{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "36f06e08", "metadata": {}, "outputs": [], "source": [ "import sympy as s\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": 2, "id": "88070726", "metadata": {}, "outputs": [], "source": [ "w, L, C, R = s.symbols(\"\\omega L C R\", real=True, positive=True)" ] }, { "cell_type": "code", "execution_count": 3, "id": "6850d158", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\frac{i L \\omega}{C L \\omega^{2} - 1} + R$" ], "text/plain": [ "-I*L*\\omega/(C*L*\\omega**2 - 1) + R" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "z1 = R+s.simplify(s.I/(1/(w*L) - w*C))\n", "z1" ] }, { "cell_type": "code", "execution_count": 4, "id": "02c2377b", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\sqrt{\\frac{L^{2} \\omega^{2}}{\\left(C L \\omega^{2} - 1\\right)^{2}} + R^{2}}$" ], "text/plain": [ "sqrt(L**2*\\omega**2/(C*L*\\omega**2 - 1)**2 + R**2)" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "abs(z1)" ] }, { "cell_type": "code", "execution_count": 5, "id": "5c957d6d", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle - \\frac{L \\omega}{R \\left(C L \\omega^{2} - 1\\right)}$" ], "text/plain": [ "-L*\\omega/(R*(C*L*\\omega**2 - 1))" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "s.im(z1)/s.re(z1)" ] }, { "cell_type": "code", "execution_count": 6, "id": "317d0bdc", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\sqrt{\\frac{L^{2} \\omega^{2}}{\\left(C L \\omega^{2} - 1\\right)^{2}} + R^{2}}$" ], "text/plain": [ "sqrt(L**2*\\omega**2/(C*L*\\omega**2 - 1)**2 + R**2)" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "e1 = abs(z1)\n", "e1" ] }, { "cell_type": "code", "execution_count": 7, "id": "9de81cf0", "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1336847.9376977843\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEWCAYAAACXGLsWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAkMklEQVR4nO3deZhedX338fcHskKEBAIjhEgQgm2wgjAFFIuBaECkBheWlkKgeQxWFLW0istTFOS5sIo8cMkDxJICVolIRVJZQgyMlioIQfYtYRMiECALZM9kvs8f5zfkZJjJOZmZcy/M53VdN/c5v7N97sOd+ztnV0RgZma2OVvVO4CZmTU+FwszMyvkYmFmZoVcLMzMrJCLhZmZFXKxMDOzQi4WZmZWyMXC6krSM5JWS1qRe+1a71y1JGmcpMh9/mcknVXvXGZ5g+odwAz464j4VU8DJQ2KiPZaBqqTkRHRLqkV+LWk+RExt96hzMBbFtag0l/ap0taACxIbUdLuk/SMkm/lfSe3PjvlXSvpNcl/VTSLEnfTsNOkXRHN/PfK3UPlfQ9SX+U9JKkyyQNT8MmSnpe0pmSFkt6QdKpufkMl3SBpGclLZd0R2q7UdLnuyzzAUkfL/rsEXEP8DCwX27av5f0qKSlkuZI2j21S9KFKdtrkh6U9O407Mr0Weam9fLrzunS8PdLujvlvlvS+3PD2iSdK+l/0rS3Shqdhg2T9B+SXk3/L+6W1JKGbS/pirSeFkn6tqStiz6zNT4XC2tkxwAHARMkvReYCZwG7AhcDsxOP/RDgF8APwJ2AH4GfHILlnM+sDfZj/NewBjgX3LD3w5sn9qnAZdIGpWGfQ84AHh/WvaXgQ7gKuDvOmcgad80/Y1FYSQdDLwbWJj6pwBfAz4B7AT8N3BNGn0ycGjKvz1wHPBqbnYnAucCo4H7gB+nee6QslxMtj6/D9woacfctH8LnArsDAwB/im1T03LGpum/QywOg27EmgnW4/vTfn+V9FntiYQEX75VbcX8AywAliWXr9I7QEcnhvvUuDcLtM+DnyQ7MfyT4Byw34LfDt1nwLc0WXaIPtBE7AS2DM37H3A06l7ItkP4aDc8MXAwWR/bK0G9u3mcw0DlgLjU//3gP/XwzoYl/IsS/OLNL7S8JuBabnxtwJWAbsDhwNPdObpMt8rgVm5/hHABrIf+ZOA33cZ/3fAKam7DfhGbthngVtS99+n9fueLtO3AGuB4bm2vwFur/f3zK++v7xlYY3gmIgYmV7H5Nqfy3XvDpyZdnssk7SM7Edv1/RaFOnXKXm25LJ3ArYB5ufme0tq7/RqbHrMZBXZD+9osqLwZNeZRsQa4KfA30naiuxH80cFWUan+Z5JVqQGp/bdgYty+ZaQFbkxEXEb8APgEmCxpBmStsvN8411GBEr0rSd66zrOnqWbOun04vdfGbS55gDzJL0J0n/KmlwyjkYeCGX9XKyLRNrci4W1sjyP/7PAeflisrIiNgmIq4BXgDGSFJu/HfkuleSFQQAJL09N+wVsr/m98nNd/uIGEGxV4A1wJ49DL+KbDfQJGBVRPyuaIYRsSEivp/m+9nU/BxwWpfPPjwifpumuTgiDgAmkO2O+ufcLMfmPvcIsl1lf0qv3dnUO4BFJTKuj4hvRcQEst1vRwMnp5xrgdG5nNtFxD5F87TG52JhzeKHwGckHZQO6m4r6aOS3ka2+6QdOEPSYEmfAA7MTXs/sI+k/SQNA77ZOSAiOtK8L5S0M4CkMZKOKAqUpp0JfF/SrpK2lvQ+SUPT8N+RHb+4gOKtiq7OB76c8l4GfFXSPinf9pKOTd1/mdbJYLKiuCYts9NRkj6QjuucC9wZEc8BNwF7S/pbSYMkHU9WbH5ZFEzSYZL+Ih24fg1YD3RExAvArcAFkraTtJWkPSV9cAs/uzUgFwtrCpGdIfRpsl0uS8kO/p6Shq0jO/h7CtluluOBn+emfQI4B/gV2ZlVm5wZBXwlze9OSa+l8d5VMto/AQ8Cd6dlf4dN/11dDfwF8B8l59fpRrLP+emIuD7Nd1bK9xDwkTTedmTFbinZbqRXge/m5vMT4OyU7QDSQfeIeJVsi+DMNM2XgaMj4pUS2d4OXEdWKB4Ffs3GYngy2cHwR1Km64BdtuyjWyPqPIBm9pYi6Urg+Yj4Rp1znAxMj4gP1GHZV9IA68DeGrxlYVYRSduQHXeYUe8sZn3lYmFWgXTM42XgJbJdQWZNzbuhzMyskLcszMys0FvyRoKjR4+OcePG9Xr6lStXsu222/ZfoAo1U1ZorrzOWp1myttMWaFveefPn/9KROzU7cB6X0JexeuAAw6Ivrj99tv7NH0tNVPWiObK66zVaaa8zZQ1om95gXvCt/swM7PecrEwM7NCLhZmZlbIxcLMzAq5WJiZWSEXCzMzK+RiYWZmhVwszKyp3P3MEp546fV6xxhw3pJXcJvZW9exl2UPHHzm/I/WOcnAUumWhaSRkq6T9JikR9NTxHaQNFfSgvQ+Ko0rSRdLWijpAUn75+YzNY2/QNLUKjObmdmbVb0b6iLgloj4M2BfsqdqnQXMi4jxwLzUD9mTv8an13TgUgBJO5A96esgskdlnt1ZYMzMrDYqKxaStgcOBa6A7NGXEbEMmEL2IHvS+zGpewpwdbpFyZ3ASEm7AEcAcyNiSUQsBeYCR1aV28zM3qzKYxZ7kD385d8l7QvMB74AtET2YHeAF4GW1D0GeC43/fOpraf2TUiaTrZFQktLC21tbb0OvmLFij5NX0vNlBWaK6+zVqc/8tbq8w7EddudKovFIGB/4PMRcZeki9i4ywmAiAhJ/fL0pYiYQXp8ZWtra0ycOLHX82pra6Mv09dSM2WF5srrrNXpU95bbgSo2ecdUOt2M6o8ZvE82cPi70r915EVj5fS7iXS++I0fBEwNjf9bqmtp3YzM6uRyopFRLwIPCfpXalpEvAIMBvoPKNpKnBD6p4NnJzOijoYWJ52V80BJksalQ5sT05tZmZWI1VfZ/F54MeShgBPAaeSFahrJU0DngWOS+PeBBwFLARWpXGJiCWSzgXuTuOdExFLKs5tZmY5lRaLiLgPaO1m0KRuxg3g9B7mMxOY2a/hzMysNN/uw8zMCrlYmJlZIRcLMzMr5GJhZmaFXCzMzKyQi4WZmRVysTAzs0IuFmZmVsjFwszMCrlYmJlZIRcLMzMr5GJhZmaFXCzMzKyQi4WZmRVysTAzs0IuFmZmVsjFwszMCrlYmJlZIRcLMzMr5GJhZmaFXCzMzKyQi4WZmRVysTAzs0IuFmZmVsjFwszMCrlYmJlZIRcLMzMr5GJhZmaFXCzMzKyQi4WZmRWqtFhIekbSg5Luk3RPattB0lxJC9L7qNQuSRdLWijpAUn75+YzNY2/QNLUKjObmdmb1WLL4rCI2C8iWlP/WcC8iBgPzEv9AB8BxqfXdOBSyIoLcDZwEHAgcHZngTEzs9qox26oKcBVqfsq4Jhc+9WRuRMYKWkX4AhgbkQsiYilwFzgyBpnNjMb0BQR1c1cehpYCgRweUTMkLQsIkam4QKWRsRISb8Ezo+IO9KwecBXgInAsIj4dmr/38DqiPhel2VNJ9sioaWl5YBZs2b1OveKFSsYMWJEr6evpWbKCs2V11mr05e8p9yyEoArj9y2PyP1aCCt28MOO2x+bi/QJgb1KVWxD0TEIkk7A3MlPZYfGBEhqV+qVUTMAGYAtLa2xsSJE3s9r7a2NvoyfS01U1ZorrzOWp0+5b3lRoCafd4BtW43o9LdUBGxKL0vBq4nO+bwUtq9RHpfnEZfBIzNTb5bauup3czMaqSyYiFpW0lv6+wGJgMPAbOBzjOapgI3pO7ZwMnprKiDgeUR8QIwB5gsaVQ6sD05tZmZWY1UuRuqBbg+OyzBIOAnEXGLpLuBayVNA54Fjkvj3wQcBSwEVgGnAkTEEknnAnen8c6JiCUV5jYzsy4qKxYR8RSwbzftrwKTumkP4PQe5jUTmNnfGc3MrBxfwW1mZoVcLMzMrJCLhZmZFXKxMDOzQi4WZmZWyMXCzMwKbfbUWUnDgKOBvwJ2BVaTXVh3Y0Q8XH08MzNrBD0WC0nfIisUbcBdZLflGAbsDZyfCsmZEfFADXKamVkdbW7L4vcRcXYPw76fbg74jgoymZlZg+mxWETEjV3bJG0FjIiI19LNARe/eUozM3urKTzALeknkrZLNwN8CHhE0j9XH83MzBpFmbOhJkTEa2RPtLsZ2AM4qcpQZmbWWMoUi8GSBpMVi9kRsZ7syXdmZjZAlCkWlwPPANsCv5G0O/BalaHMzKyxFN6iPCIuBi7ONT0r6bDqIpmZWaMpLBaSRgInA+O6jH9GNZHMzKzRlHn40U3AncCDQEe1cczMrBGVKRbDIuIfK09iZmYNq8wB7h9J+rSkXSTt0PmqPJmZmTWMMlsW64DvAl9n4ymzAbyzqlBmZtZYyhSLM4G9IuKVqsOYmVljKrMbaiGwquogZmbWuMpsWawE7pN0O7C2szEifOqsmdkAUaZY/CK9zMxsgCpzBfdVtQhiZmaNq8wV3IcA3wR2T+MLiIjw2VBmZgNEmd1QVwBfAuYDG6qNY2ZmjahMsVgeETdXnsTMzBpWj8VC0v6p83ZJ3wV+zqZnQ91bcTYzM2sQm9uyuKBLf2uuO4DDyyxA0tbAPcCiiDha0h7ALGBHsl1bJ0XEOklDgauBA4BXgeMj4pk0j68C08h2g50REXPKLNvMzPpHj8UiIvrrmRVfAB4Ftkv93wEujIhZki4jKwKXpvelEbGXpBPSeMdLmgCcAOwD7Ar8StLeEeHjJ2ZmNVJ4Bbek7SV9X9I96XWBpO3LzFzSbsBHgX9L/SLbIrkujXIV2eNaAaakftLwSWn8KcCsiFgbEU+TXVF+YKlPZ2Zm/aLMAe6ZwEPAcan/JODfgU+UmPb/Al8G3pb6dwSWRUR76n8eGJO6xwDPAUREu6TlafwxZM/ToJtp3iBpOjAdoKWlhba2thLxurdixYo+TV9LzZQVmiuvs1anP/LW6vMOxHXbnTLFYs+I+GSu/1uS7iuaSNLRwOKImC9pYu/ilRcRM4AZAK2trTFxYu8X2dbWRl+mr6VmygrNlddZq9OnvLfcCFCzzzug1u1mlLmR4GpJH+jsSRfprS4x3SHAxyQ9Q3ZA+3DgImCkpM4itRuwKHUvAsamZQwCtic70P1GezfTmJlZDZQpFp8BLpH0TPrh/wFwWtFEEfHViNgtIsaRHaC+LSJOBG4HPpVGmwrckLpnp37S8NsiIlL7CZKGpjOpxgO/L/PhzMysf5S5N9T9wL6Stkv9r/VxmV8BZkn6NvAHsivESe8/krQQWEJWYIiIhyVdCzwCtAOn+0woM7Pa2txFeX8H/CQiOuDNRULSnsAuEXFH0UIiog1oS91P0c3ZTBGxBji2h+nPA84rWo6ZmVVjc1sWOwJ/kDSf7OK5l4FhwF7AB4FXgLMqT2hmZnW3uYvyLpL0A7ID04cA7yE7sP0o2VXXf6xNRDMzq7fNHrNIxwbmppeZmQ1QZc6GMjOzAc7FwszMCrlYmJlZoTI3EmyRdIWkm1P/BEnTqo9mZmaNosyWxZXAHLLbgwM8AXyxojxmZtaAyhSL0RFxLdB5cV47fha3mdmAUqZYrJS0I9nT8ZB0MLC80lRmZtZQytyi/B/Jbua3p6T/AXZi440AzcxsAChzI8F7JX0QeBcg4PGIWF95MjMzaxhlzoY6HRgREQ9HxEPACEmfrT6amZk1ijLHLD4dEcs6eyJiKfDpyhKZmVnDKVMstpakzh5JWwNDqotkZmaNpswB7luAn0q6PPWfltrMzGoqe3im1UOZYvEVsgLxD6l/LvBvlSUyM7OGU+ZsqA7g0vQyM7MBqLBYSDoE+CawexpfQETEO6uNZma2Ke+Fqp8yu6GuAL5E9mhV3+bDzGwAKlMslkfEzZUnMTMr4A2L+ilTLG6X9F3g58DazsaIuLeyVGZm1lDKFIuD0ntrri2Aw/s/jpmZNaIyZ0MdVosgZmZFfJ1F/ZTZskDSR4F9gGGdbRFxTlWhzMyssZS5keBlwPHA58lOmz2W7DRaM7Oa8nZF/ZS5N9T7I+JkYGlEfAt4H7B3tbHMzKyRlCkWq9P7Kkm7AuuBXaqLZGbWPR+yqJ8yxyx+KWkk8F3gXrItQd8bysxsAClzNtS5qfM/Jf0SGBYRfga3mdkA0mOxkPSJzQwjIn6+uRlLGgb8BhialnNdRJwtaQ9gFrAj2S1EToqIdZKGAlcDBwCvAsdHxDNpXl8FppHdbuSMiJhT/iOa2VtF+BB33Wxuy+Kv0/vOwPuB21L/YcBvya7o3py1wOERsULSYOAOSTcD/whcGBGz0plW08juaDuN7CD6XpJOAL4DHC9pAnAC2am7uwK/krR3RPg+VWZmNdLjAe6IODUiTgUGAxMi4pMR8UmyH+3BRTOOzIrUOzi9Oq/8vi61XwUck7qnpH7S8EnpCX1TgFkRsTYingYWAgeW/4hm9lbhA9z1U+YA99iIeCHX/xLwjjIzT49gnQ/sBVwCPAksi4j2NMrzwJjUPQZ4DiAi2iUtJ9tVNQa4Mzfb/DT5ZU0HpgO0tLTQ1tZWJmK3VqxY0afpa6mZskJz5XXW6vQ277oNG6tFrT7vQFm3RcoUi3mS5gDXpP7jgV+VmXnaVbRfOpvqeuDPehOy5LJmADMAWltbY+LEib2eV1tbG32ZvpaaKSs0V15nrU5v865ZvwHmZk91rtXnHSjrtkiZs6E+J+njwKGpaUZEXL8lC4mIZZJuJ7ugb6SkQWnrYjdgURptETAWeF7SIGB7sgPdne2d8tOYmVkNlLkoD7LrK26MiC8BcyS9rWgCSTulLQokDQc+DDwK3A58Ko02Fbghdc9O/aTht0V217DZwAmShqYzqcYDvy+Z28zM+kGZx6p+muxYwA7AnmTHCy4DJhVMugtwVTpusRVwbUT8UtIjwCxJ3wb+QPYkPtL7jyQtBJaQnQFFRDws6VrgEaAdON1nQpkNTD7AXT9ljlmcTnb20V0AEbFA0s5FE0XEA8B7u2l/im7OZoqINWQ3KexuXucB55XIamZmFSizG2ptRKzr7EnHE1zfzazmfFFe/ZQpFr+W9DVguKQPAz8D/qvaWGZm1kjKFIuzgJeBB4HTgJuAb1QZyszMGkuZU2c7JF1FdswigMfDzzY0szrwL0/9lDkb6qNkZz89SfakvD0knRYRN1cdzszMGkOZs6EuAA6LiIUAkvYEbgRcLMysprxhUT9ljlm83lkokqeA1yvKY2ZmDajMlsU9km4CriUr7McCd3c+76LouRZmZv3Fh0vrp0yxGEZ2p9kPpv6XgeFkz7sIip9rYWZmTa7M2VCn1iKImZk1rjJnQ+0BfB4Ylx8/Ij5WXSwzszfzTqj6KbMb6hdkN/n7L6Cj0jRmZtaQyhSLNRFxceVJzMwK+Ph2/ZQpFhdJOhu4FVjb2RgR91aWyszMGkqZYvEXwEnA4WzcDRWp38zMBoAyxeJY4J3525SbmdWFd0PVTZkruB8CRlacw8zMGliZLYuRwGOS7mbTYxY+ddbMasoPP6qfMsXi7MpTmJlZQytzBfevaxHEzKyIT52tnx6LhaTX6f5wkoCIiO0qS2VmZg2lx2IREW+rZRAzM2tcZc6GMjNrCN4LVT8uFmZmVsjFwsyahh9+VD8uFmZmVsjFwszMCrlYmFnT8E6o+nGxMDOzQi4WZtY0fHy7fiorFpLGSrpd0iOSHpb0hdS+g6S5khak91GpXZIulrRQ0gOS9s/Na2oaf4GkqVVlNjOz7lW5ZdEOnBkRE4CDgdMlTQDOAuZFxHhgXuoH+AgwPr2mA5dCVlzIbmZ4EHAgcHZngTGzgcV3na2fyopFRLzQ+ejViHgdeBQYA0wBrkqjXQUck7qnAFdH5k5gpKRdgCOAuRGxJCKWAnOBI6vKbWZmb1bmFuV9Jmkc8F7gLqAlIl5Ig14EWlL3GOC53GTPp7ae2rsuYzrZFgktLS20tbX1Ou+KFSv6NH0tNVNWaK68zlqd3uZdtrbjje5afd6Bsm6LVF4sJI0A/hP4YkS8JumNYRERkvpluzIiZgAzAFpbW2PixIm9nldbWxt9mb6WmikrNFdeZ61Ob/Mufm0N3D4PoGafd6Cs2yKVng0laTBZofhxRPw8Nb+Udi+R3hen9kXA2Nzku6W2ntrNzKxGqjwbSsAVwKMR8f3coNlA5xlNU4Ebcu0np7OiDgaWp91Vc4DJkkalA9uTU5uZDTA+vF0/Ve6GOgQ4CXhQ0n2p7WvA+cC1kqYBzwLHpWE3AUcBC4FVwKkAEbFE0rnA3Wm8cyJiSYW5zcysi8qKRUTcQfZUve5M6mb8AE7vYV4zgZn9l87MmpEvyqsfX8FtZmaFXCzMzKyQi4WZNQ1fwV0/LhZmZlbIxcLMmoYPcNePi4WZmRVysTAzs0IuFmbWNLwXqn5cLMzMrJCLhZk1jfAR7rpxsTAzs0IuFmbWNLxhUT8uFmZmVsjFwszMCrlYmFlT8sHu2nKxMLOmtH6Di0UtuViYWdPIb0y0d3TUL8gA5GJhZk3JWxa15WJhZk2pfYO3LGrJxcLMmkb+4UfesqgtFwsza0rrvWVRUy4WZtY0OjY5wO0ti1pysTCzprFm/YY3un3MorZcLMysaazOFYt1LhY15WJhZk1jzbr8loV3Q9WSi4WZNY38loUvyqstFwszaxr5YuFTZ2vLxcLMmsaa9Ru3JnzqbG25WJhZ08hvWSxfvb6OSQYeFwszaxpLV657o/vF5WvqmGTgqaxYSJopabGkh3JtO0iaK2lBeh+V2iXpYkkLJT0gaf/cNFPT+AskTa0qr5k1voWLVzBm5HCGD96a55eurnecAaXKLYsrgSO7tJ0FzIuI8cC81A/wEWB8ek0HLoWsuABnAwcBBwJndxYYMxs42jd08MRLr/PfC15m37Hbc8Duo5jz8IssXPy6H4JUI6pyRUsaB/wyIt6d+h8HJkbEC5J2Adoi4l2SLk/d1+TH63xFxGmpfZPxetLa2hr33HPPFud97MXX+NxP/sCqlSvZZtttux2nzPoqtUZLjFRmPqtWrWL48OF9mkeZr0CUmFOZ+axevYZhw4aVSFW0rM0vrD8+99q1axkydEif59NfeTY3l3Xr1jFkyJB+zNI/3/OeZtPevp5BgwaXWlYAK9e20xGwzZCtufa097FybTtT//33rFnfwVaCEUMHMXzI1mwlsZWExKbvQPafLbdq1Sq22WabTdp6OaseSf03xz23WcPlnzmitznmR0Rrd8MG9SnVlmuJiBdS94tAS+oeAzyXG+/51NZT+5tImk62VUJLSwttbW1bHO6llR2M2modbxvewaCtet7E7a//rWXmU/QdWr9tB4MHre3zcsqMpBIjFY2xfnAHgwcVH5gs82+nP/4/bG4569d3MHjwhp5H2MIs/fH/oafB69cHgwd39NtySs+nl4vK8m4sEkX/v4dtPZjRw8V7dtqaVxb8AYDz3j+UB17ewJK1wZr2YO2G7P9VRHYPqSArRMGm95TaUu3DOxi0dXXHR/r7z/URau/V71+RWheLN0RESOq39RQRM4AZkG1ZTJw4sVfzOR5oa2ujt9PXWjNlhebK66zV6a+8n+x7lEIDdd12VeuzoV5Ku59I74tT+yJgbG683VJbT+1mZlZDtS4Ws4HOM5qmAjfk2k9OZ0UdDCxPu6vmAJMljUoHtienNjMzq6HKdkNJuobsAPVoSc+TndV0PnCtpGnAs8BxafSbgKOAhcAq4FSAiFgi6Vzg7jTeORGxpKrMZmbWvcqKRUT8TQ+DJnUzbgCn9zCfmcDMfoxmZmZbyFdwm5lZIRcLMzMr5GJhZmaFXCzMzKxQpbf7qBdJL5OdbdVbo4FX+ilO1ZopKzRXXmetTjPlbaas0Le8u0fETt0NeEsWi76SdE9P90dpNM2UFZorr7NWp5nyNlNWqC6vd0OZmVkhFwszMyvkYtG9GfUOsAWaKSs0V15nrU4z5W2mrFBRXh+zMDOzQt6yMDOzQi4WZmZWaEAWC0lfkvSwpIckXSNpmKQ9JN0laaGkn0oaksYdmvoXpuHjapz1Cynnw5K+mNp2kDRX0oL0Piq1S9LFKesDkvavQb6ZkhZLeijXtsX5JE1N4y+QNLW7ZVWU9di0bjsktXYZ/6sp6+OSjsi1H5naFko6i4r0kPe7kh5L6+96SSMbPO+5Ket9km6VtGtqb7jvQm7YmZJC0uhGzSrpm5IWpfV6n6SjcsOq+R5ExIB6kT2W9WlgeOq/FjglvZ+Q2i4D/iF1fxa4LHWfAPy0hlnfDTwEbEN2h+BfAXsB/wqclcY5C/hO6j4KuJnsSZYHA3fVIOOhwP7AQ7m2LcoH7AA8ld5Hpe5RNcr658C7gDagNdc+AbgfGArsATwJbJ1eTwLvBIakcSbUcN1OBgal7u/k1m2j5t0u131G7t9Sw30XUvtYsmfmPAuMbtSswDeBf+pm3Mq+BwNyy4Lsh3e4pEFkP8QvAIcD16XhVwHHpO4pqZ80fJLUj09X37w/J/tiroqIduDXwCe6ZOqa9erI3AmMVHoyYVUi4jdA12eMbGm+I4C5EbEkIpYCc4Eja5E1Ih6NiMe7GX0KMCsi1kbE02TPWjkwvRZGxFMRsQ6Ylcbtdz3kvTV9FwDuJHt6ZCPnfS3Xuy0bHzndcN+F5ELgy2z6aOxGzdqdyr4HA65YRMQi4HvAH8mKxHJgPrAs94/webItENL7c2na9jT+jjWK+xDwV5J2lLQN2V84Y4GWyJ4kCPAi0NI1a5L/HLW0pfkaJXdeM2T9e7K/eKGB80o6T9JzwInAv6TmhssraQqwKCLu7zKo4bImn0u7xWZ27urdTKY+Zx1wxSKt1Clkm2i7kv210+9/DfSHiHiUbFfDrcAtwH3Ahi7jBJv+FdRQGj1fs5L0daAd+HG9sxSJiK9HxFiyrJ+rd57upD/GvsbGYtboLgX2BPYj+6P3gqoXOOCKBfAh4OmIeDki1gM/Bw4h27TsfHLgbsCi1L2I7K950vDtgVdrFTYiroiIAyLiUGAp8ATwUufupfS+uGvWJP85amlL8zVK7ryGzSrpFOBo4MRUjNlMrrrnzfkx8MnU3Wh59yT7A/J+Sc+k5d4r6e0NmJWIeCkiNkREB/BDst1MVJl1IBaLPwIHS9omHXuYBDwC3A58Ko0zFbghdc9O/aTht+X+gVZO0s7p/R1kxyt+0iVT16wnp7M3DgaW53YH1dKW5psDTJY0Km35TU5t9TQbOEHZ2XB7AOOB35M9D368srPnhpCd9DC7VqEkHUm2T/1jEbGqCfKOz/VOAR7L5W2Y70JEPBgRO0fEuIgYR7abZv+IeLHRssIbf4R1+jjZLmuo8nvQ30fum+EFfIvsS/sQ8COyMwfemVbqQuBnwNA07rDUvzANf2eNs/43WTG7H5iU2nYE5gELyM6Q2iG1C7iE7KyHB8md3VNhvmvINoPXk/0Dm9abfGT73xem16k1zPrx1L0WeAmYkxv/6ynr48BHcu1HkW3hPQl8vcbrdiHZvuf70uuyBs/7n+nf2QPAfwFjGvW70GX4M2w8G6rhspL9bj2Y1utsYJeqvwe+3YeZmRUaiLuhzMxsC7lYmJlZIRcLMzMr5GJhZmaFXCzMzKyQi4VZIukMSY9K6verotM5+rdJ2i71r8gNO0rSE5J27zLNKZJ+0KWtTV3ujttl+Kwu1zaY9QsXC7ONPgt8OCJOzDfmruzvi6OA+2PTG+shaRJwMdn58M/2w3IuJbtoz6xf9cc/ArOmJ+kysgszb5Y0k+y2Lnumtj9KOoPs1vXvSJN8MSL+R9KOZBdNjQF+B3wYOCAiXumyiBPp8mxkSYeS3arhqIh4cgvzfgw4J/UOB4ZExB5kF3FeKWlQbLwxplmfecvCDIiIzwB/Ag6LiAtT8wTgQxHxN8BFwIUR8Zdk9zf6tzTO2cAdEbEPcD0bi0lXh5Dd3bjTUOAXwDER8Vi3U2SOzz3g5j6gNeWdHRH7RcR+ZFf3fy+1d5BdTbxv2c9uVoa3LMx6NjsiVqfuDwETco8y2U7SCLIH03wCICJulLS0h3ntEBGv5/rXA78lu3XDFzaT4acR8cadWiW15QdK+jKwOiIuyTUvJrujcr44mfWJi4VZz1bmurcCDo6INfkRtuA5WO2Stkp/+QN0AMcB8yR9LSL+z5aGk/Qh4FiygpU3DFj95inMes+7oczKuRX4fGePpP1S52+Av01tHyF7vGZ3Hic7/vGGyO4a+1HgREnTtiRMOnPqEuDY3NZPp73ZeBdSs37hYmFWzhlAa3oy2SPAZ1L7t4BDJT1Mtjvqjz1MfyMwsWtjRCwhe/jWN9JB67JOIbu77y/S8YybACS1kO2WenEL5mVWyHedNetH6cE5rV3PhkrPH7g6Ij5c8fK/BLwWEVdUuRwbeLxlYVYDkT0s54edF+VVaBlwVcXLsAHIWxZmZlbIWxZmZlbIxcLMzAq5WJiZWSEXCzMzK+RiYWZmhf4/cdAZSeivXHQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "x = np.linspace(800000,1500000,1000 ) # radians per second\n", "c=4.7e-6\n", "l = 4.7e-6\n", "f1 = s.lambdify(w, e1.subs([(R, 1000), (C, c), (L, l)]))\n", "y = f1(x/(2*np.pi))\n", " \n", "ax.plot(x/1000,y)\n", "ax.grid()\n", "ax.set_xlabel(\"freq (K Hz)\")\n", "ax.set_ylabel(\"Impedance (ohms)\")\n", "ax.set_title(\"Frequency Response\")\n", "\n", "\n", "print ((2*np.pi)/np.sqrt(c*l))\n" ] }, { "cell_type": "code", "execution_count": 34, "id": "b0b1f729", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\frac{C L R \\omega^{2} - i L \\omega}{C L \\omega^{2} - i C R \\omega - 1}$" ], "text/plain": [ "(C*L*R*\\omega**2 - I*L*\\omega)/(C*L*\\omega**2 - I*C*R*\\omega - 1)" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "xl = s.I*w*L\n", "xc = s.I/(w*C)\n", "z2 = s.cancel(1/(1/xl+1/(R-xc)))\n", "\n", "z2" ] }, { "cell_type": "code", "execution_count": 35, "id": "72a51d3d", "metadata": { "scrolled": true }, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\frac{L \\omega \\sqrt{C^{2} R^{2} \\omega^{2} + 1}}{\\sqrt{C^{2} L^{2} \\omega^{4} + C^{2} R^{2} \\omega^{2} - 2 C L \\omega^{2} + 1}}$" ], "text/plain": [ "L*\\omega*sqrt(C**2*R**2*\\omega**2 + 1)/sqrt(C**2*L**2*\\omega**4 + C**2*R**2*\\omega**2 - 2*C*L*\\omega**2 + 1)" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "e2 = s.simplify(abs(z2))\n", "e2" ] }, { "cell_type": "code", "execution_count": 36, "id": "2387682d", "metadata": {}, "outputs": [ { "data": { "text/latex": [ "$\\displaystyle \\frac{L \\omega}{\\sqrt{C^{2} L^{2} \\omega^{4} - 2 C L \\omega^{2} + 1}}$" ], "text/plain": [ "L*\\omega/sqrt(C**2*L**2*\\omega**4 - 2*C*L*\\omega**2 + 1)" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "e2.subs(R,0)" ] }, { "cell_type": "code", "execution_count": 50, "id": "1d8a837d", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "Text(0.5, 1.0, 'Frequency Response')" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEWCAYAAABhffzLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA1OElEQVR4nO3deXgV5fXA8e/JvieEkLAECIRNdkzYUUEFFW217rbuVlxq1dpW2/7aWmv3qq221qVVEauiRasWVBAEN5B937cAYUkCSYAskO38/rgTGyiQS5Kbucv5PM88uTNzZ+a8GTgzeeed9xVVxRhjTOgIczsAY4wxrcsSvzHGhBhL/MYYE2Is8RtjTIixxG+MMSHGEr8xxoQYS/zGGBNiLPGbFiMieSJSKSJlDaaObsfVmkQkS0S0QfnzRORHbsdlTEMRbgdggs7XVHX2yVaKSISq1rRmQC5JUdUaEckFPhGRpar6kdtBGQN2x29agXMH/B0R2QxsdpZdIiIrRKRUROaLyMAG3x8iIstE5LCIvCEiU0XkV866m0Xk8xPsv4fzOVpEHhORnSJSICLPikiss26siOSLyPdFpFBE9orILQ32Eysij4vIDhE5KCKfO8tmiMh3jzvmKhH5RmNlV9UlwFpgcINtbxWR9SJSIiIzRaSrs1xE5E9ObIdEZLWI9HfWTXbK8pHze/mkfjtn/SgRWezEvVhERjVYN09EHhWRL5xtZ4lImrMuRkT+KSIHnHOxWEQynHXJIvKC83vaLSK/EpHwxsps/J8lftNaLgOGA31FZAjwInAH0BZ4DnjPSdpRwDvAK0Aq8C/gitM4zu+AXngSbQ+gE/DzBuvbA8nO8tuAp0WkjbPuMSAHGOUc+0GgDngZuL5+ByIyyNl+RmPBiMgIoD+wxZm/FPgJcDnQDvgMeN35+gTgbCf+ZOBq4ECD3X0LeBRIA1YArzr7THVieQrP7/MJYIaItG2w7TeBW4B0IAr4gbP8JudYnZ1t7wQqnXWTgRo8v8chTnzfbqzMJgCoqk02tcgE5AFlQKkzveMsV+DcBt97Bnj0uG03AufgSXx7AGmwbj7wK+fzzcDnx22reJKTAOVAdoN1I4HtzuexeJJaRIP1hcAIPDdBlcCgE5QrBigBejrzjwF/O8nvIMuJp9TZnzrfF2f9B8BtDb4fBlQAXYFzgU318Ry338nA1AbzCUAtnoR9A7DouO8vAG52Ps8Dftpg3d3Ah87nW53f78Djts8AjgKxDZZdB8x1+9+ZTc2f7I7ftLTLVDXFmS5rsHxXg89dge87VQulIlKKJ4F1dKbd6mQaxw4vj90OiAOWNtjvh87yegf02GcMFXiSaBqeBL/1+J2q6hHgDeB6EQnDkwBfaSSWNGe/38dzwYl0lncFnmwQXzGeC1YnVf0Y+CvwNFAoIs+LSFKDfX71O1TVMmfb+t/Z8b+jHXj+Kqm37wRlxinHTGCqiOwRkT+ISKQTZySwt0Gsz+H5i8EEOEv8prU0TOS7gF83uECkqGqcqr4O7AU6iYg0+H6XBp/L8SR3AESkfYN1+/HcZfdrsN9kVU2gcfuBI0D2Sda/jKeq5TygQlUXNLZDVa1V1Sec/d7tLN4F3HFc2WNVdb6zzVOqmgP0xVPl88MGu+zcoNwJeKqj9jhTV47VBdjtRYzVqvqIqvbFU8V1CXCjE+dRIK1BnEmq2q+xfRr/Z4nfuOHvwJ0iMtx5oBkvIheLSCKeKooa4F4RiRSRy4FhDbZdCfQTkcEiEgP8on6FqtY5+/6TiKQDiEgnEbmgsYCcbV8EnhCRjiISLiIjRSTaWb8AT33/4zR+t3+83wEPOvE+C/xYRPo58SWLyFXO56HO7yQSzwXuiHPMehNFZIzzHORR4EtV3QW8D/QSkW+KSISIXIPnwjG9scBEZJyIDHAe2h4CqoE6Vd0LzAIeF5EkEQkTkWwROec0y278kCV+0+rU09LldjzVGiV4Hnze7KyrwvPg82Y8VRnXAG832HYT8EtgNp4WQse08AEecvb3pYgccr7X28vQfgCsBhY7x/49x/4fmQIMAP7p5f7qzcBTzttV9d/Ofqc68a0BLnK+l4TnwlWCp6rmAPDHBvt5DXjYiS0H54Gzqh7Ac6f+fWebB4FLVHW/F7G1B6bhSfrrgU/474XtRjwPgtc5MU0DOpxe0Y0/qn/gZIzfEpHJQL6q/tTlOG4EJqnqGBeOPRk/+B2Y4GB3/MZ4QUTi8NTTP+92LMY0lyV+YxrhPCMoAgrwVLcYE9CsqscYY0KM3fEbY0yICYhO2tLS0jQrK6tJ25aXlxMfH9+yAfk5K3NosDIHv+aWd+nSpftVtd3xywMi8WdlZbFkyZImbTtv3jzGjh3bsgH5OStzaLAyB7/mlldETvjWu1X1GGNMiLHEb4wxIcYSvzHGhBhL/MYYE2Is8RtjTIixxG+MMSHGEr8xxoSYgGjHb0xT7Cmt5IM1+1BVLuzfnsw2cY1vZEwIsMRvgtIHq/fyvTdXcKTaM47JY7M28uvLBnBFTqbLkRnjPkv8Juh8ue0A97y+nEGZyfz5miGIwIPTVvGDaSuJiwrnogE2logJbVbHb4JK2dEa7pu6nK5t43j51mF0aRtH59Q4XrplKIM7p/DgtFXsKa10O0xjXGWJ3wSVv368hYJDR3n8qkEkxkR+tTwmMpwnrxlCrSq/eG+tixEa4z5L/CZoFJdXMXn+dr4xpBNDurT5n/Vd2sZx1znZzFpXwNIdxS5EaIx/sMRvgsYrC3ZwpLqOu8Zmn/Q7t53VjbSEaP7w4cZWjMwY/+KzxC8iL4pIoYisabAsVUQ+EpHNzs//vS0zpgmq65SXF+Rxbp90emUknvR7cVER3HlOdxZuL2blrtLWC9AYP+LLO/7JwIXHLfsRMEdVewJznHljmm1FYS3F5VXcOLJro9+9ZmhnEqMj+Mfn21shMmP8j88Sv6p+ChxfkXop8LLz+WXgMl8d34SW+XtqSE+MZkyPtEa/mxgTyXXDu/D+6r0UHDrSCtEZ4198Oti6iGQB01W1vzNfqqopzmcBSurnT7DtJGASQEZGRs7UqVObFENZWRkJCQlN2jZQhVqZD1Up988tZ0LXKK7tE+XVNgXldTz0WSVX9ozkkmzvtvE3oXaeIfTK3Nzyjhs3bqmq5h6/3LUXuFRVReSkVx1VfR54HiA3N1ebOvxYqA3VBqFX5pfn51Gna7n/shH0aZ/k9XZv5y9gSfER/njrOXjuQwJLqJ1nCL0y+6q8rd2qp0BEOgA4Pwtb+fgmCH2wZi+dEuS0kj7A1bmdyTtQwaLt1rTThJbWTvzvATc5n28C3m3l45sgU1pRxeK8Eoakn/4frxMHdCAhOoJpS/N9EJkx/suXzTlfBxYAvUUkX0RuA34HjBeRzcD5zrwxTfbxhkJq65Qz08NPe9vYqHAm9Mvgw7X7OFpT64PojPFPPqvjV9XrTrLqPF8d04Sej9YVkJ4YTVZy0+5hvjaoI28v281nm/Zzft+MFo7OGP9kb+6agHW0ppZPNhVxft8Mwpr4cHZMjzRS4iKZvmpPC0dnjP+yxG8C1tIdJVRU1XJu7/Qm7yMyPIwL+7Xno3UFHKm26h4TGizxm4D1+eb9RIQJI7LbNms/lwzsSHlVLXM3WCMzExos8ZuA9fmW/QzpkkJCdPMeVY3onkpaQhTTV+1tociM8W+W+E1AKimvYvXug4zp0a7Z+4oID2NCv/bM21ho1T0mJFjiNwFp/tYDqMKYno33zeONCX0zKK+qZcHWAy2yP2P8mSV+E5A+31JEYkwEgzKTW2R/I7PbkhAdwax1+1pkf8b4M0v8JuCoKp9t3s/I7m2JCG+Zf8LREeGM7d2Oj9YVUFvnu44LjfEHlvhNwNlZXEF+SSVntVA1T70J/dqzv6yKFbtKWnS/xvgbS/wm4Czc5ulUbUT35jXjPN7Y3u2IDBdmrS1o0f0a428s8ZuAsyivmDZxkfRIb9l+2ZNiIhmZncbMtfvw5TgVxrjNEr8JOIvzihmaleqTPvQn9M0g70AFWwrLWnzfxvgLS/wmoBQeOsKOAxUM65bqk/2Pdzpqm7XOqntM8LLEbwLKojxP/f7QLN8k/oykGAZ3TmHmWmvWaYKXJX4TUBZvLyYuKpx+HU9vtK3TMb5vBqvyD7L3YKXPjmGMmyzxm4CyKK+EM7u0abH2+ydyQT9Pdc9sq+4xQcoSvwkYByur2bDvkM+qeeplt0ugW1q81fOboGWJ3wSMZTtKUIWh3dr49DgiwoS+GXy57QCHjlT79FjGuMESvwkYC7cXExkuDOns28QPMKFfBtW1yryNRT4/ljGtzRK/CRiL84rp3ymZ2KjTH1j9dA3u3Ia0hChmWeseE4Qs8ZuAcKS6llX5pQzzcf1+vfAw4fwzMpi3sYijNdZHvwkulvhNQFixq5TqWvX5g92GxvfNoOxoDV86fQMZEyws8ZuAsHi7J/nmZvm+fr/e6B5pxEWF85H10W+CjCV+ExAW5RXTOyORlLioVjtmTGQ4Z/f09NFfZ330myBiid/4vZraOpbtKPF5M84TmdAvg4JDR1m9+2CrH9sYX7HEb/ze+r2HKa+qbdX6/Xrn9kknPExsSEYTVCzxG79X3zGbr3rkPJWUuCiGZaXykb3Fa4KIJX7j9xZvLyazTSwdkmNdOf6EfhlsKigjb3+5K8c3pqVZ4jd+TVVZnFfcau33T6S+j3676zfBwpXELyLfE5G1IrJGRF4XkRg34jD+b9v+cg6UVzHUhWqeeplt4ujbIcnq+U3QaPXELyKdgHuBXFXtD4QD17Z2HCYw1Lffd+PBbkPj+2awdEcJ+8uOuhqHMS3BraqeCCBWRCKAOGCPS3EYP7cor5jU+Ciy28W7GseEfhnUKXy8vtDVOIxpCaLa+i+miMh9wK+BSmCWqn7rBN+ZBEwCyMjIyJk6dWqTjlVWVkZCQkIzog08wVTmH35SQZekML475NS1gb4us6ryg08q6ZwYxv05/lEzGUzn2VuhVubmlnfcuHFLVTX3f1aoaqtOQBvgY6AdEAm8A1x/qm1ycnK0qebOndvkbQNVsJR5b2mldn1ouv79062Nfrc1yvzwu2u01/+9r+VHq31+LG8Ey3k+HaFW5uaWF1iiJ8ipblT1nA9sV9UiVa0G3gZGuRCH8XNutt8/kQv6tedoTR1zN1gf/SawuZH4dwIjRCRORAQ4D1jvQhzGzy3eXkx8VDh9O/huYPXTMaxbKmkJ0cxYbY+kTGBr9cSvqguBacAyYLUTw/OtHYfxf4vzijmzq28HVj8d4WHCxAHt+XhDIeVHa9wOx5gmc+V/lKo+rKp9VLW/qt6gqtZGzhyjtKKKDfsOu/ri1olcMrAjR6rrmL3eXuYygcs/bqWMOc6SvBIAV1/cOpHcrm3ISIpmxqq9bodiTJNZ4jd+aXGeZ2D1wZ1T3A7lGGFhwsQBHZi3qYjDR6rdDseYJjll4heRGBG5UkSeFJF/icgUEXlQRPq1VoAmNC3KK2ZgZgoxkb4fWP10XTKwA1U1Vt1jAtdJE7+IPAJ8AYwEFgLPAW8CNcDvROQjERnYKlGakFJZVcvq/IOud9NwMkM6t6FjcgzTV1p1jwlMEadYt0hVHz7JuidEJB3o4oOYTIhbvquEmjplmAsjbnmjvrrn5QV5HKyoJjku0u2QjDktJ73jV9UZxy8TkTARSXLWF6rqEl8GZ0LT4u0liEBOV/+84wf42qCOVNcqH6yxu34TeBp9uCsir4lIkojEA2uAdSLyQ9+HZkLVYmdg9eRY/72THpiZTPd28by9bLfboRhz2rxp1dNXVQ8BlwEfAN2AG3wZlAldNbV1LNtZ4jfdNJyMiHDFmZksyitmV3GF2+EYc1q8SfyRIhKJJ/G/5/Sv0/pdepqQsHbPISpcGlj9dF06uCMA/15ud/0msHiT+J8D8oB44FMR6Qoc8mVQJnR9ue0AAMP9/I4fPCNzjeieytvL8ut7njUmIDSa+FX1KVXtpKoTnZ4+dwDjWiE2E4IWbDtAdrt40pP8o8/7xlx+ZiZ5BypYvqvU7VCM8Zo3D3dTROReEXlCRJ4SkaeAJ1ohNhNiqmvrWLy9mJHZbd0OxWsX9W9PdEQYby/LdzsUY7zmTVXP+0AWnp40lzaYjGlRq/IPUl5Vy6jsNLdD8VpiTCQX9GvPf1bu5Uh1rdvhGOOVU73AVS9GVR/weSQm5NXX74/oHjh3/ABX53bmvZV7mLl2H5cO7uR2OMY0yps7/ldE5HYR6SAiqfWTzyMzIWf+1v30aZ9IanyU26GcllHZbemSGsdrC3e6HYoxXvEm8VcBfwQW8N9qHntj17SoozW1LMkrCaj6/XphYcK1wzqzcHsxW4vK3A7HmEZ5k/i/D/RQ1SxV7eZM3X0dmAktK3aWcrSmjpEBVs1T78qcTCLChKmL7K7f+D9vEv8WwF5NND41f+sBwgSGB2jiT0+MYXzfDKYtzedojT3kNf7Nm8RfDqwQkefqm3M6TTqNaTELth2gX8dkv+6fpzHXDetCSUU1M9daP/3Gv3nTqucdZzLGJyqralm+s4RbR3dzO5RmGdMjjcw2sfzzyx18fVBHt8Mx5qQaTfyq+nJrBGJC19IdJVTXKiMC8MFuQ2Fhwg0juvLbDzawds9B+nVMdjskY07Imzd3RzujbW0SkW0isl1EtrVGcCY0fLaliMhwYVgAdMzWmGuHdiE2MpyXvshzOxRjTsqbOv4X8HTRMAYYCuQ6P41pEZ9u2k9O1zbER3tT8+jfkuMiuSKnE++t2MP+sqNuh2PMCXmT+A+q6gfOiFsH6iefR2ZCQuHhI6zfe4ize7VzO5QWc/OoblTV1tkLXcZvnWqw9TNF5Exgroj8UURG1i9zlhvTbJ9t2g/A2T2DJ/H3SE/gnF7teOXLHVTV1LkdjjH/41R/Wz9+3Hxug88KnNvy4ZhQ8+nmItISoujbIcntUFrUrWO6cdOLi5i+ag+Xn5npdjjGHOOkiV9Vrc9941N1dcpnm/dzTq92hIWJ2+G0qLN7ptE7I5FnP9nKZYM7BV35TGDzplVPstMX/xJnelxErJ2aabY1ew5SXF7F2b0Cpxtmb4kId4/LZlNBGbPX2wtdxr9483D3ReAwcLUzHQJe8mVQJjR8uqkIgLOCqH6/oYsHdKBLahxPz9tqQzMav+JN4s9W1YdVdZszPQI0q5M2Z1SvaSKyQUTWi8jI5uzPBKZPN+2nX8ck0hKi3Q7FJyLCw7jznGxW7ipl/lZrCGf8hzeJv1JExtTPiMhooLKZx30S+FBV+wCDgPXN3J8JMIePVLNsZ0lQNeM8kStyOpGeGM3Tc7e4HYoxX/Em8d8JPC0ieSKSB/wVuKOpB3SeD5yN58UwVLVKVUubuj8TmD7dtJ+aOmVskCf+6IhwJp3dnflbD7Akr9jtcIwBQLytexSRJABVPdSsA4oMBp4H1uG5218K3Keq5cd9bxIwCSAjIyNn6tSpTTpeWVkZCQkJzQk54ARCmZ9fdZSVRTU8NS6O8BZo8eLPZT5ao/zw00o6xAs/GhaDSMu08PHnMvtKqJW5ueUdN27cUlXN/Z8VqnrCCbgeCDvF+mxgzMnWn2K7XKAGGO7MPwk8eqptcnJytKnmzp3b5G0Dlb+Xuaa2Tgc/MlPvn7q8xfbp72We/MV27frQdP10U2GL7dPfy+wLoVbm5pYXWKInyKmneoGrLbBcROqHWywCYoAewDnAfuBHTbgI5QP5qrrQmZ/WxP2YALVsZwklFdWcd0a626G0mmuHdeb5T7fxx5kbGdMjrcXu+o1pipPW8avqk8CZwOtAO+A8Z343cIOqXqGqm0/3gKq6D9glIr2dRefhqfYxIWL2ugIiwyXoH+w2FB0Rzn3n92RV/kFmrbN2/cZdp+wOUVVrgY+cqSV9F3hVRKKAbcAtLbx/48dmry9geLe2JMUE7mhbTXH5kE48+8lWHpu5kfP6pBMR7k3bCmNaniv/8lR1harmqupAVb1MVUvciMO0vu37y9laVB5S1Tz1IsLDePCCPmwuLOP1xbvcDseEMLvlMK1qjtN9wflnZLgciTsu6JfBiO6pPDFrIwcrq90Ox4QoS/ymVX24Zh992ifSOTXO7VBcISL87JK+lFZW85c5p/2IzJgW4U0nbRki8oKIfODM9xWR23wfmgk2+w4eYcmOEiYO6OB2KK7q1zGZa4d2ZvL8PLYVlbkdjglB3tzxTwZmAh2d+U3A/T6KxwSxmWv3ATBxQHuXI3HfA+N7ExMZziP/WWcduJlW503iT1PVN4E6AFWtAWp9GpUJSu+v3kvP9AR6pCe6HYrr2iVG88D4XnyyqYgZq/e6HY4JMd4k/nIRaYtn1C1EZARw0KdRmaBTdPgoi/KKuSjEq3kaumlUFgM6JfPIf9bZg17TqrxJ/A8A7wHZIvIFMAVPO3xjvDZz7T5UPX3UG4/wMOG3lw/gQNlR/jhzg9vhmBDSaOJX1WV4umgYhadXzn6qusrXgZng8sGavXRvF0+vjNDpYMsb/Tslc8vobry6cCdLd1jvnaZ1eNOq5ztAgqquVdU1QIKI3O370EywKDp8lC+3FTOxfwfro+YEHhjfi47JsXz/zZVUVNW4HY4JAd5U9dyuDfrLd96yvd1nEZmgM33VHmrrlEsHd2z8yyEoPjqCx68exI7iCn73gVX5GN/zJvGHS4PbNBEJB6J8F5IJNu8s302/jkn0zLDWPCczontbbh3djSkLdnw1FrExvuJN4v8QeENEzhOR8/D01vmhb8MywWJbURkr8w/yjSGd3A7F7/3wgt70SE/gwWmrOFhhrXyM73iT+B8C5gJ3OdMc4EFfBmWCxzsr9hAm8LVBVs3TmJjIcJ64ehD7y47y0Fur7MUu4zPetOqpU9VnVPVKZ3rO6a7ZmFNSVd5ZvpvRPdLISIpxO5yAMDAzhQcv7M2Ha/cxeX6e2+GYIOVNq57RIvKRiGwSkW0isl1EtrVGcCawLdtZys7iCi4dbNU8p+P2s7pz/hnp/Ob99azYVep2OCYIeVPV8wLwBDAGGIpnzNyhvgzKBIdpS/OJjQzngn6h2QVzU4kIj101iPTEGL7z6jJKK6rcDskEGW8S/0FV/UBVC1X1QP3k88hMQCs/WsN7K3ZzycAOJIbYSFstISUuiqe/dSaFh49w79QV1NTWuR2SCSLeJP65IvJHERkpImfWTz6PzAS0Gav2Ul5Vy7XDOrsdSsAa3DmFX13Wn083FfGb9619v2k5pxxz1zHc+ZnbYJkC57Z8OCZYTF28kx7pCZzZpY3boQS0a4Z2YeO+Ml78Yju9MhK4dlgXt0MyQaDRxK+q41ojEBM8NhUcZtnOUn568RnWRUML+MnEPmwpKuNn764hKy2eEd3buh2SCXBeDb0oIheLyIMi8vP6ydeBmcD1xuJdRIaLvbTVQiLCw/jLdUPokhrH7VOWsH7vIbdDMgHOm+aczwLX4OmKWYCrgK4+jssEqCPVtby1LJ8JfdvTNiHa7XCCRnJsJFNuG058VAQ3vbiIXcUVbodkApg3d/yjVPVGoERVHwFGAr18G5YJVO+u2E1pRTU3jLR7g5bWKSWWKbcN42hNHTe+uIhDR+3NXtM03iT+SudnhYh0BKoBG03D/A9V5aUv8ujTPpHh3VLdDico9cpI5MWbc9l7sJLHlx6xPn1Mk3iT+KeLSArwR2AZkIenozZjjrFoezEb9h3m5lFZ9lDXh3K6pvLM9TnsPlzH9S8stORvTps3ffU8qqqlqvoWnrr9Pqr6M9+HZgLN5Pl5JMdGWhcNrWBc73TuGRLNxn2HLfmb03bS5pwicvkp1qGqb/smJBOI9pRWMmtdAd8+qxuxUeFuhxMSBqdH8NwNA7njlaVc/8JCptw6jDbxNlSGadyp7vi/5ky34emv51vO9A/gVt+HZgLJi59vB+CGEfZQtzWN65POczfksLHgMFc+O5/dpZWNb2RC3kkTv6reoqq3AJFAX1W9QlWvAPo5y5pFRMJFZLmITG/uvoy7SiuqeG3RTr4+qCOZbeLcDifkjOuTziu3DqPw8FGu+Nt8NhUcdjsk4+e8ebjbWVX3NpgvAFrivfH7gPUtsB/jsikLdlBRVcsd53R3O5SQNbx7W968YyS1qlz5zHyW5BW7HZLxY94k/jkiMlNEbhaRm4EZwOzmHFREMoGL8VQbmQBWUVXDS19s59w+6fRpn+R2OCHtjA5JvH3XKNomRPPNfyzk38vz3Q7J+ClvWvXcAzwLDHKm51X1u8087p/xDN9ofc0GuDcX76Kkopq7xma7HYoBOqfG8dZdoxjSOYXvvbGS336wnto6e9HLHEu8GddTRLoCPVV1tojEAeGq2qSKRBG5BJioqneLyFjgB6p6yQm+NwmYBJCRkZEzderUphyOsrIyEhISmrRtoGqtMtfUKQ99WklqjPB/I2J9frxTsfN8rJo65Z/rq5i3q4ZB7cK5Y2A0cZGB/25FqJ3n5pZ33LhxS1U1939WqOopJ+B2YDGw1ZnvCcxpbLtT7O+3QD6eF8H2ARXAP0+1TU5OjjbV3Llzm7xtoGqtMr/65Q7t+tB0/Xh9Qasc71TsPJ/YlPnbtfuPZ+g5f/hYV+eX+j4oHwu189zc8gJL9AQ51Zs6/u8Ao4FDzoViM5De1CuQqv5YVTNVNQu4FvhYVa9v6v6MO45U1/KXjzdzZpcUxvZu53Y45iRuGJnF67ePoLK6lsufmc8rX+6ovwEzIcybxH9UVb8a9FNEIvAMxGJC2OuLdrL34BG+P6G3dc/g54Z1S+X9e89iRPe2/OydNdzz+nIOHbE3fUOZN4n/ExH5CRArIuOBfwH/aYmDq+o8PUH9vvFvlVW1PD13KyO6pzIq2wYFCQRtE6KZfPNQHrywNx+u2cdFf/6M+Vv2ux2WcYk3if9HQBGwGrgDeB/4qS+DMv5tyoI89pcdtbv9ABMWJtw9tgf/unMk0RFhfPMfC3n43TVUVNW4HZppZd4MvVgnIi8DC/FU8WxUqyQMWaUVVfxt3lbO6dWOoVnW9XIgOrNLG2bcexa//3ADk+fn8cmmIn5/xUCG25COIcObEbguBrYCTwF/BbaIyEW+Dsz4pyfnbObwkWp+PLGP26GYZoiNCucXX+/Ha7cPp6ZOueb5L/nhv1ZSXF7V+MYm4HlT1fM4ME5Vx6rqOcA44E++Dcv4o61FZbyyYAfXDO1ib+kGiVHZacz63tncNTabfy/fzbmPz+PNxbuos5e+gpo3if+wqm5pML8NsF6gQtBv319PTGQ4D4y3kTeDSVxUBA9d2If37zuLnukJPPjWKq58dj7Ldpa4HZrxEW8S/xIRed/pq+cmPC16FovI5afqs98Ely+27Gf2+kLuHpdNu0QbRD0Y9cpI5I1JI/nDlQPZVVLJ5X+bzz2vLbOB3YNQow93gRg8PXKe48wXAbF4+upXwAZkCXJVNXX8/N01ZLaJ5dbR3dwOx/hQWJhwdW5nLh7Qgec+2crzn21j1toCbhmdxV1js0mJs4FegoE3rXpuaY1AjP/6+2fb2FpUzks3DyUm0kbXCgXx0RE8MKE31w3vwmMzN/H8Z9t4beFObhnTjdvGdCM5ttlDchgXNZr4RaQb8F0gq+H3VfXrvgvL+IudByp4as5mJg5oz7g+Te6pwwSoDsmxPH71IG4/uxtPzt7MU3M289IX2/n2mO7cMiaLpBi7AAQib6p63sEz9OJ/sG6UQ4qq8rN31xARJvz8kn5uh2Nc1Kd9Es9cn8PaPQd5cvZm/jR7Ey98vo0bRnblplFZpCfGuB2iOQ3eJP4jqvqUzyMxfue9lXv4ZFMRP7+kL+2T7T+2gX4dk3n+xlzW7D7IXz7ezN/mbeXvn23n8iGd+PZZ3emRHjpdJgcybxL/kyLyMDALOFq/UFWX+Swq47rCQ0f4+btrGdw5hRtH2gDq5lj9OyXz3A25bCsq4x+fb2fa0nymLt7F+WdkcMvoLEZlt7XuPPyYN4l/AHADcC7/repRZ94EIVXlx2+v5kh1LY9fPYiIcG9a/ZpQ1L1dAr/5xgAeGN+LKfPzeOXLHcxeX0D3dvFcP7wrV+Rk2oNgP+RN4r8K6N6wa2YT3KYtzWfOhkJ+evEZZLezP91N49ISonlgQm/uHteDGav28s+FO/jl9HX8YeYGLh3UiW8O78LAzGT7K8BPeJP41wApQKFvQzH+YE9pJb/8zzqGZaVam31z2mIiw7kiJ5MrcjJZs/sgry7cwTvL9/DGkl30TE/gipxMLhvcyZ4ZucybxJ8CbBCRxRxbx2/NOYNMTW0d976+nDpV/njVQMLC7O7MNF3/Tsn89vKB/HjiGcxYtZe3lubzuw828IcPNzC6RxpX5mQyoW97YqPs3ZDW5k3if9jnURi/8OfZm1myo4Qnrx1M17bxbodjgkRSTCTXDevCdcO6kLe/nLeX5fPWst3cN3UFsZHhnHtGOhcP6MC43ul2EWgl3ry5+0lrBGLc9dnmIp6et4Vrcjtz6eBObodjglRWWjwPTOjN/ef3YuH2Yqav2sPMtfuYsWqvXQRa0UkTv4gc5sRj6wqgqmr98gaJwsNH+N4bK+jRLoFffN1e1DK+FxYmjMxuy8jstjzy9X4s2l7MjNV7v7oIxESGMaZHGuedkcG5fdLJSLJnAi3ppIlfVRNbMxDjjqqaOu7+5zLKjtbw2u0j7C7LtLqI8DBG9UhjVI+0ry4CM9fuY/b6Qmav97QpGdApmXP7pJNSUcvZdWrPn5rJmzp+E8Qefm8tS3aU8JfrhtArw671xl0NLwK/+LqyqaCMORsKmLO+kKc+3owqPL16NqOy0xjTM40xPdLomBLrdtgBxxJ/CPvnlzt4fdFO7hqbzdcGdXQ7HGOOISL0bp9I7/aJ3D22B8XlVTzzzicUhafx+ZYDvLdyDwDd28Uzpkcao3ukMTK7rXUc5wVL/CFq4bYD/OK9tYzt3Y4fTOjtdjjGNCo1PorRnSIZO3YIqsrGgsN8vnk/X2zZz7Sl+UxZsIMwgTM6JDE0K5Vh3VIZmpVqAwedgCX+ELS54DC3T1lCl7ZxPHntEMKtvtQEGBGhT/sk+rRP4ttndaeqpo7lO0uYv/UAi/OKmbp4J5Pn5wHQLS2eoVltGJqVSm5WKllt40L+DWJL/CGm8NARbn5pMdGR4bx8yzDrR8UEhaiIMIZ3b8vw7m0BqK6tY83ugyzOK2bR9hJmrSvgzSX5AKTERTIoM4VBnVMY3DmZgZkppCWE1l8FlvhDSNnRGm6ZvJiSiirevGMknVPj3A7JGJ+IDA9jSJc2DOnShklnQ12dsqWojCV5JazKL2XFrlL++vFm6pwG65ltYj0XgswUBmQmc0aHpKC+KbLEHyKOVNdy1z+XsmHfYf5xUy79OyW7HZIxrSYsTOiVkUivjES+ObwLABVVNazZfYgVu0pYuesgK3aWMmPV3q+2yWwTS98OSfTtmMQZHZLo2yGJzDaxQVFNZIk/BFTX1nHPa8v4bPN+HrtqEON62xCKxsRFRTCsm+chcL2iw0dZu+cg6/YeYt2eQ6zbe4iP1hegzl8GiTER9O3guRD0bp9Iz/QEeqYnkhwXWH8dWOIPcjW1ddw/dQWz1xfy6GX9uTIn0+2QjPFb7RKjGds7nbENbo4qqmrYuO/wMReDNxbvorK69pjtPBeBBHpmJH71MzU+yo1iNKrVE7+IdAamABl4uoR4XlWfbO04QkFtnfLgtFXMWL2Xn158BjeMsJG0jDldcVERXz0vqFdXp+wurWRLYRmbCw+zqaCMzYVlTFuaT3nVfy8IbeOj6N4unqy28WSlxdMtrf5zHHFR7t13u3HkGuD7qrpMRBKBpSLykaqucyGWoFVdW8cP/rWSd1fs4YHxvfj2Wd3dDsmYoBEWJnROjaNzahzj+vz3rwNVZe/BI2wuLGNzwWE2FRxm+/5y5m4sYv/S/GP2kZEUTVZb52LgXBC6pcXTOTXW5xeFVk/8qroX2Ot8Piwi64FOgCX+FlJdp3zn1WXMWlfADy/ozXfG9XA7JGNCgojQMSWWjimxnNOr3THrDh+pZseBCrbvLydvfznbD3h+zlpXQHH5sQMcpiVE0yU1lujqI/QYVEFmm5ZtgSeqJ+qAs3WISBbwKdBfVQ8dt24SMAkgIyMjZ+rUqU06RllZGQkJoTN84NFa5U+Ly9lQKnyrTxTjswLroVNThdp5BitzMCmvVgoq6igsV4oq6yiqVIoq6igsr+X/RsaRGtO0ca/HjRu3VFVzj1/uWuIXkQTgE+DXqvr2qb6bm5urS5YsadJx5s2bx9ixY5u0baApraji9ilLWJJXwu+uGMA1Q7u4HVKrCaXzXM/KHPyaW14ROWHid+XpgohEAm8BrzaW9I13dhVXcNNLi8gvruTOQdEhlfSNMafHjVY9ArwArFfVJ1r7+MFoVX4pt05eTHWt8sptw6jcudrtkIwxfqxpFUfNMxq4AThXRFY400QX4ggKs9cVcM1zXxITGc5bd438qq8SY4w5GTda9XyOZ/hG0wx1dcrTc7fwxOxN9O+YzAs355KeaMPTGWMaZ2/uBqCyozX84M2VfLh2H98Y0onfXj6AmEgbMtEY4x1L/AFm+/5yJk1Zwrb95fz04jO4bUy3oOg0yhjTeizxB5D3V+/lobdWEREmvHLrMEb1SHM7JGNMALLEHwCOVNfy6PR1vLpwJ4M6p/DX64ZYX/rGmCazxO/nthQe5p7XlrNh32HuOLs7P7igN5HhbjTGMsYEC0v8fkpVeX3RLh6dvo64qHAm3zL0mK5ijTGmqSzx+6F9B4/w0Fur+GRTEaN7tOWJqweTkWRNNY0xLcMSvx9RVd5ZsZuH311Lda3yy0v7cf3wroSFWasdY0zLscTvJ4oOH+Wn76xm5toCcrq24bGrBtEtLd7tsIwxQcgSv8vq6pSpi3fxuw/Wc6Smjp9M7MNtY7oTbnf5xhgfscTvoo37DvOTf69m6Y4SRnRP5dffGEB2u+Dra9wY418s8bugsqqWpz7ezN8/3UZiTASPXzWIy8/sZG/gGmNahSX+VqSqfLhmH79+fz35JZVclZPJjyeeQWp8lNuhGWNCiCX+VrJuzyF+OX0tX24rpk/7RKZOGsEI60LZGOMCS/w+dqDsKE98tInXF+0kOTaSRy/rz3VDOxNhb98aY1xiid9HjtbU8sqCHTw5ZzMVVbXcODKL+8/vSUqcVesYY9xlib+F1dYp767YzRMfbSK/pJKzeqbx80v60jMj0e3QjDEGsMTfYlSVuRsL+cOHG9mw7zD9Oibxm28M4KyeadZaxxjjVyzxt4ClO0r4/QcbWJRXTNe2cTx13RAuGdDBulowxvglS/zNsG7PIf40exMfrSsgLSGaRy/txzVDuxAVYQ9ujTH+yxJ/E6zbc4in5mzmw7X7SIyO4IHxvbhtTDfio+3XaYzxf5apTsPxCf++83py6+huJMdFuh2aMcZ4zRK/FyzhG2OCiSX+U1iz+yB//XiLJXxjTFCxxH8cVWXh9mL+Nm8rn24qsoRvjAk6lvgddXXKnA2F/G3eFpbvLCUtIYoHL+zN9SO6khRjCd8YEzxCPvFX19bxn5V7ePaTrWwqKKNzaiyPXtafq3IyiYkMdzs8Y4xpcSGb+CuranlzyS6e/3Qbu0sr6dM+kSevHczFAzpYB2rGmKAWcon/YEU1Uxbk8dL8PIrLq8jt2oZHL+vHuN7p1rWCMSYkuJL4ReRC4EkgHPiHqv7O18csOHSEFz7fzqtf7qC8qpZz+6Rz19hshmal+vrQxhjjV1o98YtIOPA0MB7IBxaLyHuqus4Xxysor+PHb6/iraW7qamr42uDOnLnOdmc0SHJF4czxhi/58Yd/zBgi6puAxCRqcClQIsn/p/8ezWvL6wkMmI3Vw/NZNJZ2XRpG9fShzHGmIAiqtq6BxS5ErhQVb/tzN8ADFfVe4773iRgEkBGRkbO1KlTT/tYM7ZVUVpRxcU940iJDp0HtmVlZSQkJLgdRquyMoeGUCtzc8s7bty4paqae/xyv324q6rPA88D5Obm6tixY097H2PHwrx582jKtoHMyhwarMzBz1fldeM2eDfQucF8prPMGGNMK3Aj8S8GeopINxGJAq4F3nMhDmOMCUmtXtWjqjUicg8wE09zzhdVdW1rx2GMMaHKlTp+VX0feN+NYxtjTKgLnaYuxhhjAEv8xhgTcizxG2NMiLHEb4wxIabV39xtChEpAnY0cfM0YH8LhhMIrMyhwcoc/Jpb3q6q2u74hQGR+JtDRJac6JXlYGZlDg1W5uDnq/JaVY8xxoQYS/zGGBNiQiHxP+92AC6wMocGK3Pw80l5g76O3xhjzLFC4Y7fGGNMA5b4jTEmxAR14heRC0Vko4hsEZEfuR1PSxORziIyV0TWichaEbnPWZ4qIh+JyGbnZxu3Y21pIhIuIstFZLoz301EFjrn+g2ny++gISIpIjJNRDaIyHoRGRns51lEvuf8u14jIq+LSEywnWcReVFECkVkTYNlJzyv4vGUU/ZVInJmU48btIm/waDuFwF9getEpK+7UbW4GuD7qtoXGAF8xynjj4A5qtoTmOPMB5v7gPUN5n8P/ElVewAlwG2uROU7TwIfqmofYBCesgfteRaRTsC9QK6q9sfThfu1BN95ngxceNyyk53Xi4CezjQJeKapBw3axE+DQd1VtQqoH9Q9aKjqXlVd5nw+jCcZdMJTzpedr70MXOZKgD4iIpnAxcA/nHkBzgWmOV8JqjKLSDJwNvACgKpWqWopQX6e8XQbHysiEUAcsJcgO8+q+ilQfNzik53XS4Ep6vElkCIiHZpy3GBO/J2AXQ3m851lQUlEsoAhwEIgQ1X3Oqv2ARluxeUjfwYeBOqc+bZAqarWOPPBdq67AUXAS0711j9EJJ4gPs+quht4DNiJJ+EfBJYS3Oe53snOa4vltGBO/CFDRBKAt4D7VfVQw3Xqaa8bNG12ReQSoFBVl7odSyuKAM4EnlHVIUA5x1XrBOF5boPnDrcb0BGI53+rRIKer85rMCf+kBjUXUQi8ST9V1X1bWdxQf2fgM7PQrfi84HRwNdFJA9P9d25eOq/U5wqAQi+c50P5KvqQmd+Gp4LQTCf5/OB7apapKrVwNt4zn0wn+d6JzuvLZbTgjnxB/2g7k7d9gvAelV9osGq94CbnM83Ae+2dmy+oqo/VtVMVc3Cc04/VtVvAXOBK52vBVuZ9wG7RKS3s+g8YB1BfJ7xVPGMEJE45995fZmD9jw3cLLz+h5wo9O6ZwRwsEGV0OlR1aCdgInAJmAr8H9ux+OD8o3B82fgKmCFM03EU+c9B9gMzAZS3Y7VR+UfC0x3PncHFgFbgH8B0W7H18JlHQwscc71O0CbYD/PwCPABmAN8AoQHWznGXgdzzOMajx/2d12svMKCJ6WiluB1XhaPDXpuNZlgzHGhJhgruoxxhhzApb4jTEmxFjiN8aYEGOJ3xhjQowlfmOMCTGW+E3QEpF7nZ4sX/XBvkVEPhaRJGe+rMG6iSKySUS6HrfNzSLy1+OWzRORkw6mLSJTRaRnS8dvQpslfhPM7gbGq+cFr680ePOzOSYCK/W4LjJE5DzgKeAiVd3RAsd5Bk+/RMa0mJb4D2CM3xGRZ/G87POBiLwIJAPZzrKdInIv8CzQxdnkflX9QkTa4nmpphOwABgP5Kjq/uMO8S2OGw9VRM4G/g5MVNWtpxnv14FfOrOxQJSqdgM+AyaLSIT+t3MyY5rF7vhNUFLVO4E9wDhV/ZOzuC9wvqpeh6d/nz+p6lDgCpwunoGHgc9VtR/wb/57YTjeaDy9RdaLxvNG7WWquuEUoV0jIivqJyDXifc9VR2sqoOBlXh6pkRV6/C8pTrI27Ib0xi74zeh5D1VrXQ+nw/09XQDA0CS08vp2cDlAKo6Q0RKTrKvVPWMgVCvGpiP55X7+04Rwxuqek/9jIjMa7hSRB4EKlX16QaLC/H0UBlKPZIaH7LEb0JJeYPPYcAIVT3S8AsNLgSNqRGRMOeOHDxjA1wNzBGRn6jqb043OBE5H7gKz8WnoRig8n+3MKZprKrHhKpZwHfrZ0RksPPxU+CbzrKL8HSGdiIb8Twv+IqqVuAZGexbInJaQwI6LYCeBq5q8FdJvV54OiozpkVY4jeh6l4g1xm0eh1wp7P8EeBsEVmLp8pn50m2n4Gnd9BjqGoxngFDfuo8sPXWzXh6ZXzHqf9/H0BEMvBU/ew7jX0Zc0rWO6cxp+AM+JJ7fKseZ4CMKao63sfH/x5wSFVf8OVxTGixO35jmkA9A2D8vf4FLh8q5b8DbxvTIuyO3xhjQozd8RtjTIixxG+MMSHGEr8xxoQYS/zGGBNiLPEbY0yI+X9ULtN7YiOi7wAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "x = np.linspace(0,100000,1000 ) # radians per second\n", "c=4.7e-5\n", "l = 4.7e-4\n", "f1 = s.lambdify(w, e2.subs([(R, 1), (C, c), (L, l)]))\n", "y = f1(x/(2*np.pi))\n", " \n", "ax.plot(x/1000,y)\n", "ax.grid()\n", "ax.set_xlabel(\"freq (K Hz)\")\n", "ax.set_ylabel(\"Impedance (ohms)\")\n", "ax.set_title(\"Frequency Response\")\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "id": "a5be1d3e", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "nbformat": 4, "nbformat_minor": 5 }