouAPTnXV+JlFLf9z0fLSEkbpcDaQ9a7LNpOCuiF2z0auLzg/X+crOc6bxx1bhgOGA0m/aK9iuwoGyI76qQtPT6dsl0NnC7pDcDryYYFRrOTbJioUn8K/BpwSkS8CDg1pReOMz/3q11SC1kv4HPA3Ig4FNhYkH+sepT++t8J3BIRhxY82iLig2OUeX5FxJ6I+NOIOBY4C/gTSafvr1za72GSDh0jz7BdZF9qw44iG1L5ZY6yo4qIm8mC3R8WJB9PNnT2A0mPkA1/HaHsiLr5ZJPrxw7PSSQn8Pyk+7a0DICkY8mGiH42jir+giywDjtqjLxFbZQC32yyIdKi7UhSyXZ3An9Q8hlojYj/HEedG4YDRmP6AnCGpIXlVqYhpR+SHRlzc2QT5aP5O+BiSScpc1zObv1MsrmRJ5Qdgll2iKzAQWRfQo8C+ySdCby1YP3fA++TdHqaMJ4n6ZVp3S/J5gKGfRd4haTzJTWnx+skvSpHvZH09vQ6RTZO/mx6lNvXcyLiF8C/AV9RNunfLOnUcnnJ2v4jko5Rdgj0p4F/ilEOPKjQx4AVBctbyb5MF6bHBel1LAR2RsTPgC3AJyTNSMNXC8gCOMA3gbMkvSl9aX8SuDYNNSJpmrKDHaYDTWkbzaPU7Z+B35P0akkHM/bn4hqy93xh+kHxaeDHEfEg2VzRayT9VhrG+xDFPcjVwEeVHeFFOqDgt7ExOWA0oIh4lKwXMdYJUF8n+/V29X629S9k8w/XkA1BXE82wb0/XwBaySYtf8R+DtlNXz4fIvtC6QXeA2woWH872ST258nGz2/h+V+flwPvTEfDfDFt663AMrJfqY8AnyULSHkcD3yPbCjmNuArEdGZ1n0G+Hga6ri4TNnzyeZA7iObS/rjUfZxJfANsqG6/wb2MvqQUUXSPNXtBcv7IuKR4QfZ8MxQWh4OhMuARWRt/9fAO9PniIjYBlxIFjh2k/0YKOzBnE/24+Bvyeac+oGvjVK3fyP7bHyfrCf0/TFex7+TfYbXkfUoXp7qSUQ8RnZAxl+TDVMdD9xaUPY6svd8bRoS3Uo2v2RjGD6yw8zMbEzuYZiZWS4OGGZmlosDhpmZ5VLVgKHsUg33p1P5Rxy7ni4JsCU9tkp6Nh1BM3xRt7vTujuqWW8zM6vipHc6IetnZJdu6AY2A++OiHtGyX8W8JGIeEtafhBYlI5+yGXOnDkxf/78iur59NNPc8ghh1RUpp65PYq5PYq5PUY60NvkzjvvfCwiXlJu3bgvMzAOJwPbI2IHgKS1wDlA2YABvJvsWPRxmz9/PnfcUVlnpLOzk46Ojhey27ri9ijm9ijm9hjpQG8TSaOeXV/NHsY7gSURcUFaPp/sLN+LyuQ9mKwXcly6BhGS/pvsGPAAvhoRa0bZz3JgOcDcuXNPWrt2bUX17Ovro61txK0iGpbbo5jbo5jbY6QDvU1OO+20OyNiUbl11exhqEzaaNHqLODW4WCRLI6IXZIOB26WdF9EbBqxwSyQrAFYtGhRVBrpD/RfBxPN7VHM7VHM7TFSPbdJNSe9uym+lks7o18ffxklw1ERsSv93U12o5+TJ6GOZmY2imoGjM3A8enaOAeRBYUNpZkkvZjsMtfrC9IOGb7wWbpWzVvJTuU3M7MqqdqQVETsk3QR2d3eppFdx36bpAvT+tUp67nATela+MPmAtdl13pjOnBNRNTkdqFmZo2qmnMYRMRGsktSF6atLlm+iuzy24VpOyi4fPJk6+kboLu3n/ZZrcxuy3s9OjOz+lbVgHEgeLJ/kMWf/T7NTU0MDg2xaukCzl7oe6qYmfnSIAWGexZ7B4fYM7CPvYNDrFjXRU/fQK2rZmZWcw4YBbp7+0cc+9vc1ER3b39N6mNmNpU4YBRon9U64sSQwaEh2me11qQ+ZmZTiecwCsxua6F9ViszmvcVzWF44tvMzAFjhBe3NnPrylN9lJSZWQkHjDJmt7U4UJiZlfAchpmZ5eKAYWZmuThgmJlZLg4YZmaWiwOGmZnl4oBhZma5OGCYmVkuDhhmZpaLA4aZmeXigGFmZrk4YJiZWS4OGGZmlosDhpmZ5eKAYWZmuThgmJlZLg4YZmaWiwPGGHr6Brhr5xP09A3UuipmZjXnO+6NYv2Wh1m5rqvo3t5nL5xX62qZmdWMexhl9PQNsHJdF3sHh9gzsI+9g0OsWNflnoaZNTQHjDK6e/tpbipumuamJrp7+2tUIzOz2nPAKKN9ViuDQ0NFaYNDQ7TPaq1RjczMas8Bo4zZbS2sWrqAGc1NzGyZzozmJlYtXcDstpZaV83MrGY86T2KsxfOY/Fxc+ju7ad9VquDhZk1PAeMMcxua3GgMDNLqjokJWmJpPslbZd0SZn1fyZpS3pslfSspMPylDUzs8lVtYAhaRrwZeBM4NXAuyW9ujBPRFwWEQsjYiHwUeCWiHg8T1kzM5tc1exhnAxsj4gdEfEMsBY4Z4z87wa+Nc6yZmY2wao5hzEP2Fmw3A2cUi6jpIOBJcBF4yi7HFgOMHfuXDo7OyuqZF9fX8Vl6pnbo5jbo5jbY6R6bpNqBgyVSYtR8p4F3BoRj1daNiLWAGsAFi1aFB0dHRVVsrOzk0rL1DO3RzG3RzG3x0j13CbVHJLqBo4sWG4Hdo2SdxnPD0dVWtbMzCZBNQPGZuB4ScdIOogsKGwozSTpxcCbgfWVljUzs8lTtSGpiNgn6SLgRmAacGVEbJN0YVq/OmU9F7gpIp7eX9lq1d3MzKp84l5EbAQ2lqStLlm+CrgqT1kzM6seX0vKzMxyccAwM7NcHDDMzCwXBwwzM8vFAcPMzHJxwDAzs1wcMMzMLBcHjAr19A1w184n6OkbqHVVzMyqynfcq8D6LQ+zcl0XzU1NDA4NsWrpAs5eOK/W1TIzqwr3MHLq6Rtg5bou9g4OsWdgH3sHh1ixrss9DTNrGA4YOXX39tPcVNxczU1NdPf216hGZmbV5YCRU/usVgaHhorSBoeGaJ/VWqMamZlVlwNGTrPbWli1dAEzmpuY2TKdGc1NrFq6gNltLbWumplZVXjSuwJnL5zH4uPm0N3bT/usVgcLM2soDhgVmt3W4kBhZg3JQ1IvgM/JMLNG4h7GOPmcDDNrNO5hjIPPyTCzRuSAMQ4+J8PMGpEDxjj4nAwza0QOGOPgczLMrBF50nucfE6GmTUaB4wXoPScjJ6+AQcQM6tbDhgTxIfZmlm98xzGBPBhtmbWCBwwJoAPszWzRuCAMQF8mK2ZNQIHjAngw2zNrBF40nuC+DBbM6t3DhgTyJc+N7N6VtUhKUlLJN0vabukS0bJ0yFpi6Rtkm4pSH9Q0t1p3R3Vq7WZmUEVexiSpgFfBs4AuoHNkjZExD0FeQ4FvgIsiYiHJB1espnTIuKxatXZzMyeV80exsnA9ojYERHPAGuBc0ryvAe4NiIeAoiI3VWsn5mZjaGacxjzgJ0Fy93AKSV5XgE0S+oEZgKXR8TVaV0AN0kK4KsRsabcTiQtB5YDzJ07l87Ozooq2dfXV3GZeub2KOb2KOb2GKme26SaAUNl0qJkeTpwEnA60ArcJulHEfEzYHFE7ErDVDdLui8iNo3YYBZI1gAsWrQoOjo6KqpkZ2cnlZapZ26PYm6PYm6Pkeq5Tao5JNUNHFmw3A7sKpPnhoh4Os1VbAJOAIiIXenvbuA6siEuMzOrknEFDEnlegv7sxk4XtIxkg4ClgEbSvKsB94kabqkg8mGrO6VdIikmWnfhwBvBbaOp+5mZjY+FQ9JSfo94HxJTwMPASsj4un9lYuIfZIuAm4EpgFXRsQ2SRem9asj4l5JNwBdwBDwdxGxVdKxwHUpTk0HromIGyqtu5mZjd945jA6IuJ0AEkLgE8AK/IUjIiNwMaStNUly5cBl5Wk7SANTZmZWW2MZ0jqqeEnEdGFzxY3M2sI4/myf72kLwJ3psdBE1slMzObivYbMCS9MiLuG16OiJMltZMd/vouYP7kVc/MzKaKPD2MjelEuksLzsDuJjsEdv0k1s3MzKaQPHMYrwR+Ctwi6QuSXjLJdTIzsylovwEjIp6JiC8BryLrVfxY0ieHz4swM7PGkPsoqYjYGxGfA34D2Av8RNLFk1YzMzObUnIHDEnzJS0BLgCOAvYAn56sitW7nr4B7tr5BD19A7WuiplZLnmOkuoiu+7TQ8B9wL3A98nubXH/pNauTq3f8jAr13XR3NTE4NAQq5Yu4OyF82pdLTOzMeU5SupcYEdElF5Z1sahp2+Aleu62Ds4xF6GAFixrovFx83x7V3NbErLM+n9gIPFxOnu7ae5qbjZm5ua6O7tr1GNzMzyqeo9vQ3aZ7UyODRUlDY4NET7rNYa1cjMLB8HjCqb3dbCqqULmNHcxMyW6cxobmLV0gUejjKzKS/3taTSPTDOA46NiE9KOgp4aUTcPmm1q1NnL5zH4uPm0N3bT/usVgcLMzsgVHLxwa+Q3aPiLcAnyQ6rXQe8bhLqVfdmt7U4UJjZAaWSgHFKRJwo6acAEdGb7pxnZmYNoJI5jEFJ04AASNeUGhq7iJmZ1YtKAsYXgeuAwyV9CvghPtPbzKxh5B6SiohvSroTOB0Q8I6IuHfSamZmZlNKRXfcSzdSum+/Gc3MrO5Ucljtn5RJfhK4MyK2TFiNzMxsSqpkDmMRcCEwLz2WAx3A1yStmPiqmZnZVFLJkNRs4MSI6AOQ9Ang28CpwJ3AqomvnpmZTRWV9DCOAp4pWB4Ejo6IfsA3dTAzq3OV9DCuAX4kaX1aPgv4lqRDgHsmvGZmZjalVHJY7V9K2gi8keyw2gsj4o60+rzJqJyZmU0dFR1WC+wApgEzgIMlnRoRmya+WmZmNtVUcljtBcCHyW7XugV4PXAb2cUIzcyszlUy6f1hsivT/jwiTgNeCzw6KbUyM7Mpp5KAsTci9gJIaklnff/a5FTLzMymmkrmMLolHQpcD9wsqRfYNRmVMjOzqSd3DyMizo2IJyLiUuDPgb8HzqlkZ5KWSLpf0nZJl4ySp0PSFknbJN1SSdl61NM3wF07n6Cnz6e6mFltVTLp/dmIWAkQEbcMpwErc5afBnwZOAPoBjZL2hAR9xTkOZTszn5LIuIhSYfnLVuP1m95mJXrumhuamJwaIhVSxdw9sJ5ta6WmTWoSuYwziiTdmYF5U8GtkfEjoh4BljLyB7Ke4BrI+IhgIjYXUHZutLTN8DKdV3sHRxiz8A+9g4OsWJdl3saZlYz++1hSPog8IfAyyV1kZ20BzATuLWCfc0DdhYsdwOnlOR5BdAsqTNt//KIuDpn2eH6Lie7MCJz586ls7OzgipCX19fxWUmQ//gs3zoVYM8G/Fc2jSJ22/7Ia3N06pWj6nSHlOF26OY22Okem6TPENS3wQ2Ap8BLiELGAHsiYjeCvalMmlRsjwdOInsJk2twG2SfpSzbJYYsQZYA7Bo0aLo6OiooIrQ2dlJpWUmQ0/fAB/57PfZO/j8XXBnNDdx69lvZHZbS9XqMVXaY6pwexRze4xUz22SJ2A8TPblLODtBemSFBHxopz76gaOLFhuZ+RRVt3AYxHxNPC0pE3ACTnL1pXZbS2sWrqAFSVzGNUMFmZmhfYbMCJi5gTtazNwvKRjyILQMrI5i0LrgSskTQcOIht2+jzZXf72V7bunL1wHouPm0N3bz/ts1odLMyspiq9ltS4RcQ+SRcBN5Jdj+rKiNgm6cK0fnVE3CvpBqALGAL+LiK2ApQrW62619LsthYHCjObEioKGJJOAN6UFn8QEXdVUj4iNpLNhxSmrS5Zvgy4LE9ZG6mnb8A9EjObFJWch/Fh4APAtSnpHyWtiYgvTUrNrGI+b8PMJlMlPYzfB05JE9LDJ+3dBjhgTAGF523sJTuyasW6LhYfN8c9DTObEJWcuCfg2YLlZyl/uKvVQHdvP81NxW9nc1MT3b39NaqRmdWbSnoYVwI/lnQdWaA4h+x6UjYFtM9qZXBoqChtcGiI9lmtNaqRmdWbSnoYABcBj6fH+yLiCxNeIxuX4fM2ZjQ3MbNlOjOam3zehplNqEp6GC8CVpMFi7XU+YlzByKft2Fmk6mSy5v/34h4DfBHwMuAWyR9b9JqZuMyu62FE4481MHCzCZcpUNSALuBR4Ae4PCJrY4dCHyPDrPGVMl5GB8Efgd4CfBt4AP1fj8KG8nnepg1rkrmMI4G/jgitkxSXWyK87keZo0td8CIiIa5LaqVN3yux3CwgOfP9XDAMKt/45nDsAblcz3MGpsDhuXmcz3MGlvVLm9u9cHnepg1LgcMq5jv0WHWmDwkZWZmuThgmJlZLg4YZmaWiwOGmZnl4oBhZma5OGCYmVkuDhhmZpaLA4aZmeXigGFmZrk4YJiZWS4OGGZmlosDhpmZ5eKAYWZmuThgmJlZLg4YZmaWS1UDhqQlku6XtF3SiHuES+qQ9KSkLenxFwXrHpR0d0q/o5r1NjOzKt5ASdI04MvAGUA3sFnShoi4pyTrDyLi7aNs5rSIeGwy62lmZuVVs4dxMrA9InZExDPAWuCcKu7fzMxegGreonUesLNguRs4pUy+N0i6C9gFXBwR21J6ADdJCuCrEbGm3E4kLQeWA8ydO5fOzs6KKtnX11dxmXrm9ijm9ijm9hipntukmgFDZdKiZPknwNER0SfpbcD1wPFp3eKI2CXpcOBmSfdFxKYRG8wCyRqARYsWRUdHR0WV7OzspNIy9cztUcztUcztMVI9t0k1h6S6gSMLltvJehHPiYinIqIvPd8INEuak5Z3pb+7gevIhrjMzKxKqhkwNgPHSzpG0kHAMmBDYQZJL5Wk9PzkVL8eSYdImpnSDwHeCmytYt3NzBpe1YakImKfpIuAG4FpwJURsU3ShWn9auCdwAcl7QP6gWUREZLmAtelWDIduCYibqhW3c3MrLpzGMPDTBtL0lYXPL8CuKJMuR3ACZNeQTMzG5XP9DYzs1wcMMzMLBcHDDMzy8UBw8zMcnHAMDOzXBwwzMwsFwcMMzPLxQHDzMxyccAwM7NcHDDMzCwXBwwzM8vFAcPMzHJxwDAzs1wcMMzMLBcHDDMzy8UBw8zMcnHAMDOzXBwwzMwsFwcMMzPLxQHDzMxyccAwM7NcHDDMzCwXBwwzM8vFAcPMzHJxwDAzs1wcMMzMLBcHDDMzy8UBw8zMcnHAMDOzXBwwzMwsFwcMMzPLpaoBQ9ISSfdL2i7pkjLrOyQ9KWlLevxF3rJmZja5pldrR5KmAV8GzgC6gc2SNkTEPSVZfxARbx9nWTMzmyTV7GGcDGyPiB0R8QywFjinCmXNzGwCVK2HAcwDdhYsdwOnlMn3Bkl3AbuAiyNiWwVlkbQcWA4wd+5cOjs7K6pkX19fxWXqmdujmNujmNtjpHpuk2oGDJVJi5LlnwBHR0SfpLcB1wPH5yybJUasAdYALFq0KDo6OiqqZGdnJ5WWqWduj2Juj2Juj5HquU2qOSTVDRxZsNxO1ot4TkQ8FRF96flGoFnSnDxlzcxsclUzYGwGjpd0jKSDgGXAhsIMkl4qSen5yal+PXnKmpnZ5KrakFRE7JN0EXAjMA24MiK2SbowrV8NvBP4oKR9QD+wLCICKFu2WnU3M7PqzmEMDzNtLElbXfD8CuCKvGXNzKxYT98A3b39tM9qZXZby4Ruu6oBw8zMJs/6LQ+zcl0XzU1NDA4NsWrpAs5eOG/Ctu9Lg5iZ1YGevgFWruti7+AQewb2sXdwiBXruujpG5iwfThgmJnVge7efpqbir/Sm5ua6O7tn7B9OGCYmdWB9lmtDA4NFaUNDg3RPqt1wvbhgGFmVgdmt7WwaukCZjQ3MbNlOjOam1i1dMGETnx70tvMrE6cvXAei4+b46OkzMxs/2a3tUx4oBjmISkzM8vFAcPMzHJxwDAzs1wcMMzMLBcHDDMzy0XZxWDrk6RHgZ9XWGwO8NgkVOdA5fYo5vYo5vYY6UBvk6Mj4iXlVtR1wBgPSXdExKJa12OqcHsUc3sUc3uMVM9t4iEpMzPLxQHDzMxyccAYaU2tKzDFuD2KuT2KuT1Gqts28RyGmZnl4h6GmZnl4oBhZma5OGAkkpZIul/SdkmX1Lo+1SLpQUl3S9oi6Y6UdpikmyX9V/o7qyD/R1Mb3S/pf9Su5hNH0pWSdkvaWpBWcRtIOim15XZJX5Skar+WiTBKe1wq6eH0Odki6W0F6+q9PY6U9B+S7pW0TdKHU3rjfUYiouEfwDTgAeBY4CDgLuDVta5XlV77g8CckrRVwCXp+SXAZ9PzV6e2aQGOSW02rdavYQLa4FTgRGDrC2kD4HbgDYCAfwPOrPVrm8D2uBS4uEzeRmiPI4AT0/OZwM/S6264z4h7GJmTge0RsSMingHWAufUuE61dA7w9fT868A7CtLXRsRARPw3sJ2s7Q5oEbEJeLwkuaI2kHQE8KKIuC2yb4arC8ocUEZpj9E0Qnv8IiJ+kp7vAe4F5tGAnxEHjMw8YGfBcndKawQB3CTpTknLU9rciPgFZP8swOEpvZHaqdI2mJeel6bXk4skdaUhq+Hhl4ZqD0nzgdcCP6YBPyMOGJly44iNcrzx4og4ETgT+CNJp46Rt5HbadhobVDvbfO3wMuBhcAvgP+X0humPSS1AeuAP46Ip8bKWiatLtrEASPTDRxZsNwO7KpRXaoqInalv7uB68iGmH6Zus+kv7tT9kZqp0rboDs9L02vCxHxy4h4NiKGgK/x/FBkQ7SHpGayYPHNiLg2JTfcZ8QBI7MZOF7SMZIOApYBG2pcp0kn6RBJM4efA28FtpK99t9N2X4XWJ+ebwCWSWqRdAxwPNkkXj2qqA3SkMQeSa9PR768t6DMAW/4izE5l+xzAg3QHqn+fw/cGxF/U7Cq8T4jtZ51nyoP4G1kRz88AHys1vWp0ms+luxojruAbcOvG5gN/DvwX+nvYQVlPpba6H4OsCM8xmiHb5ENswyS/Qr8/fG0AbCI7Iv0AeAK0pUUDrTHKO3xDeBuoIvsC/GIBmqPN5INHXUBW9LjbY34GfGlQczMLBcPSZmZWS4OGGZmlosDhpmZ5eKAYWZmuThgmJlZLg4YZmOQ9Gy6OutWSd+RdOgo+Vol3SJp2hjb6pD03Umo4/cKr5RqNlkcMMzG1h8RCyPi18kuyPdHo+R7P3BtRDxbvao95xvAH9Zgv9ZgHDDM8ruN0S8Wdx7prF1lLku9krsl/U5BvjZJ35Z0n6RvDt8PQdl9ST4t6TZJd0g6UdKNkh6QdGHKc4SkTQU9njelbW4A3j05L9nsedNrXQGzA0Eaajqd7BIRpesOAo6NiAdT0m+RXaTvBGAOsFnSprTutcBryK4hdCuwGPhhWrczIt4g6fPAVWndDLKz8FcD7wFujIhPpfocDBARvekyFLMjomciX7dZIfcwzMbWKmkL0AMcBtxcJs8c4ImC5TcC34rsYn2/BG4BXpfW3R4R3ZFdxG8LML+g3PD1y+4GfhwReyLiUWBvmjvZDLxP0qXAb0R2b4Zhu4GXjfM1muXigGE2tv6IWAgcTXY3xnJzGP1kPYFhY912c6Dg+bMU9/KH1w2V5BsCpkd2Y6NTgYeBb0h6b0GeGakeZpPGAcMsh4h4EvgQcHG61HXhul5gmqThoLEJ+B1J0yS9hOxL/gVf1VfS0cDuiPga2dDYiSldwEvJbrdrNmkcMMxyioifkl3Zd1mZ1TeRDUVBdl+RrpT3+8CKiHhkAqrQAWyR9FNgKXB5Sj8J+FFE7JuAfZiNylerNZsAkl4L/ElEnF+DfV8ObIiIf6/2vq2xuIdhNgFS7+M/xjpxbxJtdbCwanAPw8zMcnEPw8zMcnHAMDOzXBwwzMwsFwcMMzPLxQHDzMxy+f/cYsLAPhhbagAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"fig, ax = plt.subplots()\n",
"ax.set_title('R-V characteristic of IN4001 diode')\n",
"dfax = df1.plot('RD', 'VD', kind='scatter', ax=ax)\n",
"dfax.set_xlabel('R (ohms)')\n",
"dfax.set_ylabel('voltage $V_D$')\n",
"dfax.grid()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "deadly-auditor",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}