{
"cells": [
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from datetime import datetime, date"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n",
" '2013-01-05', '2013-01-06'],\n",
" dtype='datetime64[ns]', freq='D')"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dates = pd.date_range('20130101', periods=6)\n",
"dates"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" A \n",
" B \n",
" C \n",
" D \n",
" \n",
" \n",
" \n",
" \n",
" 2013-01-01 \n",
" -0.050823 \n",
" 0.142731 \n",
" -2.082915 \n",
" -0.649777 \n",
" \n",
" \n",
" 2013-01-02 \n",
" 0.252104 \n",
" 0.225202 \n",
" -0.126795 \n",
" -0.039806 \n",
" \n",
" \n",
" 2013-01-03 \n",
" 0.082279 \n",
" 1.002203 \n",
" 0.296082 \n",
" -0.142417 \n",
" \n",
" \n",
" 2013-01-04 \n",
" 0.804723 \n",
" -0.067008 \n",
" -1.283606 \n",
" -0.013937 \n",
" \n",
" \n",
" 2013-01-05 \n",
" -0.309838 \n",
" 0.966221 \n",
" -0.255448 \n",
" 1.114112 \n",
" \n",
" \n",
" 2013-01-06 \n",
" -0.944737 \n",
" -0.166356 \n",
" 0.838028 \n",
" -1.472370 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D\n",
"2013-01-01 -0.050823 0.142731 -2.082915 -0.649777\n",
"2013-01-02 0.252104 0.225202 -0.126795 -0.039806\n",
"2013-01-03 0.082279 1.002203 0.296082 -0.142417\n",
"2013-01-04 0.804723 -0.067008 -1.283606 -0.013937\n",
"2013-01-05 -0.309838 0.966221 -0.255448 1.114112\n",
"2013-01-06 -0.944737 -0.166356 0.838028 -1.472370"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1 = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))\n",
"df1"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" A \n",
" B \n",
" C \n",
" D \n",
" \n",
" \n",
" \n",
" \n",
" 2013-01-01 \n",
" -0.232496 \n",
" 0.795638 \n",
" -0.664480 \n",
" -0.048818 \n",
" \n",
" \n",
" 2013-01-02 \n",
" -0.680090 \n",
" -2.043307 \n",
" -0.574430 \n",
" 0.195735 \n",
" \n",
" \n",
" 2013-01-03 \n",
" -0.269628 \n",
" -0.010288 \n",
" 0.474650 \n",
" 0.924644 \n",
" \n",
" \n",
" 2013-01-04 \n",
" 0.756782 \n",
" -0.520419 \n",
" -0.059370 \n",
" -0.803062 \n",
" \n",
" \n",
" 2013-01-05 \n",
" 0.014947 \n",
" 0.066132 \n",
" 0.826295 \n",
" 0.217646 \n",
" \n",
" \n",
" 2013-01-06 \n",
" -1.130443 \n",
" 1.718015 \n",
" -1.526415 \n",
" 1.480180 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D\n",
"2013-01-01 -0.232496 0.795638 -0.664480 -0.048818\n",
"2013-01-02 -0.680090 -2.043307 -0.574430 0.195735\n",
"2013-01-03 -0.269628 -0.010288 0.474650 0.924644\n",
"2013-01-04 0.756782 -0.520419 -0.059370 -0.803062\n",
"2013-01-05 0.014947 0.066132 0.826295 0.217646\n",
"2013-01-06 -1.130443 1.718015 -1.526415 1.480180"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2 = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))\n",
"df2"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" A \n",
" B \n",
" C \n",
" D \n",
" \n",
" \n",
" \n",
" \n",
" 2013-01-01 \n",
" 0.391974 \n",
" -0.747405 \n",
" 0.637964 \n",
" -0.237240 \n",
" \n",
" \n",
" 2013-01-02 \n",
" -0.854669 \n",
" 1.017091 \n",
" -0.671113 \n",
" -0.087779 \n",
" \n",
" \n",
" 2013-01-03 \n",
" -0.892535 \n",
" -1.288151 \n",
" 0.684799 \n",
" -2.273715 \n",
" \n",
" \n",
" 2013-01-04 \n",
" -0.454633 \n",
" 1.780200 \n",
" -0.404491 \n",
" 2.412129 \n",
" \n",
" \n",
" 2013-01-05 \n",
" 0.599057 \n",
" -0.713249 \n",
" 0.442731 \n",
" -0.109480 \n",
" \n",
" \n",
" 2013-01-06 \n",
" 1.669014 \n",
" -3.566603 \n",
" 0.449308 \n",
" -0.829849 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D\n",
"2013-01-01 0.391974 -0.747405 0.637964 -0.237240\n",
"2013-01-02 -0.854669 1.017091 -0.671113 -0.087779\n",
"2013-01-03 -0.892535 -1.288151 0.684799 -2.273715\n",
"2013-01-04 -0.454633 1.780200 -0.404491 2.412129\n",
"2013-01-05 0.599057 -0.713249 0.442731 -0.109480\n",
"2013-01-06 1.669014 -3.566603 0.449308 -0.829849"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1-df2"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',\n",
" '2013-01-05', '2013-01-06'],\n",
" dtype='datetime64[ns]', freq='D')"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.index"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['A', 'B', 'C', 'D'], dtype='object')"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.columns"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([[ 0.15947796, 0.04823215, -0.02651611, -0.28605851],\n",
" [-1.53475903, -1.02621568, -1.24554343, 0.10795592],\n",
" [-1.16216299, -1.29843858, 1.15944901, -1.3490703 ],\n",
" [ 0.30214898, 1.25978075, -0.46386119, 1.609067 ],\n",
" [ 0.61400412, -0.64711735, 1.26902556, 0.10816601],\n",
" [ 0.53857047, -1.84858888, -1.07710728, 0.65033087]])"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.values"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" A \n",
" B \n",
" C \n",
" D \n",
" \n",
" \n",
" \n",
" \n",
" count \n",
" 6.000000 \n",
" 6.000000 \n",
" 6.000000 \n",
" 6.000000 \n",
" \n",
" \n",
" mean \n",
" -0.180453 \n",
" -0.585391 \n",
" -0.064092 \n",
" 0.140065 \n",
" \n",
" \n",
" std \n",
" 0.926770 \n",
" 1.105294 \n",
" 1.082359 \n",
" 0.981783 \n",
" \n",
" \n",
" min \n",
" -1.534759 \n",
" -1.848589 \n",
" -1.245543 \n",
" -1.349070 \n",
" \n",
" \n",
" 25% \n",
" -0.831753 \n",
" -1.230383 \n",
" -0.923796 \n",
" -0.187555 \n",
" \n",
" \n",
" 50% \n",
" 0.230813 \n",
" -0.836667 \n",
" -0.245189 \n",
" 0.108061 \n",
" \n",
" \n",
" 75% \n",
" 0.479465 \n",
" -0.125605 \n",
" 0.862958 \n",
" 0.514790 \n",
" \n",
" \n",
" max \n",
" 0.614004 \n",
" 1.259781 \n",
" 1.269026 \n",
" 1.609067 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D\n",
"count 6.000000 6.000000 6.000000 6.000000\n",
"mean -0.180453 -0.585391 -0.064092 0.140065\n",
"std 0.926770 1.105294 1.082359 0.981783\n",
"min -1.534759 -1.848589 -1.245543 -1.349070\n",
"25% -0.831753 -1.230383 -0.923796 -0.187555\n",
"50% 0.230813 -0.836667 -0.245189 0.108061\n",
"75% 0.479465 -0.125605 0.862958 0.514790\n",
"max 0.614004 1.259781 1.269026 1.609067"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.describe()"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2013-01-01 0.159478\n",
"2013-01-02 -1.534759\n",
"2013-01-03 -1.162163\n",
"2013-01-04 0.302149\n",
"2013-01-05 0.614004\n",
"2013-01-06 0.538570\n",
"Freq: D, Name: A, dtype: float64"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1['A']"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" A \n",
" B \n",
" C \n",
" D \n",
" \n",
" \n",
" \n",
" \n",
" 2013-01-04 \n",
" 0.302149 \n",
" 1.259781 \n",
" -0.463861 \n",
" 1.609067 \n",
" \n",
" \n",
" 2013-01-05 \n",
" 0.614004 \n",
" -0.647117 \n",
" 1.269026 \n",
" 0.108166 \n",
" \n",
" \n",
" 2013-01-06 \n",
" 0.538570 \n",
" -1.848589 \n",
" -1.077107 \n",
" 0.650331 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D\n",
"2013-01-04 0.302149 1.259781 -0.463861 1.609067\n",
"2013-01-05 0.614004 -0.647117 1.269026 0.108166\n",
"2013-01-06 0.538570 -1.848589 -1.077107 0.650331"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1[df1['A']>0.3]"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"A 0.302149\n",
"B 1.259781\n",
"C -0.463861\n",
"D 1.609067\n",
"Name: 2013-01-04 00:00:00, dtype: float64"
]
},
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.iloc[3]"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"2013-01-01 -0.286059\n",
"2013-01-02 0.107956\n",
"2013-01-03 -1.349070\n",
"2013-01-04 1.609067\n",
"2013-01-05 0.108166\n",
"2013-01-06 0.650331\n",
"Freq: D, Name: D, dtype: float64"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df1.iloc[:,3]"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" A \n",
" B \n",
" C \n",
" D \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" -0.613985 \n",
" -1.059690 \n",
" -0.173678 \n",
" -1.827621 \n",
" \n",
" \n",
" 1 \n",
" -1.473479 \n",
" 0.148601 \n",
" 1.851009 \n",
" -1.775998 \n",
" \n",
" \n",
" 2 \n",
" 1.546853 \n",
" -0.328106 \n",
" -2.682198 \n",
" 0.818066 \n",
" \n",
" \n",
" 3 \n",
" -0.097835 \n",
" -1.533043 \n",
" 0.036097 \n",
" -1.083091 \n",
" \n",
" \n",
" 4 \n",
" -1.399138 \n",
" -0.269051 \n",
" -0.396322 \n",
" -1.083094 \n",
" \n",
" \n",
" 5 \n",
" -1.819526 \n",
" 0.431379 \n",
" 0.649414 \n",
" 0.774973 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" A B C D\n",
"0 -0.613985 -1.059690 -0.173678 -1.827621\n",
"1 -1.473479 0.148601 1.851009 -1.775998\n",
"2 1.546853 -0.328106 -2.682198 0.818066\n",
"3 -0.097835 -1.533043 0.036097 -1.083091\n",
"4 -1.399138 -0.269051 -0.396322 -1.083094\n",
"5 -1.819526 0.431379 0.649414 0.774973"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df3 = pd.DataFrame(np.random.randn(6,4), columns=list('ABCD'))\n",
"df3"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[]"
]
},
"execution_count": 114,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEWCAYAAACdaNcBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XlYU2f2B/Av+yYiO5iwGmUTFA2K1t0qipZa9+pYra2MVttp+2uVtupYu2jrtDNt7TI4WHWsWioouEBd0boiboC4IDthl30Pyfv7w5GBUVkkyU1uzud5+jyNueaeI8nJy3vv+x4dxhgDIYQQXtHlOgBCCCGKR8WdEEJ4iIo7IYTwEBV3QgjhISruhBDCQ1TcCSGEh6i4E0IID1FxJ4QQHqLiTgghPKTP1YltbGzg6urK1ekJIUQjZWdno6ysrNPjOCvurq6uSEpK4ur0hBCikcRicZeOo2kZQgjhISruhBDCQ1TcCSGEh6i4E0IID3Va3JcuXQo7OzsMHDjwic8zxvDWW29BJBLBz88P165dU3iQhBBCuqfT4r5kyRLEx8c/9fm4uDikp6cjPT0d4eHhWLFihUIDJIQQ0n2dFvcxY8bAysrqqc/HxMTglVdegY6ODgIDA1FZWYnCwkKFBkkIIXxR29SikvP0eM5dIpHAycmp9bFQKIREInniseHh4RCLxRCLxSgtLe3pqQkhRKOUVDdi7JenEXklT+nnUukiptDQUISGhgLo+o34pL0j94vRJJNzHYbSGEkbMO1qBNdhcMO4FzDvA66jIEq0PuYWappaIHa1VPq5ejxyFwgEyMv777dQfn4+BAJBT1+WPAWfCzsANBmYcB0CdxpruY6AKFFcSiHibxXh7ef7w922l9LP1+PiHhISgl27doExhkuXLsHCwgKOjo6KiI0QQnihql6K9bG34O3YG8tGu6vknJ1Oy7z88stISEhAWVkZhEIhPv74Y0ilUgDA8uXLERwcjKNHj0IkEsHU1BQ///yz0oMmhBBN8tnRNJTXNePnJQEw0FPN8qJOi/vevXs7fF5HRwfff/+9wgIihBA+OX+/DJFJ+Vg+th8GCixUdl5aoUoIIUpS39yCsOhkuNmY4e3n+6v03Jxt+UsIIXz39bF7yCtvwL7QQBgb6Kn03DRyJ4QQJbiRV4nt57OwYLgzAt2tVX5+Ku6EEKJgzS1yrNmfDDtzY4RN9eQkBpqWIYQQBfsxIQN3i2vwr1fE6G1swEkMNHInhBAFSi+uwdbT6Zju54jnve05i4OKOyGEKIhMzrAmKhlmRvrYEOLDaSxU3AkhREF2XczGtdxKrJ/uDZteRpzGQsWdEEIUIK+8Hlt+v4uxA2zxkj/3+2tRcSeEkB5ijOHDAykAgM9eGggdHR2OI6LiTgghPRZ9TYI/0suwZoonhJamXIcDgIo7IYT0SGlNEz45koahLpZYFOjCdTitqLgTQkgPbDh0C/VNMnwxyxe6utxPxzxCxZ0QQp7RsVtFOJJciDcniCCyM+c6nHaouBNCyDOobpRiXUwqPB3M8eex/bgO5zG0/QAhhDyDTUfvoLSmCeGLxDDUV79xsvpFRAghau5ixgPsTczFa6PcMMipD9fhPBEVd0II6YZGqQwfRCfD2coU707y4Dqcp6JpGUII6Ya/n7iH7Af12PP6cJgYqrYBR3fQyJ0QQrooJb8K285mYn6AE0aKbLgOp0NU3AkhpAukMjlWRyXDppcRPgj24jqcTtG0DCGEdEH42UzcLqzGT38aCgsTbhpwdAcVd6I2pC1yVDdIuQ6DkMdklNbim5PpCPZ1wJSBDlyH0yVU3IlakMsZtp/MwL3CGpRYuuBd2zyY6Mq5DosQyOUMYVHJMDHQ47wBR3fQnDtRC7/fKMTdghqIHMyxrVyAqZmDkFivXsu5iXb65XIOrmRXYO00L9iZG3MdTpdRcSecu5VbieM3izCsvzVWTOmPPc6pkEEH83IGYkORG+rl9DYl3JBUNmBz3B2M7m+D2UOFXIfTLfSpIZwqq27CL3/kQGBlgpmBTgCAkWbViHe/gcWWRdhR4YigzMG4UNeb40iJtmGMYe2BFMgZ8PlLvmrRgKM7qLgTzjS3yLHjdCZ0ACyZ4N5ufw4zXTk2OGQh0iUFemBYkDsQHxW6o1ZGb1miGrE3C3D6bineC/KAk5V6NODoDvqkEE4wxrD/Qi4Kyxvwp7GusDZ/cjPhYaY1iHO/iWVWEuyttEdQpj/O1lqoOFqibR7UNuHjQ2kY7NQHS0a6ch3OM6HiTjhx8W4ZkjLKMWmwA7yEHRdrE105PrLPwX7XFBjryvBKng9WF/RDlUx9l34TzbbxcBpqGqX4YpYf9NSoAUd3UHEnKpdTWocDl/PhKeiNyYMdu/z3hpjU4ojbTaywzkdUlR2CMgfjVI2lEiMl2ujUnWLE3CjAG+NE8HDQ3Du2qLgTlaptlGLn6UxYmBpg4VhX6HbzIpWxLsMau1wccE2GhV4LluZ74R2JCJUyWrJBeq6mUYqPDqRigH0vvDFe/RpwdEeXint8fDw8PDwgEomwefPmx57Pzc3F+PHj4e/vDz8/Pxw9elThgRLNJ5cz7D6TjdrGFiwZ7w4zo2cvyH4mdTjkloy3bPJwqNoGz2cMRny1lQKjJdroy/i7KKpuxOZZfjDS1+xpv06Lu0wmw8qVKxEXF4e0tDTs3bsXaWlp7Y759NNPMXfuXFy/fh379u3DG2+8obSAieaKv16AewU1mBXoBKFNz+8+MNRheNc2DzFuybDTb8ZyiSdWSQbgQQuN4kn3JWaV49+XcvDqSDcMcdb86b5Oi3tiYiJEIhHc3d1haGiI+fPnIyYmpt0xOjo6qK6uBgBUVVWhb9++yomWaKzU3EqcSC7G8AHWGD5AsVul+hjXI8YtBf9nm4vfq60wOdMfh6utwZhCT0N4rFEqQ1hUMoSWJngvaADX4ShEp8VdIpHAycmp9bFQKIREIml3zIYNG7B7924IhUIEBwfju+++e+JrhYeHQywWQywWo7S0tIehE01RWt2IPWezIbQ2xczhTp3/hWdgoMPwpk0+DrslQ2DQhFUSD6yQeKC0Rf137yPc++5UOjLL6vD5S74wNeTHb34KuaC6d+9eLFmyBPn5+Th69CgWLVoEufzxTZ9CQ0ORlJSEpKQk2NraKuLURM01t8ix41QWdHV1sGS8GwyU3EjYw7ge0a7JCLPLxqlaS0zKHIyDVTY0iidPdaugCj+dycTsoUKMGcCfutTpJ00gECAvL6/1cX5+PgQCQbtjIiIiMHfuXADAiBEj0NjYiLKyMgWHSjQNYwy/XchFUUUD/jTWDVZPWaikaPo6wHLrAhx1uwl3wwa8XTAAy/I9USylUTxpr0Umx5qoZFiaGmLtNPVvwNEdnRb3gIAApKenIysrC83Nzdi3bx9CQkLaHePs7IyTJ08CAG7fvo3GxkYamRNcuFOGqxnlmOzvCE+B6veGERk14DeXVKy1y8K5Ogs8n+mPyEo7GsWTVv86l4VUSTU2vuiDPqaGXIejUJ0Wd319fWzduhVBQUHw8vLC3Llz4ePjg/Xr1yM2NhYA8NVXX2Hbtm0YNGgQXn75ZezYsUPjNtkhipVdUoeDifnwEvbGpEHcNTfQ0wFety5EvPtNeBnXYXWhCIvzvCCR8uuDTLovq6wOfz9+D5O97TFVQxpwdIcOY9yMY8RiMZKSkrg4tUaLvlvIdQidqm2U4uuYO9DV1cE7IZ7dvp995qWtSolLzoB/VzjgixIX6OowfGCXgwV9iqFW45DFn3EdgVaQyxle3nYJaYXVOPHuWNj31px92rtaO2mFKlEomZzh3wnZqG1qwZIJPVuopGi6OsBiqyL87n4Dfsa1+KioHxbmeiOvWTXXAoj62HclD5ezyvFRsJdGFfbuoOJOFCruWgHSC2swe4QzhNbquU2qk2ETfnFOw+cOGUhu7IWgzMHYWe4AOc3Fa4WiqkZsOnobI9ytMS9AObfmqgMq7kRhUnMqcSqlGIEDbDCsvzXX4XRIRwdYYFmM391vQGxajb8Wu2N+rg+ym/k5iiMPMcaw9mAqpHI5Ns3UvAYc3UHFnShEaVUj9vyRDScbU7w0XHPakQkMmrHT6Ta2OKbjdqMZpmQOwr8eOEJGo3heOpJSiBO3i/HupAFwtTHjOhylouJOeqxJKsPPpzKhq6uDxSpYqKRoOjrAnD6lOOF+HaPMqvBpiRvm5AzE/SYTrkMjClRR14y/xtyCn9ACS59z4zocpdOsTyFRO48WKhVXNmLRWDdY9dLci5P2BlJsE97BP/reQ2azCYKzBuHHMgFaaBTPC58cSUNVw8MGHPp6/C99/M+QKNX5O2W4llmBKf6O8OBgoZKi6egAMyzKcMz9Bib0qsAXpS6Yle2Lu43qeXGYdM2Ze6WIvibBinH94OWo+e/TrqDiTp5ZdkktYhLz4e3UGxM5XKikDHb6UvwouIutgrvIkxpjepYfvisTQsr4ewGOr+qaWvBhdAr62Zph1QQR1+GoDBV38kxqGqTYeToLfcwMsGB09zsqaQIdHWB67wc47n4dQb3L8VWpM17M8sUtGsVrlC2/30VBVQO+4EEDju6g4k667eFCpSzUNT3sqGSqRguVlMFavwVbBffwk+AOSloM8WKWH74udUIzjeLV3tWcCuy8mI1XAl0gdtWuTl1U3Em3Hb1agPtFtZgzwhkCNV2opAxTepfjRL8bCLEow7dlTnghyw/JDfy+nU6TNbXIsCYqGY69jfH+FE+uw1E5Ku6kW5JzKnE6tRgjPWwQoOYLlZShj14Lvu57HxHC26iU6eOlbD98UeKMRjmN4tXN96czcL+kFp/N9EUvnv92+SRU3EmXlVQ1Yu8f2XC2McUMDVqopAwTzStwzP0GZluU4McHQkzPGoRrDb24Dov8x52iavxw+j5e8hdgvIcd1+Fwgoo76ZImqQw7TmVCX1cHi8e7a8V9wp2x0JPhi74Z2OV0Cw1yPczO9sVnxS5okNO/DZdkcoY1+5NhYWKAddO9uQ6HM/QuJJ1ijCHyPwuV/jTWDZa9aC/0tsb0qkK8+w283KcY28oFmJo5CIn15lyHpbV+Pp+Fm/lV+GuID6zMtPe9SsWddOrc7VJcz6zA1CF9ebFQSRnM9WT4zDETe5xTIYMO5uUMxIYiN9TTKF6lch/U42/H7mKipx1e8HPkOhxO0TuPdCir+OFCJR8nC0zws+c6HLU30qwa8e43sNiyCDsqHBGUORgX6ugLURUYYwiLToa+ri4+fWkgr3d87Aoq7uSpahqk2JmQBcteRlgw2oWXC5WUwUxXjg0OWYh0SYEeGBbkDsRHhe6oldHHTZl+S8rHhYwHCJvqCUcL2vSN3m3kiWRyhl0JWWhoasGSCW4w0cJbyXpqmGkN4txvYpmVBHsq7RGU6Y+ztRZch8VLJdWN+PRIGoa5WWHBMGeuw1ELVNzJEx29KkFGUS3mjHSGwEp7FiopmomuHB/Z5yDKNQXGujK8kueD1QX9UCXTnmXwqrA+5hYaW+TYPNMXurr0GyZAxZ08wc3sCpxOLcFITxuIRdq3UEkZhpjU4ojbTaywzkdUlR2CMgfjVI0l12HxQlxKIeJvFeGd5wfA3ZbWGjxCxZ20U1LViH3ncuBsa4oZw7R7oZKiGesyrLHLxQHXZFjotWBpvhfekYhQKaMpr2dVVS/F+thb8OnbG8tG878BR3dQcSetHnVU0tfVxeJxtFBJWfxM6nDILRlv2eThULUNns8YjPhq7drUSlE+O5qG8rpmrWnA0R30r0EAPLyN7NfzuSipasSica60UEnJDHUY3rXNQ4xbMuz0m7Fc4ol5OT44nlYMuZxaP3XF+ftliEzKR+gYdwwU0IXq/0XFnQAA/kgrxY2sCgQP6YsBfem+bFXxMa5HjFsK1tlnIa/ZGMt2JWHCVwnYeSEbdU0tXIentuqbWxAWnQw3GzP8ZWJ/rsNRS1TcCTKLaxF7JR8DnS0wwZcWKqmagQ7Da1aFOCu6iu9e9kcfU0P8NfYWRmw6ic1xd1BY1cB1iGrn62P3kFfegM0zfWFsQHcePQldydFy1fVS7DqdBateRnh5tKvWr+rjkr4O8MKgvnhhUF9czalAxLlMhJ/NwL/+yMQ0P0e8NsoNfsI+XIfJuRt5ldh+PgsLhztjuDvdzfU0VNy1WOtCpeYWhE72gIkhjYDUxVAXSwx1GYq88nrsuJCNX6/kIeZGAYa5WmHpKDdM8raHnhbez93cIsea/cmw722MsKna14CjO2haRosdSZIgs7gWc55zRl9aqKSWnKxMsW66Ny5+MAFrp3lBUtmA5buvYvzfEvDz+SzUatm8/I8JGbhbXINPZwyEubEB1+GoNSruWupmdgUSbpXgOU9biPvRr7bqztzYAK+PdseZ98fhh4VDYNPLEB8fSsOITSfx+dHbkFTyf14+vbgGW0+n44VBfTHRi64NdYamZbRQcWUD9v2RAxdbM7w4TMB1OKQb9PV0EezriGBfR1zLrUDEuazW/6YOdMDro90x2Il/8/IyOcOaqGT0MtLHX1/Q3gYc3dGlkXt8fDw8PDwgEomwefPmJx4TGRkJb29v+Pj4YMGCBQoNkijOw45KWTDQ18Xi8W608EODDXG2xPcLhuDs6vF4bZQbztwtxYzvz2PWjxdwNKUQLTI51yEqzK6L2biWW4n1L3jDppcR1+FohE5H7jKZDCtXrsTx48chFAoREBCAkJAQeHv/99szPT0dmzZtwvnz52FpaYmSkhKlBk2eDWMMv57LQUl1I5ZP7o8+Wtylhk8EfUzwYbAX3prYH5FX8vDzhSy88cs1CC1NsGSkK+YFOGn0/HReeT22/H4X4zxsMWMw/abZVZ0O2xITEyESieDu7g5DQ0PMnz8fMTEx7Y7Ztm0bVq5cCUvLhxsh2dlpZ0NadXc2rQQ3sisRPKQv+velNnB808tIH0tHuSHhvfH46U9D4WhhjE+P3MaITafwyeE05JXXcx1itzHG8OGBFOgA+OwlX7pVtxs6Le4SiQROTk6tj4VCISQSSbtj7t27h3v37uG5555DYGAg4uPjn/ha4eHhEIvFEIvFKC0t7WHopDsyi2px6IoEvrRQiff0dHUwZaADfls+EjErn8METzvsuJCNsVtO441fruJqTgXXIXZZ9DUJ/kgvw5qpnhD0oQYc3aGQC6otLS1IT09HQkIC8vPzMWbMGKSkpKBPn/YXdkJDQxEaGgoAEIvFijg16YLqeil2JmTC2twI82mhklYZ5NQH377sj7Cpnth5MRt7L+fiaEoRBjv1weuj3TDFx0Ftr7uU1jThkyNpELtY4k/DXbgOR+N0+lMVCATIy8trfZyfnw+BoP28l1AoREhICAwMDODm5oYBAwYgPT1d8dGSbpPJGXYmZKJJKseSCe60UElL9e1jgg+meuHiBxPxcYgPKuqbsWrPdYzdkoBtZzNR3SjlOsTHbDh0C/VNMmye5UcNOJ5Bp8U9ICAA6enpyMrKQnNzM/bt24eQkJB2x8yYMQMJCQkAgLKyMty7dw/u7u5KCZh0z+EkCbKK6zD3OWc4WtKvtdrOzEgfi0e64tT/jUP4oqEQWprgs6O3MeLzk/j40C3kPlCPefljt4pwJLkQb00UQWRHDTieRafTMvr6+ti6dSuCgoIgk8mwdOlS+Pj4YP369RCLxQgJCUFQUBCOHTsGb29v6OnpYcuWLbC2poUxXLuRVYEzt0owyssWQ9xpv3DyX3q6Opjs44DJPg5IlVQh4lwW/n0xBzsvZGOytwNeG+0GsYslJ1N41Y1SrItJhaeDOf48tp/Kz88XOowxTjaPFovFSEpK4uLUGi36bmGXjiuqbMA/Dt1FX0sTvDG1v9rOqz7JzEtbuQ6BO4s/4+zURVWN2HUxG79czkVVgxSDhBZYOsoNwb6OMFDh++eD6BT8eiUXB1c+RxulPUFXa6fmfOJJlzVKZdhxKhOG+rp4hRYqkS5ysDDG6imeuPjBBHwyYyCqG1vwl303MObL0/jpTAaq6pU/L38x4wH2Jubi9dHuVNh7iD71PPNooVJZdRNeGedGC5VIt5ka6mNRoAtOvjsWEYvFcLU2w+a4Oxix+ST+GpOK7LI6pZy3USrDB9HJcLE2xTvPD1DKObQJ7S3DM2duleBmdiWmiwUQOdJCJfLsdHV1MNHLHhO97HGr4OG8/J7EXOy6lIPnvezx+ig3DHOzUti8/N9P3EP2g3rsWTac7upSACruPJJRVIPDSRL4uvTB+IG0Spgojk9fC3w9dzDCpnhi18Uc7L6cg+NpxRgo6I3XR7kj2NcRhvrPPhGQkl+FbWczMT/ACSP72Sgwcu1F0zI8UVXfjF0JWbA2N8LLo1xooRJRCrvexngvyAMXwybis5cGoqFZhrd/vYHRX57CDwn3UVnf3O3XlMrkWB2VDJteRvgg2EsJUWsnKu48IJMz7DqdhSapHK9OcIcx/UpLlMzEUA8Lh7vg+Dtj8fOSAPS3M8eX8XcxYtMprDuYiszS2i6/VvjZTNwurMYnMwbCwkRzNzhTNzQtwwOxV/KRVVKHRWNd4UALlYgK6erqYLynHcZ72uF2YTW2n8vCr1fysPtyDiZ62mHpKDeMcLd+6m+SGaW1+OZkOqb5OiLIx0HF0fMbjdw13PXMcvyRVorR3rbwp4VKhENejr2xZc4gnAsbjzcn9Me13Eos2HYZ0749h6ir+Whuab+/vFzOEBaVDBMDPWwI8eEoav6i4q7Biioa8Ov5XLjZmSEkQMh1OIQAAOzMjfHupAG4EDYBm2f6QiqT4/9+u4lRX5zC1lPpqKh7OC//y+UcXMmuwLrp3rA1pwYcikbTMhqqsVmGn09lwsjg4UIlPdpYiagZYwM9zB/mjHkBTjibXoZ//ZGJvx27h62n72PGYAEO3SzA6P42mDWEGnAoAxV3DcQYw95zOXhQ04TlU/rDwpQWKhH1paOjg7EDbDF2gC3uFtVg+7ksRF+XQF9XB59TAw6loeKugRJSS5CSU4mQAAFEDrRQiWgODwdzfDHbD6uneKCuSQYnK1OuQ+ItKu4a5n5hDQ5flWCQax+M9aGFSkQzWfcygjXt5KtUdEFVgxRVNWJXQhZsexthHi1UIoR0gIq7hpDJGVbtuYbmlv8sVDKghUqEkKej4q4hfj6fhaScCswe6QR7ahRMCOkEFXcNkPugHn87dhfPe9lhKC1UIoR0ARV3NccYQ1h0Mgx0dfHJjIE0z04I6RIq7mouMikPFzIeICzYE44WNB1DCOkaKu5qrLi6EZ8euY3hblZ4OcCZ63AIIRqEiruaYoxh3cFUNLfIsXmWH3RpewFCSDdQcVdTcalFOJZWjHcnDYCbjRnX4RBCNAwVdzVUWd+M9TGp8BVY4LVRblyHQwjRQLT9gBr65PBtVNZLsWvpcOjr0fcvIaT7qHKombP3ShF1LR/Lx/aDd9/eXIdDCNFQVNzVSF1TCz6ITkE/WzOsmiDiOhxCiAajaRk1suX3uyioasBvfx5Be8cQQnqERu5q4mpOBXZezMYrgS4Qu9IWA4SQnqHirgaaWmRYE5WMvhYmeH+KJ9fhEEJ4gKZl1MD3p+7jfkktdrwagF5G9CMhhPQcjdw5druwGj8kZGCmvwDjPKizEiFEMbpU3OPj4+Hh4QGRSITNmzc/9bioqCjo6OggKSlJYQHyWYtMjjVRybAwMcC66d5ch0MI4ZFOi7tMJsPKlSsRFxeHtLQ07N27F2lpaY8dV1NTg2+++QbDhw9XSqB89PP5bCTnV+HjF31gaWbIdTiEEB7ptLgnJiZCJBLB3d0dhoaGmD9/PmJiYh47bt26dVizZg2MjY2VEijfZJfV4avjdzHJ2x7TfB25DocQwjOdFneJRAInJ6fWx0KhEBKJpN0x165dQ15eHqZNm9bha4WHh0MsFkMsFqO0tPQZQ9Z87RpwvEgNOAghitfjC6pyuRzvvvsuvvrqq06PDQ0NRVJSEpKSkmBra9vTU2usfVfycCmzHB9O84KDBf2mQwhRvE6Lu0AgQF5eXuvj/Px8CASC1sc1NTVITU3FuHHj4OrqikuXLiEkJIQuqj5FUVUjPj9yGyPcrTE/wKnzv0AIIc+g0+IeEBCA9PR0ZGVlobm5Gfv27UNISEjr8xYWFigrK0N2djays7MRGBiI2NhYiMVipQauiRhjWHswFVK5HJtm+tJ0DCFEaTot7vr6+ti6dSuCgoLg5eWFuXPnwsfHB+vXr0dsbKwqYuSNIymFOHH7YQMOV2rAQQhRoi4thwwODkZwcHC7P9u4ceMTj01ISOhxUHxUUdeMv8bcgp/QAkufowYchBDlorXuKvLJkTRUNUix+3VqwEEIUT6qMiqQcLcE0dckeGNcP3g5UgMOQojyUXFXstqmFnx0IBUiu15YSQ04CCEqQtMySrYl/g4Kqhqwf/kIGOlTAw5CiGrQyF2JkrLLsetSDhaPcMVQF2rAQQhRHSruStIobdOAI8iD63AIIVqGpmWUZOup+8gorcOupcNgRg04CCEqRiN3JUgrqMZPZzIwa4gQYwZo7x46hBDuUHFXsEcNOPqYGmDddC+uwyGEaCmaL1CwiHNZSJFU4YeFQ9DHlBpwEEK4QSN3Bcoqq8PXx+9hsrc9pg504DocQogWo+KuIHI5Q1hUMgz1dfHJDGrAQQjhFhV3Bdl3JQ+Xs8qxdpoX7HtTAw5CCLeouCtAYVUDNh29jZH9rDFXTA04CCHco+LeQ4wxrD3wsAHH5pl+NB1DCFELVNx76FByIU7eKcF7kz3gbG3KdTiEEAKAinuPlNc14+PYWxjk1AevUgMOQogaoeLeA58cTkN1oxRfzvKDni5NxxBC1AcV92d0+k4JDlyXYMU4ETwczLkOhxBC2qHi/gweNuBIQX+7Xlg5vh/X4RBCyGNo+4Fn8GX8HRRWNyJqxUhqwEEIUUs0cu+mxKxy7LqYg1dHumGIsyXX4RBCyBNRce+GRqkMYVHJEFqa4L2gAVyHQwghT0XTMt3w7cl0ZJbV4d+vDYOpIf3TEULUF43cu+hWQRX+eTYTc4YKMbo/NeAghKg3Ku5d0CKTY/X+ZFiZGWLtNG+uwyGEkE7R3EIXbPsjC7fTAiKXAAATqklEQVQKqvHjwiGwMDXgOhxCCOkUjdw7kVlai7+fuIcpPg6Y6uvIdTiEENIlVNw7IJczhEWnwFhfFxtf9OE6HEII6TIq7h3Yk5iLxKxyrJ3uDTtqwEEI0SBU3J+ioLIBm+PuYJTIBnOGCrkOhxBCuqVLxT0+Ph4eHh4QiUTYvHnzY89//fXX8Pb2hp+fHyZOnIicnByFB6pKjDGsPZgKmZzh85d8qQEHIUTjdFrcZTIZVq5cibi4OKSlpWHv3r1IS0trd4y/vz+SkpKQnJyM2bNnY/Xq1UoLWBVibxbg1J0SvBdEDTgIIZqp0+KemJgIkUgEd3d3GBoaYv78+YiJiWl3zPjx42Fq+rAIBgYGIj8/XznRqsCD2iZ8fCgNg536YMlIV67DIYSQZ9JpcZdIJHBy+m/TZ6FQCIlE8tTjIyIiMHXq1Cc+Fx4eDrFYDLFYjNLS0mcIV/k2Hk5DTaMUX86mBhyEEM2l0EVMu3fvRlJSEs6cOfPE50NDQxEaGgoAEIvFijy1Qpy6U4yYGwV4+/n+GGBPDTgIIZqr0+IuEAiQl5fX+jg/Px8CgeCx406cOIHPPvsMZ86cgZGRkWKjVIGaRik+OpAKD3tzvDFOxHU4hBDSI51OywQEBCA9PR1ZWVlobm7Gvn37EBIS0u6Y69ev489//jNiY2NhZ2entGCV6Yv4OyiubsQXs/1gqE93iBJCNFunVUxfXx9bt25FUFAQvLy8MHfuXPj4+GD9+vWIjY0FALz//vuora3FnDlzMHjw4MeKv7q7nPkAuy/l4tXn3DDYqQ/X4RBCSI91ac49ODgYwcHB7f5s48aNrf9/4sQJxUalQo1SGcKiU+BkZYL/m0wNOAgh/KD1u0J+czIdWWV1+OX14dSAgxDCG1o9uZwqqUL42UzMEzvhOZEN1+EQQojCaG1xl7ZpwPFhsBfX4RBCiEJp7TxE+NlMpBVW46c/DaUGHIQQ3tHKkXtGaS2+OZmOYF8HTBnowHU4hBCicFpX3OVyhrCoZJgY6GFDCDXgIITwk9YV918u5+BKdgXWTvOCnTk14CCE8JNWFXfJfxpwjO5vg9nUgIMQwmNaU9wZY/joQAoYQA04CCG8pzXFPeZGARLuluL9IA84WVEDDkIIv2lFcS+rbcLHh27B37kPXhnhynU4hBCidFpR3D8+lIa6Jhm+nEUNOAgh2oH3xf1EWjEO3SzAqgki9KcGHIQQLcHr4l7dKMXag6nwdDDH8rH9uA6HEEJUhtfbD2yOu4OSmkb8c9FQasBBCNEqvK14lzIfYM/lXLw2yg2DqAEHIUTL8LK4N0plCItKhrOVKd6d5MF1OIQQonK8nJb5+4l7yH5Qjz3LhsPEUI/rcAghROV4N3JPzq/EtrOZmB/ghJH9qAEHIUQ78aq4P2rAYdPLCB9QAw5CiBbj1bRM+NlM3CmqQfiiobAwoQYchBDtxZuR+/2SWnxzIh3T/Bwx2YcacBBCtBsvirtczrAmKhkmhnrY8AI14CCEEF4U939fysHVnAqsn+4NW3MjrsMhhBDOaXxxz6+ox5fxdzBmgC1mDhFwHQ4hhKgFjS7uDxtwpP6nAcdAasBBCCH/odHF/cB1Cc7cK8XqIA8ILakBByGEPKKxxb2stgkbD6dhqIslFlEDDkIIaUdji/uG2Fuob5Lhi1m+1ICDEEL+h0YW92O3inA4uRBvTRRBZEcNOAgh5H9pXHGvapBiXczDBhx/pgYchBDyRF0q7vHx8fDw8IBIJMLmzZsfe76pqQnz5s2DSCTC8OHDkZ2dreg4W207m4nSmiZ8OdsPBnoa991ECCEq0Wl1lMlkWLlyJeLi4pCWloa9e/ciLS2t3TERERGwtLTE/fv38c4772DNmjVKC3jVBBEilgTAT6idDTiMeP6FZiRt4DoE7hj34joCwiOdbhyWmJgIkUgEd3d3AMD8+fMRExMDb2/v1mNiYmKwYcMGAMDs2bOxatUqMMaUct+5sYEexnvYKfx1NcU0kT3XISjfwM+4joAQjdfpMFAikcDJyan1sVAohEQieeox+vr6sLCwwIMHDxQcKiGEkK5S6Za/4eHhCA8PBwCUlpaq8tSEEKJVOh25CwQC5OXltT7Oz8+HQCB46jEtLS2oqqqCtbX1Y68VGhqKpKQkJCUlwdbWtqexE0IIeYpOi3tAQADS09ORlZWF5uZm7Nu3DyEhIe2OCQkJwc6dOwEA+/fvx4QJE2ifF0II4VCn0zL6+vrYunUrgoKCIJPJsHTpUvj4+GD9+vUQi8UICQnBa6+9hkWLFkEkEsHKygr79u1TReyEEEKeQocxxrg4sVgsRlJSEhenJoQQjdXV2snvm6YJIURLcTZyt7Gxgaur6zP93dLSUq29IMv33PmeX0e0LXdty7etnuSenZ2NsrKyTo/jrLj3hDZP6fA9d77n1xFty13b8m1LFbnTtAwhhPAQFXdCCOEhvQ2PNoXRMEOHDuU6BM7wPXe+59cRbctd2/JtS9m5a+ScOyGEkI7RtAwhhPAQFXdCCOEhKu6EEMJDvCzudBmB8J1MJuM6BJWQy+Vch8CZ0tJSNDc3P/Pf52Vxr6ysBKCdRf7mzZuIjY1Feno66uvruQ5H4RITE7Fnzx5cuXKFl/l15PTp01i7di0AQE9Pj/eFLzY2FmFhYbzP80kOHjyIlStXIjc399nrGOOZ6OhoZmRkxPbv388YY0wul3MckeocOnSI+fj4sJkzZ7J58+axqKgorkNSqKNHjzIfHx+2bNkyNm3aNHb27FmuQ1IJuVzOmpqa2IsvvshMTU3Ze++91/pcc3Mzh5EpT3x8PPP392fHjx/nOhSVu3z5MvPw8GAJCQmPPSeTybr8Orwq7hkZGWzcuHHsnXfeYVZWVuy3335jjD38cPC9yF+9epV5eXmxa9euMcYY++abb1hISAjHUSnO5cuXmY+PD7t48SJjjLE333yTRUREsJqaGlZXV8dxdKoRFRXFvvvuOzZ37lwWGhrKdThKc/PmTebs7Nw6OHnw4AFLTExkGRkZrKqqiuPolO/XX39l77zzDmOMsZycHLZz504WGRnJsrOzGWNdL/AqbbOnbLa2tvjLX/6CGTNmYNKkSZg3bx6Ah027Gc+naGxsbPD222/D398fAPDWW2/hyJEjyMvLa9cDV1O5ubnhn//8JwIDA1FcXIzo6GhkZmbi4sWLsLa2xurVq2FlZcV1mErB/tNsXiqV4vr16/jb3/6GVatWYcaMGdDX18evv/4KmUwGQ0NDrkNVCAcHB3h4eKCgoADXrl3Dm2++CVtbW+jp6UEkEiEsLAyWlpZch6k0vXr1am12tHDhQvj4+EBPTw+bN29GZGQk+vXr17UXUtKXj0pVVlay8vJyxhhjLS0trX8eFxfHzM3NW0fwV69e5d03f9vcGxsbGWOMNTU1sYaGBhYYGMjS0tIYY4zdu3dPI0e4lZWV7MGDB+3+bPv27ezbb79ljDF24cIFtmDBApaUlMRFeEpVWVnZ7v3a1NTE3n//fcYYY/v372empqYsODiYq/AUru3PuqCggE2fPp25uLiw8PBwxhhj586dYwsXLmTXr1/nMkylaPuzLikpYQMGDGDTpk1jW7dubT0mLCyM/fjjj11+TY2/oLp//37MmTMHU6dORUREBNLS0lqfmzJlCiIjI7F8+XIsXrwYb7/9NhobGzmMVrHa5r59+3bcu3cPwMPuWUZGRrC3t0ffvn3x22+/4cMPP0RTUxPHEXfPo/yCg4Oxfft2pKSkAABeffVVvPnmmwCAESNGQCaToaioiMtQFe5R7pMnT27NXU9PD+Xl5Vi/fj0+/PBDfPvtt6ivr8d7773Hdbg91vZnHR4eDgDYvXs3vvzySyxbtgwA8Nxzz6G5uRmFhYVchqpwbX/Wj3KPi4vD3bt3cerUqdbjdHV1UV1d3eXX1ejtByQSCaZOnYqdO3eiqqoKBw8ehKmpKaZMmYIxY8a0Hrd8+XLs378fp06dgp+fH4cRK05Xcl++fDmqq6uRnp6O7du3w9fXl+Oou+5p+U2ePBnjxo1rPS4qKgqffvopYmJi4OzszF3ACvSk3I2NjTFz5kxkZmZi3bp12LJlC2bMmAGJRAKZTKbRuf9vvgcOHICRkRHmzJmDgICA1uOioqLwySefIDY2VqPzbatt7tXV1YiOjoaJiQnmzp0LY2NjTJgwAatWrYKenh7279+PX375BZ6enl16bY2ec29sbISZmRn8/Pygp6eHvn37IjIyEr///jvs7Ozg6emJK1euIDU1lVeFHXh67seOHYO1tTV8fHxw//59XL9+HZcvX4ZIJOI65G55Wn7Hjx+Hg4MD+vXrh507d+Krr77C/v37efNhB56e+9GjRxEQEIDDhw/Dw8MDjDEIBAKuw+2xp+V78OBBmJubw9PTEzt27MCmTZsQHR3N65+1o6MjIiMjERkZiQ8//BBXr17F77//jvLycuzevbvLhR3Q4F0hAcDKygpXr15FSkoKAgICYG9vD3t7e5w+fRq6uroYNGgQevfujZkzZ3b9IoSG6Ch3HR0dDB48GAMGDMCKFSvg4eHBdbjd1lF+enp68Pf3h6GhIV555ZVuveE1wZNyt7Ozw8mTJ2Fra4sJEya0XmTlg65+jhcsWKAVP2t7e3ucOXMGVVVVGDt2LPz9/TFy5Mhud27S2OL+6M1tYGCAlJQUFBcXw9PTEw4ODjAyMsIPP/yAl156Cebm5ujVqxfX4SpUZ7n/+OOPmDlzJtzd3TWyjVln+X3//feYOXMmhEIh7+6QeVrujo6OrbnPnj2bN3fGdPVz7ODgoDU/60e5//TTT5g1a9Yz/6w17oLqo0sEj0Yt48ePh7+/P9LS0rBp0yZIpVJUVFTA1NQUBgYGXIaqcN3JXV9f82bc+J5fR7qTu66uxn1sH0Of467lrqen98zn0ZhPSFFREczMzNqNwltaWmBoaIhJkybBxsYGhw8fxsSJE1FXV4dt27bB2NiYw4gVh++58z2/jmhb7tqWb1sqz73HN2iqwOHDh9n48eNZcHAwi4iIYC0tLa2rtE6cOMGWLl3KiouLGWOM5eXlsYqKCi7DVSi+5873/DqibblrW75tcZG72hf3w4cPs8GDB7PExER25MgRNn78+NZFO6WlpWzYsGEsMjKS4yiVg++58z2/jmhb7tqWb1tc5a7297lv3LgRQ4YMwfTp01FUVIRp06Zh6NChGDduHJycnNC/f384ODjw6u6BR/ieO9/z64i25a5t+bbFVe5qX9wfqa+vx8SJEzFp0iQEBgbi3LlzMDc3R1hYGBhjvLjI9DR8z53v+XVE23LXtnzbUnnuCv9dQAHy8vJYZWUlY6z9lr15eXmt/3/q1Ck2bdq01v1U+ILvufM9v45oW+7alm9b6pC72n1NHjx4EM8//zwiIiJQVlYGHR0dyOXyx1bjPXjwALq6upBKpRxGq1h8z53v+XVE23LXtnzbUpfc1WpaprS0FPPnz4ezszOEQiHs7e0xf/582NjYtDvuhx9+QEREBHbs2KFR+6V0hO+58z2/jmhb7tqWb1vqlLtarVA1MDBAQEAAFi9ejOrqaly/fh0FBQVwc3ODmZkZWlpaUFRUhJiYGGzcuJE3bwiA/7nzPb+OaFvu2pZvW+qUu1oU99zcXJiYmKClpQVCoRD6+vrw9vZGfX09rl27hsLCQgwfPhypqakQiUSYNGkSHB0duQ5bIfieO9/z64i25a5t+baljrlzPud+5MgRBAcHY9WqVXj11Vdx586d1udmzZqFsWPHorS0FDNmzMDIkSNRUFDAm6XnfM+d7/l1RNty17Z821Lb3JVymbYL5HI5y83NZQMHDmSnT59mRUVFbMuWLczBwYGlpqa2O3bhwoXMxcWFJScncxStYvE9d77n1xFty13b8m1L3XPn9FbIlpYWtmzZMpafn996u9A//vEP1rdvX3b37l3G2MN2W15eXrxrrcX33PmeX0e0LXdty7ctdc6dkzn3+/fvIyMjAyYmJoiOjkZZWRlGjRoFAAgMDIRMJkN0dDSCgoJgaWmJxYsX82aDfr7nzvf8OqJtuWtbvm1pRO4q/SphjB06dIj5+vqyMWPGsJUrV7KYmBjm4uLCPv/889ZjsrKyWGhoaLub//mA77nzPb+OaFvu2pZvW5qSu0qvaFy4cAHvv/8+9uzZA39/f4SGhiIxMREXLlxo/babP38+zp07h6tXr6KyshKWlpaqDFFp+J473/PriLblrm35tqVRuavym+T8+fPs559/bn1cUlLCgoODGWOMZWRksFdffZWtWLGCDRkyhDcXXR7he+58z68j2pa7tuXbliblrtLi3tLSwqqqqlr/Py8vjw0ePJgVFBQwxhjLzs5mUqm0dU8GPuF77nzPryPalru25duWJuWu0vvc9fT00Lt370e/MaBPnz6wsrKCo6Mjdu/ejc8//xxSqRQWFhaqDEsl+J473/PriLblrm35tqVJuXO+t8ySJUvg6OiIY8eO8WqPia7ge+58z68j2pa7tuXblrrmzllxZ4xBKpXCy8sLUqkUJ0+eRP/+/bkIReX4njvf8+uItuWubfm2pe65cz5y37FjBwICAuDj48NlGJzge+58z68j2pa7tuXblrrmznlxZzxsq9VVfM+d7/l1RNty17Z821LX3Dkv7oQQQhSP810hCSGEKB4Vd0II4SEq7oQQwkNU3AkhhIeouBNCCA9RcSeEEB76f4BoSFJIztWDAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig=plt.figure(facecolor='white')\n",
"ax=fig.gca()\n",
"x=[np.datetime64('2013-%02d-01' % d) for d in range(1,7)]\n",
"y=(np.random.rand(6))\n",
"ymin = min(y)\n",
"ymax = max(y)\n",
"ax.fill((x[2],x[3],x[3],x[2]) , (ymin, ymin, ymax, ymax),color='lightsalmon')\n",
"ax.fill((x[1],x[2],x[2],x[1]) , (ymin, ymin, ymax, ymax),color='lightblue')\n",
"locs, labels = plt.xticks()\n",
"plt.setp(labels, rotation=45)\n",
"ax.plot(x,y)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"TABLECODE7471_Data_dac9fa37-e563-4ae4-9132-c9ea97b94abc\n"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" PERIOD \n",
" Year \n",
" LGR \n",
" Region \n",
" SEX \n",
" Sex \n",
" AGEGP \n",
" Age Group \n",
" ETHGP \n",
" Ethnic Group \n",
" MEASURE \n",
" Measure \n",
" Value \n",
" Flags \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 199806 \n",
" 1998 \n",
" 98 \n",
" Total Regions \n",
" 98 \n",
" Total Both Sexes \n",
" 98 \n",
" Total Age Groups \n",
" 98 \n",
" Total Ethnic Groups \n",
" AV_WEEK_INC \n",
" Average Weekly Income \n",
" 413.0 \n",
" NaN \n",
" \n",
" \n",
" 1 \n",
" 199906 \n",
" 1999 \n",
" 98 \n",
" Total Regions \n",
" 98 \n",
" Total Both Sexes \n",
" 98 \n",
" Total Age Groups \n",
" 98 \n",
" Total Ethnic Groups \n",
" AV_WEEK_INC \n",
" Average Weekly Income \n",
" 429.0 \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PERIOD Year LGR Region SEX Sex AGEGP \\\n",
"0 199806 1998 98 Total Regions 98 Total Both Sexes 98 \n",
"1 199906 1999 98 Total Regions 98 Total Both Sexes 98 \n",
"\n",
" Age Group ETHGP Ethnic Group MEASURE \\\n",
"0 Total Age Groups 98 Total Ethnic Groups AV_WEEK_INC \n",
"1 Total Age Groups 98 Total Ethnic Groups AV_WEEK_INC \n",
"\n",
" Measure Value Flags \n",
"0 Average Weekly Income 413.0 NaN \n",
"1 Average Weekly Income 429.0 NaN "
]
},
"execution_count": 116,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df00=pd.read_csv('Stats/Earnings/TABLECODE7471_Data_dac9fa37-e563-4ae4-9132-c9ea97b94abc.csv')\n",
"df00.head(2)"
]
},
{
"cell_type": "code",
"execution_count": 124,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" PERIOD \n",
" LGR \n",
" Region \n",
" SEX \n",
" Sex \n",
" AGEGP \n",
" Age Group \n",
" ETHGP \n",
" Ethnic Group \n",
" MEASURE \n",
" Measure \n",
" Value \n",
" Flags \n",
" \n",
" \n",
" Year \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1998 \n",
" 199806 \n",
" 98 \n",
" Total Regions \n",
" 98 \n",
" Total Both Sexes \n",
" 98 \n",
" Total Age Groups \n",
" 98 \n",
" Total Ethnic Groups \n",
" AV_WEEK_INC \n",
" Average Weekly Income \n",
" 413.0 \n",
" NaN \n",
" \n",
" \n",
" 1999 \n",
" 199906 \n",
" 98 \n",
" Total Regions \n",
" 98 \n",
" Total Both Sexes \n",
" 98 \n",
" Total Age Groups \n",
" 98 \n",
" Total Ethnic Groups \n",
" AV_WEEK_INC \n",
" Average Weekly Income \n",
" 429.0 \n",
" NaN \n",
" \n",
" \n",
" 2000 \n",
" 200006 \n",
" 98 \n",
" Total Regions \n",
" 98 \n",
" Total Both Sexes \n",
" 98 \n",
" Total Age Groups \n",
" 98 \n",
" Total Ethnic Groups \n",
" AV_WEEK_INC \n",
" Average Weekly Income \n",
" 436.0 \n",
" NaN \n",
" \n",
" \n",
" 2001 \n",
" 200106 \n",
" 98 \n",
" Total Regions \n",
" 98 \n",
" Total Both Sexes \n",
" 98 \n",
" Total Age Groups \n",
" 98 \n",
" Total Ethnic Groups \n",
" AV_WEEK_INC \n",
" Average Weekly Income \n",
" 462.0 \n",
" NaN \n",
" \n",
" \n",
" 2002 \n",
" 200206 \n",
" 98 \n",
" Total Regions \n",
" 98 \n",
" Total Both Sexes \n",
" 98 \n",
" Total Age Groups \n",
" 98 \n",
" Total Ethnic Groups \n",
" AV_WEEK_INC \n",
" Average Weekly Income \n",
" 483.0 \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" PERIOD LGR Region SEX Sex AGEGP \\\n",
"Year \n",
"1998 199806 98 Total Regions 98 Total Both Sexes 98 \n",
"1999 199906 98 Total Regions 98 Total Both Sexes 98 \n",
"2000 200006 98 Total Regions 98 Total Both Sexes 98 \n",
"2001 200106 98 Total Regions 98 Total Both Sexes 98 \n",
"2002 200206 98 Total Regions 98 Total Both Sexes 98 \n",
"\n",
" Age Group ETHGP Ethnic Group MEASURE \\\n",
"Year \n",
"1998 Total Age Groups 98 Total Ethnic Groups AV_WEEK_INC \n",
"1999 Total Age Groups 98 Total Ethnic Groups AV_WEEK_INC \n",
"2000 Total Age Groups 98 Total Ethnic Groups AV_WEEK_INC \n",
"2001 Total Age Groups 98 Total Ethnic Groups AV_WEEK_INC \n",
"2002 Total Age Groups 98 Total Ethnic Groups AV_WEEK_INC \n",
"\n",
" Measure Value Flags \n",
"Year \n",
"1998 Average Weekly Income 413.0 NaN \n",
"1999 Average Weekly Income 429.0 NaN \n",
"2000 Average Weekly Income 436.0 NaN \n",
"2001 Average Weekly Income 462.0 NaN \n",
"2002 Average Weekly Income 483.0 NaN "
]
},
"execution_count": 124,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df01=df00.set_index('Year')\n",
"df01.head()"
]
},
{
"cell_type": "code",
"execution_count": 143,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Year\n",
"1998 AV_WEEK_INC\n",
"1998 MED_WEEK_INC\n",
"1998 NO_PEOPLE\n",
"Name: MEASURE, dtype: object"
]
},
"execution_count": 143,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df01['MEASURE'].drop_duplicates()"
]
},
{
"cell_type": "code",
"execution_count": 157,
"metadata": {},
"outputs": [],
"source": [
"dfav = pd.DataFrame(index=df01.index)"
]
},
{
"cell_type": "code",
"execution_count": 158,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"63"
]
},
"execution_count": 158,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(dfav.index)"
]
},
{
"cell_type": "code",
"execution_count": 159,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"21"
]
},
"execution_count": 159,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(df00[df00['MEASURE']=='AV_WEEK_INC']['Value'].values)"
]
},
{
"cell_type": "code",
"execution_count": 160,
"metadata": {},
"outputs": [],
"source": [
"dfav['Average'] = df01[df01['MEASURE']=='AV_WEEK_INC']['Value']\n",
"dfav['Median'] = df01[df01['MEASURE']=='MED_WEEK_INC']['Value']\n"
]
},
{
"cell_type": "code",
"execution_count": 161,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Int64Index([1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,\n",
" 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 1998,\n",
" 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,\n",
" 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 1998, 1999,\n",
" 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,\n",
" 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018],\n",
" dtype='int64', name='Year')"
]
},
"execution_count": 161,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df01.index"
]
},
{
"cell_type": "code",
"execution_count": 165,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Average \n",
" Median \n",
" \n",
" \n",
" Year \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1998 \n",
" 413.0 \n",
" 289.0 \n",
" \n",
" \n",
" 1999 \n",
" 429.0 \n",
" 300.0 \n",
" \n",
" \n",
" 2000 \n",
" 436.0 \n",
" 313.0 \n",
" \n",
" \n",
" 2001 \n",
" 462.0 \n",
" 340.0 \n",
" \n",
" \n",
" 2002 \n",
" 483.0 \n",
" 350.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Average Median\n",
"Year \n",
"1998 413.0 289.0\n",
"1999 429.0 300.0\n",
"2000 436.0 313.0\n",
"2001 462.0 340.0\n",
"2002 483.0 350.0"
]
},
"execution_count": 165,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfav.head()"
]
},
{
"cell_type": "code",
"execution_count": 164,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Average \n",
" Median \n",
" \n",
" \n",
" Year \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2014 \n",
" 735.0 \n",
" 560.0 \n",
" \n",
" \n",
" 2015 \n",
" 755.0 \n",
" 579.0 \n",
" \n",
" \n",
" 2016 \n",
" 787.0 \n",
" 600.0 \n",
" \n",
" \n",
" 2017 \n",
" 811.0 \n",
" 614.0 \n",
" \n",
" \n",
" 2018 \n",
" 859.0 \n",
" 671.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Average Median\n",
"Year \n",
"2014 735.0 560.0\n",
"2015 755.0 579.0\n",
"2016 787.0 600.0\n",
"2017 811.0 614.0\n",
"2018 859.0 671.0"
]
},
"execution_count": 164,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfav.tail()"
]
},
{
"cell_type": "code",
"execution_count": 174,
"metadata": {},
"outputs": [],
"source": [
"dfav.drop_duplicates(inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 215,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5,1,'Resident Government and Earnings')"
]
},
"execution_count": 215,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEICAYAAABF82P+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xd4VFX+x/H3pPdJLyQhCYQu0psFQgmiIIjSfihFESyrAi4Cu64FK2Av7K4oYmxYEAFpghRROtJbCiSkENJ7mWRmzu+PwVkQUiiTSfm+nicPmXLvfOeGzCf3nHvO0SilFEIIIcRf2Fi7ACGEEPWTBIQQQogrkoAQQghxRRIQQgghrkgCQgghxBVJQAghhLgiCQgBQIcOHdi2bdsVH9u2bRshISF1W5CwuvDwcH755RdrlwGAm5sbZ86csXYZTY4ERAMTHh6Os7Mzbm5uBAYGMnnyZIqLi697v8ePHycqKur6C6xBbT50ioqKePrppwkPD8fV1ZXmzZszatQo9uzZY/H66rP69IE9efJkHBwccHNzM3916tTJYq9XXFxMixYtLLZ/cWUSEA3QTz/9RHFxMYcOHeLgwYO8/vrr1i7phtHpdAwYMICjR4+yZs0aCgsLOXnyJOPGjWP9+vV1Woter6/T12toZs+eTXFxsfnr8OHD17Qfg8FwgysTN4oERAMWGBjIHXfcwaFDh8z36XQ6Zs2aRfPmzQkICODRRx+lrKwMgOzsbIYNG4anpyfe3t7cfvvtGI1G4NK/TsvKypg8eTJeXl60b9+effv2XfK6586d47777sPPz4+IiAjef/9982MvvvgiY8aMYeLEibi7u9OhQwf2798PwIQJE0hOTubuu+/Gzc2NhQsXXvaevvjiC1JTU1m5ciU33XQTtra2uLq6MmrUKF588UXz83bu3EmPHj3QarX06NGDnTt3AvDtt9/SvXv3S/b5zjvvMHz48BqPz59NaQsWLCAwMJAHH3zQfN9bb72Fv78/QUFBLF261LzvyZMn8/jjj3PnnXfi5ubGrbfeyvnz55kxYwZeXl60bduWgwcP1smxy8vLY9iwYfj5+eHl5cWwYcNITU01Px4VFcVzzz3Hrbfeiru7O4MHDyY7O/uSYx8WFoaPjw+vvvrqZfu/GqNHjyYwMBCtVkvfvn05fvz4Jcfsscce46677sLV1ZWtW7cyefJk/va3vzF06FDc3d3p1asXp0+fNm+j0WhISEgwb1/dczdu3EibNm3QarU8/vjj9OvXj08++QSAhIQE+vXrh1arxdfXl7Fjx17X+2z0lGhQwsLC1KZNm5RSSqWkpKibbrpJPfXUU+bHZ8yYoe6++26Vk5OjCgsL1bBhw9TcuXOVUkrNnTtXPfLII6qiokJVVFSo7du3K6PReNl+58yZo2677TaVk5OjkpOTVYcOHVRwcLBSSimDwaC6du2q5s2bp3Q6nTp9+rSKiIhQGzZsUEop9cILLyhHR0e1du1apdfr1dy5c1WvXr2uWP+VjB07Vk2aNKnaY5CTk6M8PT3V559/riorK9XXX3+tPD09VXZ2tiopKVFubm4qLi7O/Pzu3burZcuW1Xh8tm7dqmxtbdXs2bNVeXm5Ki0tNd/33HPPqYqKCrV27Vrl7OyscnNzlVJKTZo0Sfn4+Kj9+/ersrIy1b9/fxUeHq5iYmKUXq9Xzz77rIqKiqqTY5edna2WL1+uSkpKVGFhoRo1apQaMWKE+fF+/fqpFi1aqNjYWFVaWqr69eun5syZo5RS6vjx48rV1VX9+uuvqry8XM2cOVPZ2tpW+XqTJk1Szz77bJW1LFmyRBUWFqry8nI1ffp01alTp0u29fDwUL///rsyGAyqrKxMTZo0SXl7e6s9e/aoyspKNX78eDV27FjzNoCKj483b1/Vc7OyspS7u7v64YcfVGVlpXr33XeVnZ2d+vjjj5VSSo0bN0698sor5tf97bffqnwPQikJiAYmLCxMubq6Kjc3NwWoAQMGqLy8PKWUUkajUbm4uKiEhATz83fu3KnCw8OVUko999xzavjw4eZftL/u988Pg4iICLV+/XrzYx999JE5IHbv3q1CQ0Mv2fa1115TkydPVkqZPuQGDhxofuz48ePKycnpiq9zJQMHDjR/aCml1MGDB5VWq1Xu7u6qdevWSimlPv/8c9WjR49Ltuvdu7daunSpUkqp+++/X82bN08ppVRcXJxyc3NTJSUlNR6frVu3Knt7e1VWVmZ+fOvWrcrJyUlVVlaa7/Pz81O7du1SSpk+rB5++GHzY++//75q27at+faRI0eUVqutk2P3VwcPHlSenp7m2/369VMvv/yy+faiRYvUHXfcoZRSat68eZd8IBcXFyt7e/tqA8LR0VFptVrz18SJE6/43Ly8PAWo/Px887YTJky4bH9Tpkwx3167dq1q06aN+fZfA6Kq58bExKjevXubHzMajSokJMQcEBMmTFBTp05VKSkpV6xVXEqamBqglStXUlRUxLZt2zh16pS5mSArK4vS0lK6deuGp6cnnp6eDBkyhKysLACeeeYZIiMjGTx4MC1atGD+/PlX3P+5c+cIDQ013w4LCzN/f/bsWc6dO2fev6enJ6+99hoZGRnm5wQGBpq/d3Fxoby8vNbt+T4+PqSnp5tvd+7cmfz8fFasWIFOpzPXd3FNf9aYlpYGwPjx41m2bBkAX3/9Nffccw8uLi41Hh8APz8/nJycLqvJzs7ukvd08YUBAQEB5u+dnZ0vu/3ncy197EpLS3nkkUcICwvDw8ODvn37kp+ff0kb/1/3/2dtf/2Zu7q64uPjU+3rzZo1i/z8fPNXTEwMYOpTmDt3Li1btsTDw4Pw8HCAS5qzLn6tmmq7ktq+D41Gc8kVeAsXLkQpRc+ePenQoQOffvppte+xqZOAaMD69evH5MmTmTVrFgC+vr44Oztz/Phx8y9tQUGB+ZfH3d2dt956izNnzrB69WrefvttNm/efNl+g4KCSElJMd9OTk42fx8aGkpERMQlHwxFRUWsW7euVjVrNJpqHx84cCAbN26kpKSkyuc0a9aMs2fPXnJfcnIywcHBAERHR5OVlcWhQ4dYtmwZ48ePB2o+PrWp73pY+ti99dZbxMbGsmfPHgoLC9m+fTsAqhYTNv/1Z15aWkpOTk6t6vqrr7/+mlWrVvHLL79QUFBAUlLSZXVY6jgHBQVd0u+ilLrkdmBgIB9//DHnzp3jo48+4vHHHzf3bYjLSUA0cDNmzGDTpk0cPnwYGxsbpk6dysyZM8nMzAQgLS2Nn3/+GYA1a9aQkJCAUgqtVoutrS02Npf/FxgzZgyvv/46eXl5pKam8sEHH5gf69mzJ+7u7ixYsICysjIMBgPHjh27rCO7KgEBAdVezz5x4kSCgoIYOXIkx44dw2AwUF5ebu6sBbjrrruIi4vj66+/Rq/X8+2333LixAmGDRsGgL29PaNHj+aZZ54hNzeX6OhogBqPj6VZ+tgVFRXh7OyMp6cnubm5zJs3r9a1jRo1ijVr1vD7779TUVHB888/b76A4WoVFRXh6OiIj48PpaWl/POf/7ym/VyLoUOHcvToUVauXIler2fRokWcP3/e/Pj3339vDgwvLy80Gs0VfweEiRyZBs7Pz4+JEyfy0ksvAbBgwQIiIyPp3bs3Hh4eDBo0iNjYWADi4+MZNGgQbm5u9OnTh8cff5z+/ftfts8XXniBsLAwIiIiGDx4MBMmTDA/Zmtry5o1azh06BARERH4+vry8MMPU1BQUKt6//GPf/DKK6/g6enJm2++ednjTk5ObN26lfbt2zN06FA8PDxo06YN+/bt47vvvgNMTT5r1qzhrbfewsfHh4ULF7JmzRp8fX3N+xk/fjy//PILo0ePvqR5qLrjY2mWPnYzZsygrKwMX19fevfuzZAhQ2pdW4cOHVi0aBHjx48nKCgILy+vGgdHLly48JJxEH8e/4kTJxIWFkZwcDDt27end+/eta7jevn6+vL9998ze/ZsfHx8OHHiBN27d8fR0RGAffv20atXL9zc3Bg+fDjvvfeejK+ohkbV5vxTCCEaIKPRSEhICF999dUV/xgS1ZMzCCFEo/Lzzz+Tn5+PTqfjtddeQylVp2cxjYkEhBCiUdm1axctW7bE19eXn376iZUrV+Ls7GztshokaWISQghxRXIGIYQQ4orsan5K/eXr62sehHO1CnSVXM+5k7Y0G426tssAReNX4OKL0sjfX6Jq1/oZkq23J13vSJB9Jb7+vjVvcAVJSUmXDFysSoMOiPDw8Euuj78aK2LTa35SNe7d/eF1bS8atxW9n7B2CaKeu5bPkK3FnkxJacdk91z+ExyLzeRrm1TxrxNaVkX+xBFCiAYgQefMU2mtaeNYytvN4rGx3KB/MwkIIYSo5/L0dkxJaYujxsgnoSdxtamb5u0G3cQkhBCNXaXS8FhaG9L1jixrfoxg+4o6e+1GFxCVlZWkpqZSXl5e7fPCKq9vFauT7Ydd1/b1h8KprICQ5H3YG3TWLkYIcRGl4IXzEewu1fJOszi6uVz/8sJXo9EFRGpqKu7u7oSHh1c7Y2Re+fWlsFdxVs1PagCUUuQUlZAKRCT+bu1yhBAXickL5Ov8QB7zSWWktuarjm60RtcHUV5ejo+Pj0WnbW5MNBoNPu6ulDtrrV2KEOIi24u1vJQRwSC3XJ7xS655AwtodAEBlp3TvzEyHS85ZkLUFwk6Z/6W1obWjqW82yyuTq5YupJGGRBCCNFQ5RvseDilLQ4axSehp3Cztd6AXAkIC1m5bgMavxBOxctqVUKI2qlUGv6W2ppzekc+CjlFiL11LxyRgLCQZStWcVuvnixbsfK691XbNYmFEA3bSxnh7Cj15NXA03R3KbJ2ORIQllBcXMLve/ay5L03+ebH1QCMm/o4azf+b/3nyU/MZPnqNRgMBp558WV6RA/l5n6D+CjmSwC27djJ7cPuZfgDD9L+VtNCJ/dMnEK3gXfS4bYBLP78S/O+lny5jNa9bqfn4KFMnfkMT8x5FoCs7BzumzyVHtFD6RE9lB17are0pRCi7n2RG8gXeUFM805jtGf9uEqy0V3merF5Px3nxLnCKz6mN17bTH1tAt155s421T5n1YafGTIgitYtW+Dj7cUfh48w9p67+W7VTwwdPJCKigo2//Y7/3njNZZ8tQytuwf7Nq1Fp9Nx69CRDI7qC8CBo0c5tn0zEWHNAfj0vTfx9vKirKyMHoOHcd+woegqdLz89nsc2Lwedzc3BowcS6cO7QCY/uzzzHx0Krf17klyahp3jLmfkzu3XdP7FkJYzo4SLS9mRDDQLZc5/metXY5Zow4Ia1m2YhXTp00BYNw9w1m2YhWv/OMZpj/7Ajqdjg1bttG3Ty+cnZ3ZuHU7R06cZPlPawEoKCoi/kwiDg729OzS2RwOAO9//Ck/rtsAQEraOeLPnOF8Zhb9+vTG28sLgNHDhxJ32rSw/S/bf+dEbLx5+8KiIoqLS3Bzc62T4yCEqFlihROPp7ampWMZ7zaLx7YeXVDYqAPihbs7VPnY9Q6Uq0puXh5bft/B0ZOn0Gg0GAwGNBoNb7z4L6Ju7cPPW3/l25WrGTdyBGAaqPbB6y9zx4CoS/azbcdOXF1cLrn9y6+/s2vdalxcnIkaMYpyXfUdWEajkd0bVuPk5HSj36YQ4gYoMNgyJaUtthpYEnISd9vrm+HhRpM+iBts+U9rmTD6Ps4e3EPSgd2kHN5HRPNQftu1h7EjhrN02bf8tnsvQwZEAXDHgH7857MvqKysBCDu9BlKSkov229BYRFenlpcXJw5FZ/A7j8OAtCjSyd+3bWbvPx89Ho9P6xZZ95mcFRfPvhkqfn2oaPHLffGhRBXRa/gibTWpFQ48Z+QWEId6t9UNxIQN9iyFasYedeQS+67b9hdLPtxFYP79+XXnbsZ1Pd2HBwcAHj4gfG0b92KrgOHcNPtA3nk73PQGy6/amnIgCj0ej3tboli7suv07tbFwCCg4L454wn6Dl4GLcOvYfw0FC0Hh4AvP/ay+w/dISb+w2i/a39+W/MF5Z980KIWnslI4LfSrx4JegMvVyu3FdqbQ16Teru3btftmDQyZMnadeuXY3bNqa5mP7sV9Dr9Yyc9DAPjR/LyKF3XtU+TiYm0+7EGgtV2PTIgkGiKoWllazel8qBM3lM8T7HcwFJ176zSde+YFBtFltr1H0QTcWLb7zNL7/+RrlOx+CovtzzlzMYIYT1GYyK309msuFgOgaj4infFKb7pli7rGpZNCDeeecdPvnkEzQaDR07dmTp0qWkp6czbtw4cnJy6NatG1988QUODg7odDomTpzIH3/8gY+PD99+++01rzfd1Lw57zlrlyCEqMbp80X8sCuF8/nltA32YGTvEB45scPaZdXIYn0QaWlpvP/+++zfv59jx45hMBj45ptvmDNnDjNnziQhIQEvLy+WLFkCwJIlS/Dy8iIhIYGZM2cyZ84cS5UmhBB1orC0kq+2J7FofTw6vZGHBrRganRL/DwaxpWFFu2k1uv1lJWVodfrKS0tJSgoiC1btjBq1CgAJk2axMqVpqkoVq1axaRJkwAYNWoUmzdvpgF3jwghmjCDUbH9eCbzVxznUGIe0Z0CmTOyPTeFeTao2aYt1sQUHBzMrFmzaN68Oc7OzgwePJhu3brh6emJnZ3pZUNCQkhLSwNMZxyhoaGmouzs0Gq15OTk4Ovre8l+Fy9ezOLFiwHIyqo/HcVCCAFwJqOYH3alkJ5XRptgD+7tFYKftmGcMfyVxQIiLy+PVatWkZiYiKenJ6NHj2bDhg3Xvd9p06Yxbdo0wNQTL4QQ9UFRWSU/7Utj/+lcvFwdmDygBR2baxvUGcNfWayJ6ZdffiEiIgI/Pz/s7e2599572bFjB/kXBnSBaXnQ4OBgwHTGkZJi6tHX6/UUFBTg4+NjqfIsSuMXwgOPPWm+rdfr8Wt7M8PGT7qq/USNGMX+Q4cBuGvcBPILCm5onUKI62cwKn47kcnrK05wMDGPQTcHMHtkO25uYM1JV2KxgGjevDm7d++mtLQUpRSbN2+mffv29O/fn+XLlwMQExPDiBGmKSeGDx9OTEwMAMuXL2fAgAEN9uC6urhw7GQsZWVlAGzatp3gwMDr2ue6b77AUyvLggpRnyRmFPPOT6f4cU8qzX1deOaedtzVLRhHe1trl3ZDWCwgevXqxahRo+jatSsdO3bEaDQybdo0FixYwNtvv01kZCQ5OTlMmWKa1G7KlCnk5OQQGRnJ22+/zfz58y1VWp24a9AA1m4yTe+97MdV/N+9I8yPlZSU8tBTf6fn4KF06X8Hq9b/DEBZWRnjpj5Ou1uiGDlpCmXl5eZtwrv2JjsnF6h62m+3sNY8++oCOkVF03vI3WRkSh+NEJZgMCpW7U3lg3VxlJbrmdQ/gkcGR+LfQPsaqmLRcRDz5s1j3rx5l9zXokUL9u7de9lznZyc+P77729sAevnwvmjV3zIzXhty/gZAm6ibFDNoxfHjRzOS2++y7DBgzhy/CQPjR/Lb7tN7/vVd95nwO238On7b5FfUEDPwcMY1Pd2Pvr8S1ycnTm5cxtHjp+g68Arj4a+0rTfPt5elJSW0rt7V159dg6z573Cx198zb/+Pv2a3qcQ4sqKyyuJ2ZrI6fPF3NbOj6HdmjWaM4a/kpHUFnJzh/YkpaSybMUq7ho04JLHNm7bzuqfN/Hmoo8AKNfpSE5LY/uuPTw19SHz9je3v/KUIVea9tvHuxsODg4MGzwIgG4338ymX7db6u0J0SSlZpeydMsZisorGX97GN0jG2Y/aW017oC4s+pmqmILTfd9seFDopn14stsW/k9OXl55vuVUvywdDFtIlte9T6rm/bb3s7O3G9ja2uDXl+/pg4WoiH743Qu3+44i5uTHU/e1YZQX5eaN2rgZDZXC3po/FhemDWTjn85E7ijfz8++PhT80DAg0eOAdC3Ty++/uFHAI6dPMWREycv22dV034LISzjz/6Gr7YnEebnysy72zaJcAAJCIsKadaMpy6sLHex5/4+nUq9npv7DaLDbQN4bv4bADw2eQLFJaW0uyWK5xe8SbdOHS/btqppv4UQN15xuZ7FGxP49Xgmt7Xz49E7WuHubG/tsuqMTPd9jerTdN83gkz3fWPJdN8NX1puKUs3n6GwrJJRfZrTs9WN7W+4d/eH178Tme5bCCHq1sEzuXzz+1lcHO144s7WNPdrmuu4S0AIIcQFBqNi7R9pbDuWSUSAK5P7t2hSTUp/1SgDQinVYEdhW4OplbHBtjQKcUOU6PR8sS2RuHNF3NrWlxE9Q7CzbdrdtI0uIJycnMjJycHHx0dCohaUUuQUleBUJvM8iabrXG4pn24+Q0FpJWNubU7v1r41b9QENLqACAkJITU1tcapwEsrr2+MgIuu6Lq2rz8UTmUFhCTvs3YhQljFocQ8vvn9LE4OtvztztaE+zfN/oYraXQBYW9vT0RERI3PWxGbfl2vc+/BZde1vRDCugpLK9l0OJ0dp7IJ9zf1N3i4NN3+hitpdAEhhBDVKSytZOuxDHacysJoVNzWzo/hPYKbfH/DlUhACCGahD+DYeepLAxGRbeW3gzqFNhg1oe2BgkIIUSjVlRWyZajpmDQGxXdJRhqTQJCCNEoFZVVsvWoqSlJb1R0a+FNdKfABrs+tDVIQAghGpWisgt9DCclGK6XBIQQolEoKqtk27EMdpzKptJgpFsLU1NSY1vlrS5JQAghGrTi8j+bkkzB0PXCGYMEw/WTgBBCNFgp2aV8tDGesgoDXSK8iO4URICnBMONIgEhhGiQzmaV8NHGBJwdbHniztYEejlbu6RGRwJCCNHgJGYUs3hTAm5Odjw+pDVebg7WLqlRkoAQQjQop88X8fGm02hd7HlsSCs8XSUcLEUCQgjRYMSdK2TJL6fxcnPg8SGtZe4kC5OAEEI0CKfSCvl082l83R15bEjTWhvaWiQghBD13vGUAj7bcoZATyceuaMVbk7y0VUX5CgLIeq1o2fz+XxbIkFezjxyRySujvKxVVfkSAsh6q3DSXl8sS2REF8XHomOxFnCoU7J0RZC1EsHzuTy9fYkwvxcmRodiZODrbVLanIkIIQQ9c6+hBy++f0sLQLceHhQSxztJRyswWJLKMXGxtK5c2fzl4eHB++++y65ublER0fTqlUroqOjycvLA0ApxVNPPUVkZCQ333wzBw4csFRpQoh6bHdcNt/8dpZWQe5MjY6UcLAiiwVEmzZtOHToEIcOHeKPP/7AxcWFkSNHMn/+fAYOHEh8fDwDBw5k/vz5AKxfv574+Hji4+NZvHgxjz32mKVKE0LUUztPZfHdjmTaBHvw0MCWONjJMqDWVCdHf/PmzbRs2ZKwsDBWrVrFpEmTAJg0aRIrV64EYNWqVUycOBGNRkPv3r3Jz88nPT29LsoTQtQDv53IZPmuFNqHevDggBYSDvVAnfwEvvnmG/7v//4PgIyMDIKCggAIDAwkIyMDgLS0NEJDQ83bhISEkJaWdtm+Fi9eTPfu3enevTtZWVl1UL0QwpKUUmw9msGPe1Lp2FzL5P4tsJdwqBcs3kldUVHB6tWref311y97TKPRoNFormp/06ZNY9q0aQB07979htQohKh7ecUV7E/IYW9CLjlFOjqFe/JAvwhsba7uM0FYjsUDYv369XTt2pWAgAAAAgICSE9PJygoiPT0dPz9/QEIDg4mJSXFvF1qairBwcGWLk8IUYcq9EaOnM1jX3wuCelFKKBVkDt3dA6kSwtvCYd65qoCIjk5mdLSUtq2bVvrbZYtW2ZuXgIYPnw4MTExzJ07l5iYGEaMGGG+/8MPP2TcuHHs2bMHrVZrbooSQjRcSimSMkvYm5DDocQ8dJVGvN0cGNwliB4tvfF2d7R2iaIK1QbE3LlzmThxIu3bt+eHH37g6aefxtPTk2HDhvHqq6/WuPOSkhI2bdrERx99dMk+x4wZw5IlSwgLC+O7774D4K677mLdunVERkbi4uLC0qVLr/OtCSGsKa+4gv2nc9gXn0t2kQ4HOxs6hXvSs5UPEQFu2Fxl87Koe9UGxIYNG8yXob7zzjts3LiRyMhIunbtWquAcHV1JScn55L7fHx82Lx582XP1Wg0LFq06GpqF0LUMxV6I0fP5rMvIYf4c6YmpJaBbkR3CuTmcE8Z09DAVBkQ8+bNIyMjg5deeomysjJOnz7Nt99+i1KKgoICXnrpJaKioujbt29d1iuEqIfO55ex/XgmhxLzKL/QhBTdOZAekT74SBNSg1VlQLzwwgucOHGCs2fPUlhYyMSJE3n++eepqKhg48aNPP/883VZpxCiHjqfX8amQ+c5lJiHvZ0NN4eZmpBaBEoTUmNQbRPTp59+yueff46DgwMTJ04ETB3V//jHP+qkOCFE/ZSRX8bGw+c5dCYPBzsbBtwcQL8OAbJOQyNT7U/T1dX1sikvIiMjiYyMtGhRQoj6KSO/nI2H0zl0xnTGIMHQuMlPVQhRo4z8cjYdTufghWDo3zGAqJskGKzCqIfMdaDtZvGXkp+uEKJKmQXlbDyUzsHEPOxt/wwGf9ycZD1oq8nbBWXJ4NHJ4i8lASGEuMxfgyGqQwD9O0owWF1ZChQeBveO4BJm8ZercUas2bNnU1hYSGVlJQMHDsTPz48vv/zS4oUJIepeZkE5X21PYsGPJziWXEBUhwD+NboDd/cIlnCwNkM5ZP0C9l7gfUudvGSNZxAbN25k4cKF/Pjjj4SHh7NixQr69u3LAw88UBf1CSEsSClFRkE5sWmFnEorIu5c4YUzBn+ibgrA3VlCoV5QCnK2gaEMAoaCTd38XGoMCL1eD8DatWsZPXo0Wq3W4kUJISynpFxP3LlCYs8VEZdWSH5pJQD+Wkf63xRAvw7+Egz1TUkclCSAV29w9K+zl60xIIYNG0bbtm1xdnbmP//5D1lZWTg5OdVFbUKIG8BgVJzNKiE2rZDYtEJSsktRgLODLa2buTM42IPWzdzxdpMRz/VSZSFk/wqOQaDtWqcvXWNAzJ8/n9mzZ6PVarG1tcXFxYVVq1bVRW1CiGuUU6S70GxUSEJ6EeWVRjQaCPN3U1pHAAAgAElEQVRzZXDnINoEe9Dc1wUbmV67flNGyP4FUOAXDZq6XUipxoBYsWLFZfdptVpsbGzMazkIIayrqKyS0+eLSThfRFxaEdlFOgC83BzoHOFNm2B3Wge54+woFy42KAWHoPwc+A4Ae486f/ka/7csWbKEXbt20b9/fwC2bdtGt27dSExM5Pnnn2fChAkWL1IIcak/A+H0+SISzheTkV8OgKOdDS0D3bi9vR9tgj3w83C86lUbRT2hy4K83eDSAtzaWaWEWnVSnzx50rwiXEZGBhMnTmTPnj307dtXAkKIOlBcfuEMId0UCucvCoSIADd6RHrTMtCdEB8XWZWtMTDqIWsT2DqBb3+wUsjXGBApKSnmcADw9/cnJSUFb29v7O3lSgchLKGqQHCws6FFgBvdWnoTGSSB0Gjl7YLKXAi4G2ydrVZGjQERFRXFsGHDGD16NAA//PADUVFRlJSU4OnpafEChWgKjBeuNDqeUsDJ1ALS8/4XCBEXAqFloDuhvhIIjV4dj5auTo0BsWjRIn744Qd27NgBwMSJE7nvvvvQaDRs3brV4gUK0ViVVxqITSvkREoBJ1MLKS7XY6OBFgFuDO3WTAKhKbLCaOnq1BgQGo2GUaNGMWrUqLqoR4hGLbdYx/HkAk6kFJBwvhiDUeHsYEu7EA86hGppG+whVxo1VVYaLV2dWl3mOmfOHDIzM1FKoZRCo9FQWFhYF/UJ0aAZlSI5q5QTKfkcT/lf05GfhyO3t/OjfXMtEf5ucpYgrDZaujo1BsTs2bP56aefaNfOOpdZCdHQ6Iwajp41BcKJlAJz01FEgBvDewTTPlSLv1ZmIxAXseJo6erUGBABAQESDkLUQlKFE8vyAvi+wJ/c2DM4OdjSLtiD9qFa2oZ44CpNR+JKrDxaujo1/o/t3r07Y8eO5Z577sHR8X9ztdx7770WLUyIhqBCadhY5M3XeQHsLPXEFkW0ey6hvXvSupmHNB2Jmll5tHR1agyIwsJCXFxc2Lhxo/k+jUYjASGatKQKJ5blB7A8358cgz3B9uXM8jvLGG0m/vaVrAiJtnaJoiGoB6Olq1NjQCxdurQu6hCi3qtQGjYVebMsP4DfS0xnCwPdchnvlcHtrvnYysmCuBr1ZLR0daoMiIULFzJ79myefPLJK87l8v7771u0MCHqi7MVjuazhWyDA8F2Ov7ul8wYbQYB9pXWLk80VPVktHR1qgyIPzumu3fvXmfFCFFf6BVsLPJhWX4Av5V4YnPR2UJfOVsQ10hjqCDg/A5Cz66pN6Olq1NlQNx9990ATJo0qc6KEaI+0Ct4Iq0NG4p8aGanY6ZvMmM9Mwm0r7B2aaIhUkZ8s/YTmrSGZik/41hRgM5BCx4dwcv6o6WrU2MfRFxcHG+++SZJSUnm5UcBtmzZYtHChLAGpeAf6S3ZUOTDP/yTeNj7nJwtiKunFNq8k4SeXUNI8jpcSs+jt3XmXMhAUsOGkRF4CyP3LbZ2lTWqMSBGjx7No48+ysMPP4ytre1V7Tw/P5+HH36YY8eOodFo+PTTT2nTpg1jx44lKSmJ8PBwvvvuO7y8vFBKMX36dNatW4eLiwufffYZXbvWnwEjovFTCl7LDOP7ggCm+6bwiM85a5ckGhjXoiRCz64l5OxaPArPYNTYkdHsdo51fob04P4Y7FysXeJVqTEg7OzseOyxx65p59OnT2fIkCEsX76ciooKSktLee211xg4cCBz585l/vz5zJ8/nwULFrB+/Xri4+OJj49nz549PPbYY+zZs+eaXleIa/HvnGA+zg1mklc6M3xTrF2OaCCcyjIJPrue0LNr8M49CkCWfw8OtJnEudDBVDh6WbnCa1djQNx99938+9//ZuTIkZcMlPP29q52u4KCArZv385nn30GgIODAw4ODqxatYpt27YBpv6NqKgoFixYwKpVq5g4cSIajYbevXuTn59Peno6QUFB1/7uhKilL/MCeCMrjHs8snghILE+XnEo6hOlCErbQsu4L/HL3INGGcn3as/Rzs+Q2vwuylwbx+dWjQERExMDwBtvvGG+T6PRcObMmWq3S0xMxM/PjwcffJDDhw/TrVs33nvvPTIyMswf+oGBgWRkZACQlpZGaGioefuQkBDS0tIuC4jFixezeLGp7S4rK6s271GIaq0u8OG58y0Y6JbLG80SkMHPojp+53fT4cg7eOccpsQ1hFMdHiUlbBjFHi2sXdoNV21AGI1GvvzyS2699dar3rFer+fAgQN88MEH9OrVi+nTpzN//vxLnqPRaK56vdxp06Yxbdo0QC7BFddvW7EnT59rRQ+XQhYFx2GvUdYuSdRTXjlHaX/4HQIydlLqEsgfPV8hOeIelE3jnWOr2lmhbGxseOKJJ65pxyEhIYSEhNCrVy8ARo0axYEDBwgICCA9PR2A9PR0/P1N09oGBweTkvK/dt/U1FSCg4Ov6bWFqI39pe48mtqGNo6lfBJyCicbo7VLEvWQe0ECvX57kv4bR+OZf5IjXeaycdjPnG05qlGHA9QQEAADBw7khx9+QKmr+8sqMDCQ0NBQYmNjAdi8eTPt27dn+PDh5marmJgYRowYAcDw4cP5/PPPUUqxe/dutFqt9D8IizlR7sKDKe1oZl9BTPOTeNgarF2SqGdcilPptnsug9YPx//8Tk50fJKf795EQtvJGG0da95BI1Bj/H300Ue8/fbb2NnZ4eTkdFULBn3wwQfcf//9VFRU0KJFC5YuXYrRaGTMmDEsWbKEsLAwvvvuOwDuuusu1q1bR2RkJC4uLjIHlLCYpAonJia3x83GwOfNT+BrJ9NliP9xLMum7fH/EHH6OxQa4ttMIq79tAZ9NdK1qjEgioqKrnnnnTt3Zv/+/Zfdv3nz5svu02g0LFq06JpfS4jaOF/pwAPJ7TGg4Zvmxwmx11m7JFFP2FcU0urkEiJjP8fGWMHZFvdx6qbHKXMJtHZpVlOrBrS8vDzi4+MpLy8339e3b1+LFSWEJeQb7JiY0p48gz3Lmh8j0rHM2iWJesBWX0bLuC9pffITHCoKSGl+FydufooS93Brl2Z1NQbEJ598wnvvvUdqaiqdO3dm9+7d9OnTR6baEA1KidGGycntSKpw4rPQE9zsXGLtkoSV2ejLCT+znDYnPsK5LIvzzfpx/OYZFHjVv3UZrKXGgHjvvffYt28fvXv3ZuvWrZw6dYp//vOfdVGbEDeEzqjhkdS2HCl34z8hsdziWnP/mWi87CqKaJGwjMhTMTjpcsj2687eW98lx6+btUurd2oMCCcnJ5ycTAus63Q62rZta74ySYj6zqBgxrnW/F7iyRtB8dzhnmvtkoSVOJTnEhn3OS3ivsKhsoiMwNvY0+ERcvy618vFeuqDGgMiJCSE/Px87rnnHqKjo/Hy8iIsrP7OXy7En5SCf6a3ZH2RD//yT2S0p4y8b4qcS9JpdWop4ae/w9agIy10MHHtp5LvfZO1S6v3agyIH3/8EYAXX3yR/v37U1BQwJAhQyxemBDXI7nCkbezmrOy0I8nfVJ42Cfd2iWJOuZWmEjrk5/QPGk1KEVK+N3Etp/aKKfEsJQqA2LLli0MGDAAMM2rFBERQb9+/QBYsWIF9957b91UKMRViNM585/sYFYX+mGrUTzhk8LTfjIza1OizTtJmxOLCU7egNHWgcSWY4hr9xBlrjIzw9WqMiBmzZrFgQMHALjvvvvM3wO88sorEhCiXjlU5sa/s4PZWOyDi8bAQ97neNj7nKwZ3YR4Zx2g7YmPCDz3K5V2rsS1e5iENpPQOftau7QGq8qAuHhqjb9Os3G1024IYQlKwa5SDxZlh7Cj1BOtTSXTfVOY7JWOl52+5h2IRsHv/G7aHvsQv6z96By9OH7zDM60Gk+lg4e1S2vwqgyIi2dZ/euMq1c7A6sQN5JRweZiLxZlh3Co3B0/2wr+6Z/EeM/zuNnKhHtNhlK0OvUpHQ+9QZlzAIe7/pOklqMa3Kpt9VmVAXHmzBmGDx+OUsr8PZjOHhITE+usQCH+pFewttCXf+cEE6tzJdS+nFcDT3OfNhMnGzmrbVKMBjodeJWW8V+T2vxO9vee32Qm0KtLVQbEqlWrzN/PmjXrksf+elsIS9IZNfxQ4M9/c4JJrnSitWMp7zaLY5hHNnZyMtvk2OrL6LHz7zRL20Jc24c41nkWaGqcmFpcgyoD4s8rloSwlgql4cu8QD7KaUaG3pFOTkX8KyCRQW55supbE+VYnkOf7Y/hlXOUQ93+xZnWD1i7pEatca92IRokpWBLsRevZIaTWOFMH5cC3m6WwC0uBTLgtQlzK0zkll+n4VSWxe7bPyQ9ZKC1S2r0JCBEvRKvc+bljHC2l3jRwqGUpaEn6O+Wb+2yhJV5Zx2gz/bHURobfhsQQ55vJ2uX1CTUGBBHjx6lY8eOdVGLaMLyDXa8mxXCF3lBuNgYeC4gkYle52WNaEGzlJ/psWs2pS6B7Oz3MSXuza1dUpNRY0A8/vjj6HQ6Jk+ezP33349Wq62LukQToVewLC+Qt7JDKTTY8X+eGTztl4yPjGMQQMtTMdx8cD65vp3Y1fc/TXJVN2uqMSB+++034uPj+fTTT+nWrRs9e/bkwQcfJDo6ui7qE43YjhItL2WEE6tzpY9LAc8HJNLOqdTaZYn6QBnpeHABrWJjSAuJZl+fNzDaOVm7qianVn0QrVq14pVXXqF79+489dRTHDx4EKUUr732mky5Ia7a2QpHXs0IZ2OxD6H25fw3+BR3uOdKB7QATAv59Ng9m+CUjSS0nsiRLnPAxtbaZTVJNQbEkSNHWLp0KWvXriU6OpqffvqJrl27cu7cOfr06SMBIWqt2GDDhzkhfJrbDDsUz/idZYr3ORnkJswcdHn02f443tmHONzlH5xuO8naJTVpNQbEk08+yZQpU3jttddwdnY239+sWTNeeeUVixYnGgejguUF/izMbE62wYF7tZnM8TsrE+mJS7gWJXPLr1NxKT3Pntve5VzoHdYuqcmrMSB+/fXXKh+bMGHCDS1GND47SrTMzwzjaLkbXZyL+CTgFJ2di61dlqhnvHKO0OfXR9EoI7/1X0quX1drlySoJiA6dux4xUn5lFJoNBqOHDli0cJEw3awzI03Mpuzs9STIDsd7zaLY7hHtoyAFpfQGPW0jP2c9kffp9zZj539FlPsEWHtssQFVQbEmjVr6rIO0UjE6Zx5M7M5G4t98Lat5LmARO73PC/9DOIyXjlH6bL3eTzzT5LeLIoDvV5F5+Rj7bLERaoMiD/XnV6/fj133nnnJY/997//5dFHH7VsZaJBSalw5J3sUH4s8MPNxsDTvsk85H1Opt8Wl7GrLKb9kXdpGfcV5c6+7L7tPc6FDEYuY6t/auyDePnll3F0dDQvP7pw4UK2bt0qASEAyNTb82F2CMvyArDRKKZ6n+MxnzRZsEdcUbOUTXT64xWcyjI502o8x2+egd7B3dpliSrUGBCrV69m2LBhvPHGG2zYsIFTp05dMhW4aJoKDLZ8lBPM0twgKpQNYz0zeMo3lUD7CmuXJuoh55J0Ov3xCs3SNpPv2Ybdt70v8yk1ADUGhK+vL6tXr2bQoEF069aN5cuXy4pyTVip0YaluUF8lBNMkdGW4R7ZzPRLIdyh3NqlifrIaKBl3Jd0OPoeKCNHOz9DQpuJKBt7a1cmaqHKgHB3d78kCCoqKjhz5ow5IAoLC+ukQFE/VCgN3+QF8H52CNkGBwa65TLLL1mmxhBV8sw9Rpd9L+CVe5zzQX051P15St1CrF2WuApVBkRRUdF17zw8PBx3d3dsbW2xs7Nj//795ObmMnbsWJKSkggPD+e7777Dy8sLpRTTp09n3bp1uLi48Nlnn9G1q1wLbW1KwZoiHxZmhpFS6URPlwL+6xdLd5fr//8hGifbyhLaH32fyLgv0Dn6sOfWd0gLHSKd0A1Qjev0KaX48ssvefnllwFISUlh7969tX6BrVu3cujQIfbv3w/A/PnzGThwIPHx8QwcOJD58+cDpqul4uPjiY+PZ/HixTz22GPX8n7EDXSszJUxZ2/iybQ2uNkYiAk9wbfNj0s4iCoFpW4het0wWsXGkNhyDJuGriWt+Z0SDg1Urab7trGxYcuWLTz33HO4ubnxt7/9jX379l3TC65atYpt27YBMGnSJKKioliwYAGrVq1i4sSJaDQaevfuTX5+Punp6QQFBV3T64hrl6W3583M5nxX4I+3rZ7XAxMY45mJrfyON27KiH1FIbbGCjTGSmwNFdgYK7Ex/vlvJTYX32e4+LEK/DL2Epy6iQJtK7YN+lpGQzcCNQbEnj17OHDgAF26dAHAy8uLioraXami0WgYPHgwGo2GRx55hGnTppGRkWH+0A8MDCQjIwOAtLQ0QkNDzduGhISQlpZ2WUAsXryYxYsXA5CVlVWrOkTt6IwaPssL4oPsEHRGG6Z6n+MJ31Q8bA3WLk1YgF1lMV45R/HJPoh39kG8sw/jUHntfYt6WyeO3TyT+LYPomwdbmClwlpqDAh7e3sMBoO5wzorKwsbmxpbpgD4/fffCQ4OJjMzk+joaNq2bXvJ4xqN5qqviJo2bRrTpk0DoHv37le1rbgypeCXYi9ezQgnqdKZQW65PBuQRIRcmdR4KIVLSSo+WQfNgaAtiEOjjCg0FGojSWs+hEKPlhhtHTHa2mO0ccBgY4+yccBga4/RxnSf+V/bi27bOqC3c8Fo62jtdypuoBoD4qmnnmLkyJFkZGTw7LPPsnz58lrP4hocHAyAv78/I0eOZO/evQQEBJibjtLT0/H39zc/NyUlxbxtamqqeXthOXE6Z17OiOC3Ek8iHUqJCT1BP1kDusGzMejwzD2OT/aFQMg6iJMuB4BKO1dyfTtxKuQxcny7kOvTSQariSuqMSDuv/9+unXrxubNm1FKsXLlStq1a1fjjktKSjAajbi7u1NSUsLGjRt5/vnnGT58ODExMcydO5eYmBhGjBgBwPDhw/nwww8ZN24ce/bsQavVSv+DBeUb7HgnK5Qv8wJxtTHwYsAZ7vfKkDWgrcipNAO/zL14Zx/ETn+Nlw8rhVtREl55J7AxmqZTL3YLIyPoNnL9upDj04VCbaQswCNqpVYrymVnZ+Pi4sKDDz5IVlYWiYmJRERUP+NiRkYGI0eOBECv1zN+/HiGDBlCjx49GDNmDEuWLCEsLIzvvvsOgLvuuot169YRGRmJi4sLS5cuvc63Jq5Er+CrvEDezgqlyGjHA17nmembIlNjWIFTaQa+mXvxy9yLb+Ze3IvOAqa/8Cscr33t9zKXIOLbTCbXtzO5vp1lAjxxzWoMiHnz5rF//35iY2N58MEHqays5IEHHmDHjh3VbteiRQsOHz582f0+Pj5s3rz5svs1Gg2LFi26itLF1fqtWMvLmRHE6Vy41SWf5wKSaCsD3eqMKRD24Ze555JAqLB3J8e/O4mR48j270m+Z1v5C1/UCzUGxI8//sjBgwfNg9aaNWt2QwbRibpzvNyFNzPD2FriRXP7chaHnCTaLU8uTbcwp7JMfDMuPkNIAqDS3o1sv+4kthxLdkBP8j3bSSCIeqnGgHBwcLjkaqOSkhKLFyVujMQKJ97OCuWnQj+0NpXM9U/iQa90HGVthtox6sBYAcZK07+q8n+31Z/3X/z9/54z+KfVuBUnA6Ymo2z/7iS1HE1WQC8JBNFg1BgQY8aM4ZFHHiE/P5+PP/6YTz/9lKlTp9ZFbeIapVc68H52CN/lB+CgMfKETwpTfc6hlfEMtWMog+ytUHqmFk/WgI09aOzBxsH8b4FXWxIjx5Ll35MCr3Yom1p19wlRr9T4v3bWrFls2rQJDw8PYmNjeemll4iOjq6L2sRVytXb8e+cED7PCwRgglc6f/NNw8+u0sqVNSClSZC9BQzloO0K9lrQOFwaAjYXhYHG7orTSOzp/UTd1y7EDVZlQLz77rvccsstdO3alejoaAmFeqzYYMMnuc34JLcZpUZb7tVmMcMvhRB7nbVLaziMlZC7E4qOgr03BA4HB19rVyWEVVUZEKmpqcyYMYNTp07RsWNHbr31Vm655RZuueUWvL2967JGUYVyo4Yv8wL5d04IuQZ7hrjn8He/ZFo5llm7tIZFlwFZm6AyHzw6g1dvkCYhIaoOiDfffBMwrQOxf/9+du7cydKlS5k2bRqenp6cOHGizooUl9IrWJ7vz3vZoaTrHbndNZ9Zfsl0ci62dmkNizJCwQHI2wu2zhA4ApxDa95OiCaixj+TysrKKCwspKCggIKCApo1a0bHjh3rojbxF0YFa4t8eDurOYkVznR2KuKtZvHc4iqLN121ykLTWYMuHVwjwScKbJ2sXZUQ9UqVATFt2jSOHz+Ou7s7vXr14pZbbuHpp5/Gy8urLusTF5wqd2FOeksOl7vT2rFUxjJcK6Wg+BTkbAc04BcNrq1lvQIhrqDKgEhOTkan09GqVSuCg4MJCQnB09OzLmsTmJb6XJQdwr+zg/GwNfBmUDwjtVmyNsO1MJRB9jYoPQ1OzcB3ENh7WLsqIeqtKgNiw4YNKKU4fvw4O3fu5K233uLYsWN4e3vTp08f5s2bV5d1NkmHy9yYnd6SWJ0rIzyyeCEgEW+ZM+nalCVD1mZTSHj1AW0X0NRu2nohmqpq+yA0Gg033XQTnp6eaLVatFota9asYe/evRIQFlRmtOGdrFA+yW2Gv10FS0JOMtA9z9plNUxGPeTtgsLDYO8FAcPA0c/aVQnRIFQZEO+//z47d+5k586d2Nvbmy9xfeihh6ST2oJ2l3gwN70lSZXO/J/nef7hf1ZWdLtWumzI2giVueBxM3jdIpevCnEVqvxtSUpKYvTo0bzzzjuyLkMdKDLYMj8zjK/yA2luX87XzY/J1UnXSikoOg65v4GNIwTcDS5h1q5KiAanyoB4++2367KOJm1rsSfPprckXe/AFO9z/N0vGRcbo7XLapiMFaZ5lEriwbm56SolW2drVyVEgyTn21aUp7fj5cxwVhT408qhlB/Cj9JVBrtdu4psyNwAlQWm0dDabnL5qhDXQQLCStYV+vD8+QjyDXY85ZvC33xSZRrua6UUFJ2A3O2mJqXAe8BZ1jMX4npJQNSxzEp7ns9owYYiHzo6FfN58xO0l1Xdrp2xwjS2oSQOnELBPxpsXaxdlRCNggSEhSgFqZWOxOpcLvk6rXPGRgNz/M4y1ScNO2kBuXbSpCSERUlA3AD5BjtOlZsC4NSFIIjTuVBs/N/hDbYvp61jKQPd8hilzaSFY7kVK27glILik5Dz64UmpRHgHGLtqoRodCQgrlJZhYETKQWcyggzh0GG3tH8uKdtJW0cS7lXm0Ubx1LaOpbS2rEUdxnLcGMYKyD7VyiJlSYlISxMAqIWlFIkZ5eyOzabg4l5VOiNOGiCaOVQyq2uBbR1LL0QBiX421VKK4elVORcaFLKA8+e4NldpssQwoIkIKpRXmHgwJlcdsVmk5ZbhoOdDV1aeNG7tS9PJiyV/oO6VHTCNAOrjcOFq5SkSUkIS5OAuIKU7BJ2xmZz8IzpbCHY25lRfULp2sIbJwdbAOxOW7nIpsJYaeprKD4FTiGmgW92rtauSogmQQLigvJKAwdO57I7LpvUnAtnCxFe9G7jS3NfFzTSblT3ytMhe8uFJqUepi9pUhKizjT5gEjJLmVXbBYHLpwtBHk5c1/vULq29Mb5wtmCqGPGSsjbbZqB1dZdlgIVwkqaZEAU6/Tsis1mV2w2qTml2Ntq6NLCmz5ytmB9ZSmmuZT0heDeEbz7mPodhBB1rkkGxOJfT/P9zmSCvJy4t3co3eRswfoMOsjdAcUnwE4LgSNlugwhrKxJBsT9vcPA2YYwP1c5W6gPShIhZxsYSkHb1XQJq6zbIITVWbzHz2Aw0KVLF4YNGwZAYmIivXr1IjIykrFjx1JRUQGATqdj7NixREZG0qtXL5KSkixWU4CHE+H+bhIO1mYog8yfIXMt2DhBs1HgLYv6CFFfWDwg3nvvPdq1a2e+PWfOHGbOnElCQgJeXl4sWbIEgCVLluDl5UVCQgIzZ85kzpw5li5NWItSUBwHqV9ByWnTGUPwGHAMsHZlQoiLWDQgUlNTWbt2LQ8//DBgGpG8ZcsWRo0aBcCkSZNYuXIlAKtWrWLSpEkAjBo1is2bN6OUTH/d6OiLTWcMWRvBXgvBY8GrJ2ikD0iI+sai5/IzZsxg4cKFFBUVAZCTk4Onpyd2dqaXDQkJIS0tDYC0tDRCQ02XMtrZ2aHVasnJycHX1/eSfS5evJjFixcDkJWVZcnyxY1kXrNhB2AE71vBo5OMaxCiHrPYb+eaNWvw9/enW7duN3S/06ZNY//+/ezfvx8/P78bum9hIZUFcH4V5GwFR18IHgfaLhIOQtRzFjuD2LFjB6tXr2bdunWUl5dTWFjI9OnTyc/PR6/XY2dnR2pqKsHBpksZg4ODSUlJISQkBL1eT0FBAT4+PpYqT9QFZYCCQ5C/D9CATxS4d5A1G4RoICz2J9zrr79OamoqSUlJfPPNNwwYMICvvvqK/v37s3z5cgBiYmIYMWIEAMOHDycmJgaA5cuXM2DAALnKqCErS4a0ZZC3C5ybQ8h48LhJwkGIBqTOrydcsGAB48aN41//+hddunRhypQpAEyZMoUJEyYQGRmJt7c333zzTV2XJm4EfTHk/g4lCaYBbwF3g0uYtasSQlyDOgmIqKgooqKiAGjRogV79+697DlOTk58//33dVGOsARlgILDF5qTjODZy9TPIGMahGiw5LdXXL+yFNNaDZV54BIB3reDvYe1qxJCXCcJCHHt9MWmy1ZL4sHOAwKGgUu4tasSQtwgEhDi6imDaSruvD+bk3qa5lCS5iQhGhX5jRZXpyz1QnNSrulswft204hoIUSjIwEhauey5qShpv4GIUSjJQEhqmfQmZqTCg5iak7qAfn0OmAAAA8ySURBVNpu0pwkRBMgv+Xiyv4MhsJDYKwAlxam+ZOkOUmIJkMCQlzKqDONZyg8bPrepYXprMFR5r0SoqmRgBAmRh0UHLlwxiDBIISQgBCXBUOE6bJVCQYhmjwJiKbKWHGhKeniYOgBjv7WrkwIUU9IQDQ1xgooPGK6KkmCQQhRDQmIpsJQBkXHLwqG8AtNSRIMQogrk4BorAxlUJ4GZWmmfytzTfdLMAghakkCorH4MxD+DIU/A0FjD05B4NbGtC6Dg2/1+xFCiAskIBoqQxmUn7soEHJM92vs/hcITsGmq5E0ttatVQjRIElANCTl50wrtV0xEFpdCAR/CQQhxA0hAdEQGCsgdyf8f3t3HxRV2fcB/Luy4F2igAJCu/ogsMiy7CKuJmhTDziiJWEiGUwKmQ2VNoyWStP4ZM2YNGWjzfjoZKGhZTg5Uzg5Y6ugjiGoITjzQGro7i1v4rLsioLs6+/+Yx/2vi3e3RfE3+c/j7vX97rgsL895zrnOnf/z14QxnJBYIy5HheIke5+E9BWClg6gAkzgIA5wBhvT/eKMfYY4AIxUtksgL7CviaScAIQmg784ylP94ox9hjhAjESdd8C2k4CZgMwXg5MTATG+Hi6V4yxxwwXiJGErID+AnDnEuDlC4QsAZ6Y4uleMcYeU1wgRgqjFtCetF+d5BsDTHqGjxoYYx7FBcLTyAoYqgDD74DXP4DJqfa7nRljzMO4QHiSSWc/ajBpgXFRwKRn7UWCMcZGAC4QnkA2+6J5+vPAmLFA8PPAuAhP94oxxh7ABcLdzHpAWwoYbwFPRgCB/w14PeHpXjHG2N9wgXAHyz2g6wbQed2+XMYYHyAoBRgnAQQCT/eOMcZ6xQXCVcwd/18U6u1HCwDgHQD4K+33NgjHebZ/jDE2AJcViO7ubjz77LMwGo2wWCzIyMjAxx9/DLVajczMTOh0OiiVShw8eBA+Pj4wGo3Izs5GVVUVJk2ahMOHDyMsLMxV3XMNs8F+lNB5HTDdtm/zCQT859jnGHwmerZ/jDE2BGNc1fDYsWNRVlaGy5cvo6amBsePH0dlZSXy8/Oxfv161NfXIyAgAIWFhQCAwsJCBAQEoL6+HuvXr0d+fr6ruuZcpnZAfxFoKgYav7MvjwEAAXMB8QpAlAkEzObiwBh75LisQAgEAvj6+gIAzGYzzGYzBAIBysrKkJGRAQDIycnBzz//DAAoKSlBTk4OACAjIwOlpaUgIld1b/iI4Ke/Yr8CqfF7oOkQYDhvfzDPxGeAKTmAaDngPxPw9vd0bxljbNhcOgdhtVqhVCpRX1+PtWvXIiIiAv7+/hAK7bFisRhNTU0AgKamJkyZYl9WQigUws/PDzqdDoGBnn8Cmo9Rj+CWcky+VY7gW+V44v5tAAL74nkTFMCT4TynwBgbdVxaILy8vFBTUwODwYClS5fiypUrD93m3r17sXfvXgCAVqt96PZ6I7CaMFF3GZNbfsPkW+Xwb6+FAASjjx9uh8zD7ZB5UN66wZenMsZGNbdcxeTv74+kpCRUVFTAYDDAYrFAKBSisbERIpEIACASidDQ0ACxWAyLxYI7d+5g0qRJf2srNzcXubm5AIBZs2Y5rY/j7v7TfoTQ8huCWivhbemCTeCF9sAZqJPn4XboPOgDZMAY+8N5lNpdTstmjLGRyGUFQqvVwtvbG/7+/rh//z5OnDiB/Px8JCUl4ciRI8jMzERRURGWLFkCAEhLS0NRURESExNx5MgRJCcnQ+DCewSEprsIun0ek1t+Q/CtcvjeawAAdI4ToyEsDa2hz0AbPAcWn/Eu6wNjjI1kLisQLS0tyMnJgdVqhc1mw/Lly5GamoqYmBhkZmZi8+bNiI+Px+rVqwEAq1evxsqVKxEZGYmJEyeiuLjYVV0DKv4Xqar/wRiywix8EtrJCaif/hpaQ59B5/j/cl0uY4w9QgQ0Ii8VGpzAwMBh3yuh1WoRFBTk3A6N8Gwe8+jP9WQ2j/nRydZoNGhraxv4hfSYUiqVj102j3n053oym8c8+rJddh8EY4yxRxsXCMYYY73y+uijjz7ydCc8RalUPnbZPObRn+vJbB7z6Mp+pCepGWOMuQ6fYmKMMdYrLhCMMcZ6NaoKxOuvv47g4GDExsY6tl2+fBmJiYmQy+V48cUX0dHRAQAwmUxYtWoV5HI54uLicPr0acd7fvjhB8jlcigUCixatGjA64UbGhqQlJSEmJgYyGQyfPnllwCA9vZ2LFiwABKJBAsWLIBerwcAEBHy8vIQGRkJhUKBS5cuOdoqKiqCRCKBRCJBUVGRW3JramqQmJgImUwGhUKBw4cPD/izduaYAaCjowNisRjvvPOO23Jv3ryJlJQUSKVSxMTEQKPRuC1706ZNkMlkkEqlyMvL63fl4qHmXrlyBYmJiRg7diy2b9/+QFvHjx/H9OnTERkZiU8//dSp4+0rt6923JHdw2q1Ij4+HqmpqW7LNRgMyMjIQHR0NKRSKSoqKtyWvWPHDshkMsTGxiIrKwvd3d39ZvfJ5RfSutGZM2eoqqqKZDKZY9usWbPo9OnTRERUWFhImzdvJiKiXbt20WuvvUZERK2trTRz5kyyWq1kNpspKCiItFotERFt3LiRtmzZ0m9uc3MzVVVVERFRR0cHSSQSqq2tpY0bN1JBQQERERUUFNCmTZuIiOjYsWO0aNEistlsVFFRQU8//TQREel0Opo2bRrpdDpqb2+nadOmUXt7u8tzr169SteuXSMioqamJgoJCSG9Xu+WMffIy8ujrKwsWrt2rdtyn3vuOVKpVEREdPfuXers7HRLdnl5Oc2dO5csFgtZLBZKSEigU6dOOS23tbWVLly4QB988AF9/vnnjnYsFguFh4fT9evXyWg0kkKhoNraWpfn9tWOM3/WfWX3+OKLLygrK4sWL17sttzs7Gz6+uuviYjIaDQ6/W+qr+zGxkYKCwujrq4uIiJ6+eWXaf/+/f1m92VUFQgiIrVa/UCBmDBhAtlsNiIiunnzJkmlUiIiWrNmDR04cMDxuuTkZDp//jyZTCYKDAwkjUZDNpuN3nzzTfrqq6+G1Ie0tDRSqVQUFRVFzc3NRGT/5UdFRRERUW5uLh06dMjx+p7XHTp0iHJzcx3b//o6V+X+lUKhcBQMd2T//vvv9Morr9D+/fsHLBDOyq2traV58+YNKctZ2efOnaOZM2dSV1cXdXZ2klKppLq6Oqfl9tiyZcsDHxznzp2jlJQUx7+3bdtG27Ztc3luX+0MxcNkNzQ0UHJyMpWWlg5YIJyVazAYKCwszPHZMxzDzW5sbCSxWEw6nY7MZjMtXryYfv3112H1YVSdYuqNTCZDSUkJAODHH39EQ4N9Ub64uDgcPXoUFosFarUaVVVVaGhogLe3N/bs2QO5XI6nnnoKdXV1jvWiBkOj0aC6uhpz5sxBa2srQkNDAQAhISFobW0F8OCzL4B/Pxejr+2uzv1PFy5cgMlkQkREhFvGbLPZ8N577/V6WsCVudeuXYO/vz/S09MRHx+PjRs3wmq1uiU7MTERSUlJCA0NRWhoKBYuXAipVOq03L64ev8aajvDec9wstetW4fPPvsMY8YM7ePuYXLVajWCgoKwatUqxMfH44033kBnZ6dbskUiETZs2ICpU6ciNDQUfn5+SElJGXT2fxr1BWLfvn3YvXs3lEol7t69Cx8fHwD2+QqxWIxZs2Zh3bp1mDt3Lry8vGA2m7Fnzx5UV1ejubkZCoUCBQUFg8q6d+8eli1bhp07d2LChAkP/J9AIHDZ6rTOym1pacHKlSuxf//+Qf8xPWz27t278cILL0AsFg8qz1m5FosFZ8+exfbt23Hx4kXcuHED3377rVuy6+vr8ccff6CxsRFNTU0oKyvD2bNnXZ47XM7K7a8dV2X/8ssvCA4OHvL9As7Yvy5duoS3334b1dXVGDdu3IBzPs7K1uv1KCkpgVqtRnNzMzo7O/Hdd98NKvuvRn2BiI6OhkqlQlVVFbKyshzfjIVCIXbs2IGamhqUlJTAYDAgKioKNTU1AICIiAgIBAIsX74c586dGzDHbDZj2bJlePXVV5Geng4AmDx5MlpaWgDYP3yDg4MB/PvZFz16novR13ZX5wL2SeLFixfjk08+QUJCwoDjdVZ2RUUFdu3ahbCwMGzYsAEHDhzA+++/7/JcsViMGTNmIDw8HEKhEC+99NLfJs5dlf3TTz8hISEBvr6+8PX1xfPPPz/gBOZQcvvi6v1rqO0M5z1DzS4vL8fRo0cRFhaGzMxMlJWVYcWKFS7PFYvFEIvFjiOljIwMp+9ffTl58iSmTZuGoKAgeHt7Iz09fVCfYb0Z9QXi9u3bAACbzYatW7firbfeAgB0dXU5DvlOnDgBoVCImJgYiEQi1NXVOZ5Wd+LEiQEP/4kIq1evhlQqxbvvvuvY3vOMCwB/e/bFgQMHQESorKyEn5+f41SDSqWCXq+HXq+HSqXCwoULXZ5rMpmwdOlSZGdnO54XPhBnZX///fe4efMmNBoNtm/fjuzs7H6/aTkrd/bs2TAYDI7fc1lZGWJiYtwy5qlTp+LMmTOwWCwwm804c+ZMv/vYUHP7Mnv2bPz5559Qq9UwmUwoLi5GWlqay3P7amc47xlqdkFBARobG6HRaFBcXIzk5OR+v007KzckJARTpkzB1atXAQClpaVO37/6MnXqVFRWVqKrqwtEhNLS0kGfwuytU6NGZmYmhYSEkFAoJJFIRN988w3t3LmTJBIJSSQSys/Pd0waqdVqioqKoujoaJo/fz5pNBpHO3v27KHo6GiSy+WUmppKbW1t/eaePXuWAJBcLqe4uDiKi4ujY8eOUVtbGyUnJ1NkZCTNnz+fdDodERHZbDZas2YNhYeHU2xsLF28eNHRVmFhIUVERFBERATt27fPLbkHDx4koVDoaCMuLo6qq6vdNuYeg5mkdmauSqUiuVxOsbGxlJOTQ0aj0S3ZFouFcnNzKTo6mqRSKa1fv96puS0tLSQSiWj8+PHk5+dHIpGI7ty5Q0T2K6skEgmFh4fT1q1b3ZLbVzvuGnOPU6dODThJ7czc6upqUiqVJJfLacmSJf1ekejs7A8//JCmT59OMpmMVqxYQd3d3f1m94WX2mCMMdarUX+KiTHG2PBwgWCMMdYrLhCMMcZ6xQWCMcZYr7hAMMYY6xUXCMYYY73iAsEYY6xX/wJWihGYdBej2AAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig=plt.figure(facecolor='white')\n",
" \n",
"ax=fig.gca()\n",
"\n",
"terms = ((1998, 1999, 'N'), (1999, 2008, 'L'), (2008, 2017,'N'),(2017,2018,'L'))\n",
"\n",
"ymin = min(dfav['Average'].min(), dfav['Median'].min())\n",
"ymax = max(dfav['Average'].max(), dfav['Median'].max())\n",
"ax.set_ylim(ymin, ymax)\n",
"\n",
"colours = {'N':'lightblue','L':'lightsalmon'}\n",
"\n",
"for d1,d2,govt in terms:\n",
" ax.fill((d1,d2,d2,d1) , (ymin, ymin, ymax, ymax),color=colours[govt])\n",
"ax.plot(dfav.index, dfav)\n",
"ax.set_ylabel('Weekly Earnings $')\n",
"ax.set_xticks(dfav.index[::2])\n",
"ax.legend(['Average','Median'])\n",
"ax.set_title('Resident Government and Earnings')\n"
]
},
{
"cell_type": "code",
"execution_count": 163,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Average \n",
" Median \n",
" \n",
" \n",
" Year \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1998 \n",
" 413.0 \n",
" 289.0 \n",
" \n",
" \n",
" 1999 \n",
" 429.0 \n",
" 300.0 \n",
" \n",
" \n",
" 2000 \n",
" 436.0 \n",
" 313.0 \n",
" \n",
" \n",
" 2001 \n",
" 462.0 \n",
" 340.0 \n",
" \n",
" \n",
" 2002 \n",
" 483.0 \n",
" 350.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Average Median\n",
"Year \n",
"1998 413.0 289.0\n",
"1999 429.0 300.0\n",
"2000 436.0 313.0\n",
"2001 462.0 340.0\n",
"2002 483.0 350.0"
]
},
"execution_count": 163,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfav.head()"
]
},
{
"cell_type": "code",
"execution_count": 131,
"metadata": {},
"outputs": [],
"source": [
"dfav['Average'] = df01['Value'].values"
]
},
{
"cell_type": "code",
"execution_count": 132,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" Average \n",
" \n",
" \n",
" Year \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 1998 \n",
" 413.0 \n",
" \n",
" \n",
" 1999 \n",
" 429.0 \n",
" \n",
" \n",
" 2000 \n",
" 436.0 \n",
" \n",
" \n",
" 2001 \n",
" 462.0 \n",
" \n",
" \n",
" 2002 \n",
" 483.0 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" Average\n",
"Year \n",
"1998 413.0\n",
"1999 429.0\n",
"2000 436.0\n",
"2001 462.0\n",
"2002 483.0"
]
},
"execution_count": 132,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dfav.head()"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "No group keys passed!",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mpd\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpivot_table\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdfav\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Value'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m~/venvs/scipy/lib/python3.6/site-packages/pandas/core/reshape/pivot.py\u001b[0m in \u001b[0;36mpivot_table\u001b[0;34m(data, values, index, columns, aggfunc, fill_value, margins, dropna, margins_name)\u001b[0m\n\u001b[1;32m 80\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 81\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 82\u001b[0;31m \u001b[0mgrouped\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkeys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mobserved\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdropna\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 83\u001b[0m \u001b[0magged\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgrouped\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0magg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maggfunc\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/venvs/scipy/lib/python3.6/site-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(self, by, axis, level, as_index, sort, group_keys, squeeze, observed, **kwargs)\u001b[0m\n\u001b[1;32m 6657\u001b[0m return groupby(self, by=by, axis=axis, level=level, as_index=as_index,\n\u001b[1;32m 6658\u001b[0m \u001b[0msort\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msort\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgroup_keys\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mgroup_keys\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msqueeze\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msqueeze\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6659\u001b[0;31m observed=observed, **kwargs)\n\u001b[0m\u001b[1;32m 6660\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6661\u001b[0m def asfreq(self, freq, method=None, how=None, normalize=False,\n",
"\u001b[0;32m~/venvs/scipy/lib/python3.6/site-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36mgroupby\u001b[0;34m(obj, by, **kwds)\u001b[0m\n\u001b[1;32m 2150\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'invalid type: %s'\u001b[0m \u001b[0;34m%\u001b[0m \u001b[0mtype\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2151\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2152\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mklass\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mobj\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mby\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2153\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2154\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/venvs/scipy/lib/python3.6/site-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, obj, keys, axis, level, grouper, exclusions, selection, as_index, sort, group_keys, squeeze, observed, **kwargs)\u001b[0m\n\u001b[1;32m 597\u001b[0m \u001b[0msort\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0msort\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 598\u001b[0m \u001b[0mobserved\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mobserved\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 599\u001b[0;31m mutated=self.mutated)\n\u001b[0m\u001b[1;32m 600\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 601\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m~/venvs/scipy/lib/python3.6/site-packages/pandas/core/groupby/groupby.py\u001b[0m in \u001b[0;36m_get_grouper\u001b[0;34m(obj, key, axis, level, sort, observed, mutated, validate)\u001b[0m\n\u001b[1;32m 3318\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3319\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mgroupings\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0;36m0\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3320\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'No group keys passed!'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3321\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3322\u001b[0m \u001b[0;31m# create the internals grouper\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: No group keys passed!"
]
}
],
"source": [
"pd.pivot_table(dfav,values='Value')"
]
},
{
"cell_type": "code",
"execution_count": 87,
"metadata": {
"scrolled": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"-0.9447374056292628\n",
"(-0.05500000000000001, 0.05500000000000001) (-0.05500000000000001, 0.05500000000000001) [numpy.datetime64('2013-01-01'), numpy.datetime64('2013-02-01'), numpy.datetime64('2013-03-01'), numpy.datetime64('2013-04-01'), numpy.datetime64('2013-05-01')]\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAD8CAYAAAC2PJlnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAEqxJREFUeJzt3X+QXWd93/H3B8mCJsZgR0JWLW/kaUSDShhDbxQoodBYTkTaWm7SpvakrWgg6kzGnWQSOqOOp57EkKmBkuZHPWlVaKswTRzj/LAyKBWyaoa0tV2tsSFIwpaipliObCkOJHg8xDF8+8celevlSms/90j3CL1fM3fu+fGc832eZ1b72XPOXm2qCkmSWrxk1h2QJJ2/DBFJUjNDRJLUzBCRJDUzRCRJzQwRSVKzXkIkyeYkjyQ5kmT7hP1zSe5N8lCSzyT5/j7qSpJmK9N+TiTJMuBR4FrgGLAfuLGqDo612QE8VFW/nGQDsLuq1k1VWJI0c31ciWwEjlTV0ap6FrgD2LKoTQGXdMuvAP6oh7qSpBlb3sM5rgAeG1s/BnzXojY/DXw8yT8HvhnYtNRJV65cWevWreuhe5J04XjwwQf/uKpWnat6fYTIC3Ej8F+q6oNJ3gR8JMlrq+qr442SbAO2AczNzTE/P3+OuidJ3xiS/N9zWa+P21mPA1eOra/tto17J3AnQFXdB7wMWLn4RFW1o6pGVTVateqcBakkqVEfIbIfWJ/kqiQrgBuAXYvafB64BiDJa1gIkZM91JYkzdDUIVJVzwE3AXuAQ8CdVXUgya1Jruua/RTwo0k+Dfwa8I7yvw+WpPNeL89Eqmo3sHvRtlvGlg8Cb+6jliRpOPzEuiSpmSEiSWpmiEiSmhkikqRmhogkqZkhIklqZohIkpoZIpKkZoaIJKmZISJJamaISJKaGSKSpGaGiCSpmSEiSWpmiEiSmhkikqRmvYRIks1JHklyJMn207T5oSQHkxxI8qt91JUkzdbUf9kwyTLgduBa4BiwP8mu7q8ZnmqzHviXwJur6gtJXjVtXUnS7PVxJbIROFJVR6vqWeAOYMuiNj8K3F5VXwCoqhM91JUkzVgfIXIF8NjY+rFu27hXA69O8j+T3J9kcw91JUkzNvXtrBdRZz3wNmAt8Mkk31FVXxxvlGQbsA1gbm7uHHVNktSqjyuRx4Erx9bXdtvGHQN2VdVfVNX/AR5lIVSep6p2VNWoqkarVq3qoWuSpLOpjxDZD6xPclWSFcANwK5FbX6bhasQkqxk4fbW0R5qS5JmaOoQqarngJuAPcAh4M6qOpDk1iTXdc32AE8lOQjcC/yLqnpq2tqSpNlKVc26DxONRqOan5+fdTck6byS5MGqGp2ren5iXZLUzBCRJDUzRCRJzQwRSVIzQ0SS1MwQkSQ1M0QkSc0MEUlSM0NEktTMEJEkNTNEJEnNDBFJUjNDRJLUzBCRJDUzRCRJzQwRSVKzXkIkyeYkjyQ5kmT7Gdr9YJJKcs7+YIok6eyZOkSSLANuB94ObABuTLJhQruXAz8OPDBtTUnSMPRxJbIROFJVR6vqWeAOYMuEdu8B3gd8uYeakqQB6CNErgAeG1s/1m37/5K8Abiyqj7WQz1J0kCc9QfrSV4C/BzwUy+g7bYk80nmT548eba7JkmaUh8h8jhw5dj62m7bKS8HXgt8IskfAm8Edk16uF5VO6pqVFWjVatW9dA1SdLZ1EeI7AfWJ7kqyQrgBmDXqZ1V9adVtbKq1lXVOuB+4Lqqmu+htiRphqYOkap6DrgJ2AMcAu6sqgNJbk1y3bTnlyQN1/I+TlJVu4Hdi7bdcpq2b+ujpiRp9vzEuiSpmSEiSWpmiEiSmhkikqRmhogkqZkhIklqZohIkpoZIpKkZoaIJKmZISJJamaISJKaGSKSpGaGiCSpmSEiSWpmiEiSmhkikqRmvYRIks1JHklyJMn2Cft/MsnBJJ9Jsi/Jt/ZRV5I0W1OHSJJlwO3A24ENwI1JNixq9hAwqqrXAXcB75+2riRp9vq4EtkIHKmqo1X1LHAHsGW8QVXdW1XPdKv3A2t7qCtJmrE+QuQK4LGx9WPdttN5J/C7PdSVJM3Y8nNZLMk/AkbAW0+zfxuwDWBubu4c9kyS1KKPK5HHgSvH1td2254nySbgZuC6qvrzSSeqqh1VNaqq0apVq3romiTpbOojRPYD65NclWQFcAOwa7xBktcD/4GFADnRQ01J0gBMHSJV9RxwE7AHOATcWVUHktya5Lqu2QeAi4GPJnk4ya7TnE6SdB7p5ZlIVe0Gdi/adsvY8qY+6kiShsVPrEuSmhkikqRmhogkqZkhIklqZohIkpoZIpKkZoaIJKmZISJJamaISJKaGSKSpGaGiCSpmSEiSWpmiEiSmhkikqRmhogkqZkhIklq1kuIJNmc5JEkR5Jsn7D/pUl+vdv/QJJ1fdSVJM3W1CGSZBlwO/B2YANwY5INi5q9E/hCVX0b8G+B901bV5I0e31ciWwEjlTV0ap6FrgD2LKozRZgZ7d8F3BNkvRQW5I0Q32EyBXAY2Prx7ptE9tU1XPAnwLfsvhESbYlmU8yf/LkyR66Jkk6mwb1YL2qdlTVqKpGq1atmnV3JElL6CNEHgeuHFtf222b2CbJcuAVwFM91JYkzVAfIbIfWJ/kqiQrgBuAXYva7AK2dst/H/jvVVU91JYkzdDyaU9QVc8luQnYAywD/lNVHUhyKzBfVbuADwMfSXIE+BMWgkaSdJ6bOkQAqmo3sHvRtlvGlr8M/IM+akmShmNQD9YlSecXQ0SS1MwQkSQ1M0QkSc0MEUlSM0NEktTMEJEkNTNEJEnNDBFJUjNDRJLUzBCRJDUzRCRJzQwRSVIzQ0SS1MwQkSQ1M0QkSc2mCpEklyXZm+Rw937phDZXJ7kvyYEkn0nyD6epKUkajmmvRLYD+6pqPbCvW1/sGeCfVNVfAzYDP5/klVPWlSQNwLQhsgXY2S3vBK5f3KCqHq2qw93yHwEngFVT1pUkDcC0IbK6qo53y08Aq8/UOMlGYAXwB6fZvy3JfJL5kydPTtk1SdLZtnypBknuAS6fsOvm8ZWqqiR1hvOsAT4CbK2qr05qU1U7gB0Ao9HotOeSJA3DkiFSVZtOty/Jk0nWVNXxLiROnKbdJcDHgJur6v7m3kqSBmXa21m7gK3d8lbg7sUNkqwAfgv4laq6a8p6kqQBmTZEbgOuTXIY2NStk2SU5ENdmx8C/ibwjiQPd6+rp6wrSRqAVA3z0cNoNKr5+flZd0OSzitJHqyq0bmq5yfWJUnNDBFJUjNDRJLUzBCRJDUzRCRJzQwRSVIzQ0SS1MwQkSQ1M0QkSc0MEUlSM0NEktTMEJEkNTNEJEnNDBFJUjNDRJLUbKoQSXJZkr1JDnfvl56h7SVJjiX5d9PUlCQNx7RXItuBfVW1HtjXrZ/Oe4BPTllPkjQg04bIFmBnt7wTuH5SoyR/HVgNfHzKepKkAZk2RFZX1fFu+QkWguJ5krwE+CDw7ilrSZIGZvlSDZLcA1w+YdfN4ytVVUkm/cH2HwN2V9WxJEvV2gZsA5ibm1uqa5KkGVsyRKpq0+n2JXkyyZqqOp5kDXBiQrM3AW9J8mPAxcCKJE9X1dc9P6mqHcAOgNFoNCmQJEkDsmSILGEXsBW4rXu/e3GDqvrhU8tJ3gGMJgWIJOn8M+0zkduAa5McBjZ16yQZJfnQtJ2TJA1bqoZ512g0GtX8/PysuyFJ55UkD1bV6FzV8xPrkqRmhogkqZkhIklqZohIkpoZIpKkZoaIJKmZISJJamaISJKaGSKSpGaGiCSpmSEiSWpmiEiSmhkikqRmhogkqZkhIklqZohIkppNFSJJLkuyN8nh7v3S07SbS/LxJIeSHEyybpq6kqRhmPZKZDuwr6rWA/u69Ul+BfhAVb0G2AicmLKuJGkApg2RLcDObnkncP3iBkk2AMurai9AVT1dVc9MWVeSNADThsjqqjreLT8BrJ7Q5tXAF5P8ZpKHknwgybIp60qSBmD5Ug2S3ANcPmHXzeMrVVVJ6jQ13gK8Hvg88OvAO4APT6i1DdgGMDc3t1TXJEkztmSIVNWm0+1L8mSSNVV1PMkaJj/rOAY8XFVHu2N+G3gjE0KkqnYAOwBGo9GkQJIkDci0t7N2AVu75a3A3RPa7AdemWRVt/49wMEp60qSBmDaELkNuDbJYWBTt06SUZIPAVTVV4B3A/uS/D4Q4D9OWVeSNABL3s46k6p6CrhmwvZ54F1j63uB101TS5I0PH5iXZLUzBCRJDUzRCRJzQwRSVIzQ0SS1MwQkSQ1M0QkSc0MEUlSM0NEktTMEJEkNTNEJEnNDBFJUjNDRJLUzBCRJDUzRCRJzQwRSVKzqUIkyWVJ9iY53L1fepp2709yIMmhJL+YJNPUlSQNw7RXItuBfVW1HtjXrT9Pkr8BvJmFv2z4WuA7gbdOWVeSNADThsgWYGe3vBO4fkKbAl4GrABeClwEPDllXUnSAEwbIqur6ni3/ASwenGDqroPuBc43r32VNWhKetKkgZg+VINktwDXD5h183jK1VVSWrC8d8GvAZY223am+QtVfV7E9puA7YBzM3NLd17SdJMLRkiVbXpdPuSPJlkTVUdT7IGODGh2d8D7q+qp7tjfhd4E/B1IVJVO4AdAKPR6OsCSZI0LNPeztoFbO2WtwJ3T2jzeeCtSZYnuYiFh+rezpKkbwDThshtwLVJDgObunWSjJJ8qGtzF/AHwO8DnwY+XVW/M2VdSdIALHk760yq6ingmgnb54F3dctfAf7ZNHUkScPkJ9YlSc0MEUlSM0NEktTMEJEkNTNEJEnNDBFJUjNDRJLUzBCRJDUzRCRJzQwRSVIzQ0SS1MwQkSQ1M0QkSc1SNcy//ZTkS8Ajs+7HwKwE/njWnZiBC3XcZ+KcfI1z8Xx/tapefq6KTfVfwZ9lj1TVaNadGJIk8xfinFyo4z4T5+RrnIvnSzJ/Lut5O0uS1MwQkSQ1G3KI7Jh1BwboQp2TC3XcZ+KcfI1z8XzndD4G+2BdkjR8Q74SkSQNXG8hkuTKJPcmOZjkQJIf77ZflmRvksPd+6Xd9m9Pcl+SP0/y7rHzvCzJ/07y6e48P3OGmlu78x5OsnVs+88meSzJ032Nr8VQ5iTJNyX5WJLPdcffdiGMu9v+38aO//dJlp3NsZ+hf4OZk7H9u5J89myM90yGNBdJPpHkkSQPd69Xnc2xn6ZvQ5qPFUl2JHm0+37xg0sOoKp6eQFrgDd0yy8HHgU2AO8HtnfbtwPv65ZfBXwn8LPAu8fOE+Dibvki4AHgjRPqXQYc7d4v7ZYv7fa9sevP032N73yeE+CbgL/VtVkB/B7w9m/0cXf7Lhk7128AN1zIXwtj+38A+FXgsxfyXACfAEaz+JoY6Hz8DPDebvklwMql+t/blUhVHa+qT3XLXwIOAVcAW4CdXbOdwPVdmxNVtR/4i0Xnqao6dQVxUfea9ODm+4C9VfUnVfUFYC+wuTvH/VV1vK+xtRrKnFTVM1V1b3euZ4FPAWv7G+nzDWXc3Tn+rGuznIUAnclDwCHNSZKLgZ8E3tvfCF+4Ic3FEAxsPn4E+Nfd+b5aVUt+iPOsPBNJsg54PQtJuHrsG/oTwOoXcPyyJA8DJ1gY7AMTml0BPDa2fqzbNkhDmZMkrwT+LrDvRQ6hyRDGnWRPd/yXgLte/Cj6NYA5eQ/wQeCZlv73aQBzAfCfu1tZ/ypJXvwo+jPL+ei+NwC8J8mnknw0yZI1ew+R7qec3wB+YuynQGAhKXkBPwlW1Veq6moWflremOS1fffzXBrKnCRZDvwa8ItVdfTFHt9QbxDjrqrvY+GWwUuB73mxx/dp1nOS5Grgr1TVb724nvdv1nPR+eGq+g7gLd3rH7/I43szgPlY3h33v6rqDcB9wL9Z6qBeQyTJRSxMwn+tqt/sNj+ZZE23fw0LCfmCVNUXgXuBzUm+a+zh13XA48CVY83XdtsGZWBzsgM4XFU/3z6iF2Zg46aqvgzczcItgpkYyJy8CRgl+UPgfwCvTvKJ6Ub24g1kLqiqU+9fYuEZ0cbpRtZmIPPxFAtXp6fqfxR4w1K1+vztrAAfBg5V1c+N7doFnHr6v5WFf8hnOs+qU5dVSf4ScC3wuap6oKqu7l67gD3A9ya5tPuthe/ttg3GkOYkyXuBVwA/0d8IT9vfQYw7ycVj/wiXA38b+Fx/I33hhjInVfXLVfWXq2od8N3Ao1X1tv5GurShzEWS5UlWdsdfBPwdYBa/rTaI+eiudn4HeFt3ymuAg0sOoPr7DYPvZuFy6zPAw93r+4FvYeH++2HgHuCyrv3lLNyL+zPgi93yJcDrgIe683wWuOUMNX8EONK9/unY9vd35/tq9/7TfY3zfJwTFn7SKBYe2J3qx7sugHGvBvaPHf9LwPIL+Wth0f51zOa3swYxF8A3Aw92xx8AfgFYdqHOR7f9W4FPdufYB8wt1X8/sS5JauYn1iVJzQwRSVIzQ0SS1MwQkSQ1M0QkSc0MEUlSM0NEktTMEJEkNft/DUfuUCmJK98AAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from matplotlib.dates import date2num\n",
"x = [np.datetime64('2013-%02d-01' % d) for d in range(1,len(df1['A']+1))]\n",
"print(df1['A'].min())\n",
"fig=plt.figure()\n",
"ax=fig.gca()\n",
"ax.plot( x=x,y=df1['A'], fmt='ro')\n",
"ax.plot( x=date2num(datetime(2013,3,1)),y=0, fmt='ro')\n",
"print (ax.get_ylim(), ax.get_xlim(), x)\n",
"xl = ax.get_xlim()\n",
"yl = ax.get_ylim()\n",
"\n",
"#ax.fill((2,3,3,2) , (yl[0], yl[0], yl[1], yl[1]),'r')\n",
"ax.set_xlim(np.datetime64('2013-01-01'), np.datetime64('2013-06-01'))\n",
"ax.set_ylim(df1['A'].min(),df1['A'].max())\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0.5,1,'B')"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtMAAAIvCAYAAAC2pFdTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3Xl8VPW9//HXJwlJIOwkYUkIYQkgKCKEza0uoKgtuFTcequ99kc3Wqu299re++ttvbf9dbnVunWxrdW2KoIrVqwLat3Ywio7YU1YE/YtkOXz+2NGm9KEJZnMmeX9fDzmwcyZkznvQ2DyzpnvOV9zd0RERERE5PSlBB1ARERERCReqUyLiIiIiDSRyrSIiIiISBOpTIuIiIiINJHKtIiIiIhIE6lMi4iIiIg0kcq0iIiIiEgTqUxLUjKzd8xsj5llBJ1FRERE4pfKtCQdMysELgAcmBBoGBEREYlrKtOSjD4PzAEeB24NNoqIiIjEM9N04pJszKwUuA+YS6hU57v7jmBTiYiISDzSkWlJKmZ2PtALmObuC4B1wM3BphIREZF4pTItyeZW4HV3rww/fgoN9RAREZEm0jAPSRpm1hrYDqQCB8OLM4COwFB3XxJUNhEREYlPOjItyeRqoBYYBAwN384A3iN0UqKIiIjIadGRaUkaZvZXYLm7333c8knAg4RORKwJJJyIiIjEJZVpEREREZEm0jAPEREREZEmUpkWEUkyZvaYme00s2WNPG9m9qCZlZrZUjMbFu2MIiLxQmVaRCT5PA6MP8HzVwBF4dtk4FdRyCQiEpdUpkVEkoy7vwvsPsEqE4E/esgcoKOZdY9OOhGR+JIWdIATyc7O9sLCwqBjiIictgULFlS6e07QOZooDyir97g8vGzb8Sua2WRCR6/JysoaPnDgwKgEFBGJpOa8Z8d0mS4sLKSkpCToGCIip83MNgWdIRrc/VHgUYDi4mLXe7aIxKPmvGdrmIeIiBxvC9Cz3uP88DIRETmOyrSIiBxvBvD58FU9RgP73P2fhniIiEiMD/MQEZHIM7OngYuAbDMrB/4LaAXg7r8GZgJXAqXAYeALwSQVEYl9KtMiIknG3W86yfMOfC1KcURE4pqGeYiIiIiINJHKtIiIiIhIE6lMi4g04sixWtZVHAw6hoiIxDCVaRGRBqzdcYCJj7zPrY/N42hNbdBxREQkRukERBGR40wvKeN7Ly2nTXoq998wlIy01KAjiYhIjFKZFhEJO3S0hv/70jKeX7iFMX268MCNQ8ltnxl0LBERiWEq0yIiwMpt+5ny1ELWVx7im2OL+PolRaSmWNCxREQkxqlMi0hSc3eenlfGD15eTofWrXjyi6M4t2920LFERCROqEyLSNI6UFXNd57/iL8s3cYFRdncf8NQsttmBB1LRETiiMq0iCSlZVv28bWnFlK+5wj/Nn4AX76wLyka1iEiIqdJZVpEkoq788SHG/nRzFV0aZvO1MmjGVHYOehYIiISp1SmRSRp7Dtczb89t4TXlu/g0oG5/O/1Z9MpKz3oWCIiEsdUpkUkKSzavIevP72I7fuq+M+rzuD283tjpmEdIiLSPCrTIpLQ6uqc37+/gZ/8dRXdOmTy7FfOZWjPjkHHEhGRBKEyLSIJa8+hY9w9fQlvrdrJ+MHd+Mlnh9ChdaugY4mISAJRmRaRhDR/426+8fQidh08xg8mDObzY3ppWIeIiEScyrSIJJS6OudXf1vHfW+sIb9Ta57/6rmcmdch6FgiIpKgVKZFJGFUHjzKnc8s5r21lXzm7B786JozaZepYR0iItJyVKZFJCF8uK6SO6YuZv+Rav7ftWdx44ieGtYhIiItTmVaROJabZ3z4Ky1PPjWWvpkZ/Gn20cysFv7oGOJiEiSUJkWkbi1Y38Vd0xdxJz1u7l2WB7/PfFMsjL0tiYiItGTEokXMbPxZrbazErN7J4Gnr/NzCrMbHH49sVIbFdEkte7ayq48oH3WFK2j/+9/mzumzRURVpERKKu2T95zCwVeAQYB5QD881shruvOG7VZ9x9SnO3JyLJraa2jvveWMMv31nHgK7tePjmcyjq2i7oWCIikqQicRhnJFDq7usBzGwqMBE4vkyLiDTL1r1H+MbTiyjZtIebRvbke58eTOv01KBjiYhIEotEmc4Dyuo9LgdGNbDedWZ2IbAGuNPdyxpYR0SkQbNW7uDu6UuorqnjgRuHMnFoXtCRREREIjNm+hS8DBS6+xDgDeCJxlY0s8lmVmJmJRUVFVGKJyKx6lhNHf/zlxXc/kQJPTq05i/fuEBFWkREYkYkjkxvAXrWe5wfXvYJd99V7+HvgJ829mLu/ijwKEBxcbFHIJ+IxKmy3YeZ8vQilpTt5fNjevHdK88gs5WGdYiISOyIRJmeDxSZWW9CJfpG4Ob6K5hZd3ffFn44AVgZge2KSAL767JtfPvZpQD86pZhXHFW94ATiYiI/LNml2l3rzGzKcBrQCrwmLsvN7N7gRJ3nwF8w8wmADXAbuC25m5XRBLT0ZpafvTKSp6YvYmz8zvw0E3DKOjSJuhYIiIiDYrIRVndfSYw87hl36t3/zvAdyKxLRFJXBsrDzHl6YUs27KfL57fm38bP5D0tGid2iEiInL6NMOBiMSEGUu28t3nPyI1xfjd54sZO6hr0JFEREROSmVaRAJVVV3LD15ewdPzNjO8VycevOkc8jq2DjqWiIjIKdHnpyISmNKdB7n6kQ94et5mvnJRX6ZOHq0iHSVmNt7MVptZqZnd08DzBWb2tpktMrOlZnZlEDlFRGKdjkyLSCCeW1DOf764jDbpqTz+hRFcNCA36EhJw8xSgUeAcYQm2ppvZjPcvf7Mtf8JTHP3X5nZIELnxRRGPayISIxTmRaRqDp8rIbvvbScZxeUM7pPZx648Ry6ts8MOlayGQmUuvt6ADObCkwE6pdpB9qH73cAtkY1oYhInFCZFpGoWbV9P1OeWsS6ioN849Ii7ri0iNQUCzpWMsoDyuo9LgdGHbfO94HXzezrQBYwtqEXMrPJwGSAgoKCiAcVEYl1GjMtIi3O3Zk6bzMTH/6AfUeqefL2Udw1rr+KdGy7CXjc3fOBK4E/mdk//cxw90fdvdjdi3NycqIeUkQkaDoyLSIt6uDRGr77/EfMWLKV8/tlc/8NQ8lplxF0rGS3BehZ73F+eFl9twPjAdx9tpllAtnAzqgkFBGJEyrTItJilm3Zx5SnFrJ592G+ffkAvvKpvqToaHQsmA8UmVlvQiX6RuDm49bZDFwKPG5mZwCZQEVUU4qIxAGVaRGJOHfnz3M28d9/WUnnrHSmTh7DyN6dg44lYe5eY2ZTgNeAVOAxd19uZvcCJe4+A7gb+K2Z3UnoZMTb3N2DSy0iEptUpkUkovYdqeY7zy9l5kfbuXhADj+fNJTOWelBx5LjuPtMQpe7q7/se/XurwDOi3YuEZF4ozItIhGzpGwvU55eyLa9VXz3yoF88fw+GtYhIiIJTWVaRJrN3fn9+xv4yV9Xkdsuk2lfHsOwgk5BxxIREWlxKtMi0ix7Dx/jW9OX8ObKnVw2qCs/++zZdGjTKuhYIiIiUZFQ15letmUfk349m5cWb+FoTW3QcUQSXnVtHdf88kPeXVPJ9z8ziN/8y3AVaRERSSoJdWR696Fj7DhQxR1TF9M5K53ri/O5eWQBvbpkBR1NJCG9tWonGyoP8ctbhnHlWd2DjiMiIhJ1CVWmL+yfw9t3X8QH6yr585xN/O69Dfzmb+u5oCibz43uxaUDc0lLTaiD8SKBml5SRm67DC4b1DXoKCIiIoFIqDINkJJiXFCUwwVFOWzfV8Uz88t4et5mvvSnBXRtn8GNIwq4cWRPundoHXRUkbi2c38Vb6+u4EsX9tEvqSIikrQSrkzX161DJneMLeJrF/flrVU7eXLuZh58ay0Pv13KpQNzuWV0Ly7ol61Ld4k0wXMLt1Bb51xf3PPkK4uIiCSohC7TH0tLTeGywd24bHA3Nu86zFPzNjO9pIzXV+ygoHMbbh5VwPXD8+nSNiPoqCJxwd2ZXlLGyMLO9M7WOQkiIpK8ku6z2YIubbjnioF8+J1LeODGoXTrkMmPX13FmP/3FndMXcS8DbvRjLkiJ7Zg0x7WVx5i0ggdlRYRkeSWFEemG5KRlsrEoXlMHJrH2h0HeHLuZp5bWM5Li7dSlNuWW0YVcO3wfNpn6jJfIsd7Zn4ZWempXHlWt6CjiIiIBCrpjkw3pKhrO74/YTBzv3spP71uCK3TU/n+yysY9cNZ/PuzS1lavjfoiCIx4+DRGl75aBufObsHbdKT9vdxERERIImPTDekTXoak0b0ZNKIniwt38tTczfz0uKtPFNSxpD8DtwyqkAFQpLezKXbOHysViceioiIoDLdqCH5HRmS35HvXnUGLyzcwpNzN/Hvz33E/7yykuuG5XPzqAL6d20XdEyRqHumpIx+uW0ZVtAx6CgiIiKBU5k+ifaZrbj13EI+P6YXJZv28Oc5m3hq7mYe/3AjIws7c8voAsaf2Y2MtNSgo4q0uNKdB1mwaQ/fvXIgZrqkpIiIiMr0KTIzRhR2ZkRhZ7736aM8u6CcJ+du/oepy28Z2YuCLm2CjirSYqYvKCM1xbjmnPygo4iIiMQElekm6NI2gy99qi//54I+vF9ayZNz/z51+YX9c7hlVIGmLpeEU11bx3MLtnDJwFxy2uma7CIiIqAy3SwpKcaF/XO4sH9o6vKp8zczdV4ZX/rTArq1z+TGkT25cUQB3TpkBh1VpNneWV1B5cGj3KATD0VERD6hMh0h3Tpk8s2x/ZlycT9mhacu/8Wba3nordDU5Z8b3YvzNXW5xLFpJWXktMvgogE5QUcRERGJGSrTEZaWmsLlg7tx+eBubNp1KDx1ebmmLpe4tvNAFW+t2skXL+it4UsiIiL1ROSnopmNN7PVZlZqZvc08HyGmT0Tfn6umRVGYruxrleXLL5zxRnM1tTlEudeXLSF2jpnkoZ4iIiI/INmH5k2s1TgEWAcUA7MN7MZ7r6i3mq3A3vcvZ+Z3Qj8BLihuduOF/WnLl+z4wBPzd3McwtCU5f379qWW0b14ppheZq6XGKSu/PM/DKKe3Wib07boOOIiIjElEgcmR4JlLr7enc/BkwFJh63zkTgifD9Z4FLLUkvUtv/46nL/+NSfnLdWWS2SuW/Ziz/ZOryj8r3BR1R5B8s3LyXdRWHdFRaRESkAZEYM50HlNV7XA6Mamwdd68xs31AF6Dy+Bczs8nAZICCgoIIxItNbdLTuGFEATeMKGBp+V6enLOZl5Zs0dTlEnOml5TRJj2VK4d0DzqKiIhIzIm5M4nc/VF3L3b34pyc5LhqwJD8jvzks0OY+92x/GDCYI4cq+Xfn/uIUT+axfdnLGfNjgNBR5QkdehoDS8v2cqnh3SnbYZ+sRMRETleJH46bgHqf/6bH17W0DrlZpYGdAB2RWDbCaVD679PXT5/4x6enFtv6vLenbllVAHjBnXV0WqJmpkfbePQsVoN8RAREWlEJFrZfKDIzHoTKs03Ajcft84M4FZgNvBZ4C3XZSwaZWaM7N2Zkb1DU5dPX1DOU+Gpy9NSjLN7dmRMny6M6duFYQWdaJ2eGnRkSVDTS8rpk53F8F6dgo4iIiISk5pdpsNjoKcArwGpwGPuvtzM7gVK3H0G8HvgT2ZWCuwmVLjlFHRpm8GXP9WXyRf0Yfb6Xby3tpLZ63fxy3dKefjtUtJTUxjasyOj+3ZhdJ/ODCvoRGYrlWtpvvUVB5m3cTf/Pn4gSXq+sIiIyElFZLyAu88EZh637Hv17lcB10diW8kqJcU4r1825/XLBuBAVTUlG/cwe/0uZq/bxcNvreXBWZCelsKwgo6M6ZPN6D6dGVrQkYw0lWs5fdMXlJOaYlw3LC/oKCIiIjFLg2/jVLvMVlw8MJeLB+YCsO9INfM37Gb2+l3MWb+LX8xag78Jma1SGN6rE6N7h4aFDMnvSHpazJ13KjGmpraO5xaUc/GAHHLbZwYdR0REJGapTCeIDq1bMXZQV8YO6grA3sPHmLthN3PCR65//sYaeANat0qluLATo8Njrs/K60ArTQ8tx3l3bQU7Dxzlep14KCIickIq0wmqY5t0Lh/cjcsHdwNg96FjzNsQKtaz1+/iZ6+tBiArPZXiws6M6duF0X26cGaP9qSpXCe9Z+aXkd02nUvCn3yIiIhIw1Smk0TnrHTGn9md8WeGJt6oPHiUuet3M3t9JXPW7+bHr64CoF1GGiN6d2Z0n86M6ZPNoB7tSU3RyWfJpPLgUWat3Mm/nt9bn1okMDMbDzxA6MTx37n7jxtYZxLwfcCBJe5+/JWaRESSnsp0kspum8FVQ7pzVXhWu50HqpizPjQsZM66Xby1aicA7TPTGNk7dKWQMX27cEa39qSoXCe0FxdtoabOuX54ftBRpIWYWSrwCDCO0Ky1881shruvqLdOEfAd4Dx332Nm+phCRKQBKtMCQG67TCac3YMJZ/cAYPu+KuaGh4XMWb+LN1fuAEJjs0f1/vuwkAFd26lcJxB355n5ZZxT0JGiru2CjiMtZyRQ6u7rAcxsKjARWFFvnf8DPOLuewDcfWfUU4qIxAGVaWlQtw6ZTByax8Shocuibd175JOTGeds2MXrK0LlunNW+j+U66LctromcRxbXLaXtTsP8uNrzwo6irSsPKCs3uNyYNRx6/QHMLMPCA0F+b67//X4FzKzycBkgIKCghYJKyISy1Sm5ZT06Niaa4flc+2w0Ef/5XsOh49ah4aGvLpsOwDZbdMZ1SdUrMf06ULfnCyV6zgyraSc1q1SPxn+I0ktDSgCLgLygXfN7Cx331t/JXd/FHgUoLi4WDPbikjSUZmWJsnv1Ibri9twfXFP3J3yPUc+uVLI7HW7eGXpNgBy2mV8UqzH9O1CYZc2Ktcx6sixWl5espUrz+pOu8xWQceRlrUFqH/dw/zwsvrKgbnuXg1sMLM1hMr1/OhEFBGJDyrT0mxmRs/ObejZuQ2TRoTK9aZdhz+ZQGb2ul28vGQrAN3aZ35yMuOYPtn07Nxa5TpGvLpsGweP1nDDCF1bOgnMB4rMrDehEn0jcPyVOl4EbgL+YGbZhIZ9rI9qShGROKAyLRFnZhRmZ1GYncVNIwtwd9ZXHvqkWL9fWsmLi0PlukeHTEaHx1tfOjCXLm0zAk6fvJ6ZX0ZhlzaMKOwUdBRpYe5eY2ZTgNcIjYd+zN2Xm9m9QIm7zwg/d5mZrQBqgW+7+67gUouIxCaVaWlxZkbfnLb0zWnLLaN64e6sqzj4ybCQd1ZX8PzCLfTs3Jo37/oUGWmpQUdOOhsrDzF3w26+ffkAfVKQJNx9JjDzuGXfq3ffgbvCNxERaYTKtESdmdEvtx39ctvxL2MKqatz/rp8O199ciFT55Vx67mFQUdMOs8uKCfF4Lphura0iIjI6dD0ZhK4lBTjijO7MbJ3Zx5+u5Qjx2qDjpRUauucZxeUc9GAXLp1yAw6joiISFxRmZaYYGbcPa4/FQeO8uc5m4KOk1TeXVvB9v1VTCrWUWkREZHTpTItMWNUny5cUJTNr/62joNHa4KOkzSml5TROSudSwZ2DTqKiIhI3FGZlphy92UD2H3oGI9/sCHoKElh96FjvLFiB9eck0d6mt4ORERETpd+ekpMGdqzI2PP6Mpv3l3PvsPVQcdJeC8s2kJ1rTOpWNeWFhERaQqVaYk5d43rz4GqGn73vuaHaEnuzvSSMs7u2ZEB3doFHUdERCQuqUxLzBnUoz1XDenOY+9vYNfBo0HHSVgfbdnHqu0HdOKhiIhIM6hMS0y6c2wRR6pr+c27OjrdUp6ZX0ZmqxQ+c3aPoKOIiIjELZVpiUn9cttx9dA8nvhwIzv3VwUdJ+EcOVbLjMVbufLM7rTPbBV0HBERkbilMi0x646xRdTUOY+8XRp0lITz2vLtHDhaw/U68VBERKRZVKYlZvXqksWk4nyenlfGlr1Hgo6TUKaVlFHQuQ2jencOOoqIiEhcU5mWmDblkiIAHn5rbcBJEsfmXYf5cN0uJhXnk5JiQccRERGJayrTEtPyOrbm5lEFTCspZ2PloaDjJIRnF5RhBtcN11U8REREmktlWmLeVy/qS6tU48FZOjrdXLV1zrMLyrmwKIfuHVoHHUdERCTuqUxLzMttn8mtYwp5YfEW1u44EHScuPZ+aSVb91VpxkMREZEIUZmWuPClT/WlTatUfvGmjk43x7SSMjq1acXYQblBRxEREUkIKtMSFzpnpXP7+b155aNtLN+6L+g4cWnPoWO8sXwHV5+TR0ZaatBxREREEoLKtMSN2y/oQ/vMNO5/Y03QUeLSS4u3cKy2TkM8REREIqhZZdrMOpvZG2a2Nvxnp0bWqzWzxeHbjOZsU5JXh9atmHxhH95cuZNFm/cEHSeuuDvPlJQzJL8DZ3RvH3QcERGRhNHcI9P3ALPcvQiYFX7ckCPuPjR8m9DMbUoSu+283nTOSuc+HZ0+Lcu37mfltv2a8VBERCTCmlumJwJPhO8/AVzdzNcTOaG2GWl85VN9eW9tJXPW7wo6TtyYVlJGRloKE87uEXQUERGRhNLcMt3V3beF728HujayXqaZlZjZHDM7YeE2s8nhdUsqKiqaGU8S0edG9yK3XQb3vb4Gdw86Tsyrqq7lxUVbGH9mNzq0bhV0HBERkYRy0jJtZm+a2bIGbhPrr+ehVtNYs+nl7sXAzcAvzKxvY9tz90fdvdjdi3Nyck5nXyRJtE5PZcol/Zi3cTfvl1YGHSfmvbZ8O/urarhBQzxEREQi7qRl2t3HuvuZDdxeAnaYWXeA8J87G3mNLeE/1wPvAOdEbA8kKd0woid5HVvzvzo6fVLTS8rJ79Sa0X26BB1FREQk4TR3mMcM4Nbw/VuBl45fwcw6mVlG+H42cB6wopnblSSXkZbKNy7tx5Kyvcxa2eDvcAKU7T7MB+squX54T1JSLOg4IiIiCae5ZfrHwDgzWwuMDT/GzIrN7Hfhdc4ASsxsCfA28GN3V5mWZrt2WD6FXdrw8zfWUFeno9MNeXZBOQCfLc4POImIiEhiSmvOF7v7LuDSBpaXAF8M3/8QOKs52xFpSKvUFL45tj/ffGYxry7bzlVDugcdKabU1TnPLijn/H7Z5HVsHXQcERGRhKQZECWufebsHhTltuW+N1ZTq6PT/+DDdbvYsveIZjwUERFpQSrTEtdSU4w7x/VnXcUhXlq8Jeg4MWVaSRkdWrdi3KDGrlgpIiIizaUyLXFv/OBuDOrenl+8uZbq2rqg48SEfYer+evy7VxzTh6ZrVKDjiMiIpKwVKYl7qWkGHdf1p/Nuw9/csJdsntpyRaO1dRxvU48FBERaVEq05IQLhmYy9CeHXlo1lqO1tQGHSdw00rKGNyjPYN7dAg6isQoMxtvZqvNrNTM7jnBeteZmZtZcTTziYjEC5VpSQhmxrcuG8DWfVVMnVcWdJxALd+6j2Vb9uvEQ2mUmaUCjwBXAIOAm8xsUAPrtQPuAOZGN6GISPxQmZaEcV6/Lozq3ZmH3y7lyLHkPTo9vaSc9LQUJg7tEXQUiV0jgVJ3X+/ux4CpwMQG1vtv4CdAVTTDiYjEE5VpSRhmxt2XDaDiwFH+NGdj0HECUVVdywuLtnD54G50bJMedByJXXlA/Y9wysPLPmFmw4Ce7v7KiV7IzCabWYmZlVRUVEQ+qYhIjFOZloQysndnLuyfw6/eWcfBozVBx4m6N1fuYN+RaibpxENpBjNLAe4D7j7Zuu7+qLsXu3txTk5Oy4cTEYkxKtOScO4e1589h6v5w/sbgo4Sdc/MLyOvY2vO65sddBSJbVuA+oPq88PLPtYOOBN4x8w2AqOBGToJUUTkn6lMS8I5u2dHxg3qyqPvrWff4eqg40TNlr1HeL+0ks8OzyclxYKOI7FtPlBkZr3NLB24EZjx8ZPuvs/ds9290N0LgTnABHcvCSauiEjsUpmWhHTXuP4cqKrht++tDzpK1Dy3oBx3+OxwDfGQE3P3GmAK8BqwEpjm7svN7F4zmxBsOhGR+JIWdACRlnBG9/ZcNaQ7j32wgS+cV0iXthlBR2pRdXXO9AVlnNevCz07twk6jsQBd58JzDxu2fcaWfeiaGQSEYlHOjItCevOsUVUVdfy67+tCzpKi5uzfhdlu4/o2tIiIiJRpjItCatfbjuuPiePP87exI79iX2Z3GklZbTPTOPywd2CjiIiIpJUVKYlod1xaRG1dc4v3y4NOkqL2XekmleXbWfi0DwyW6UGHUdERCSpqExLQuvVJYvri3vy1LzNlO85HHScFjFjyVaO1tRpiIeIiEgAVKYl4X39kn4YxsNvJebR6eklZZzRvT1n5rUPOoqIiEjSUZmWhNejY2tuHlXA9AXlbKw8FHSciFq5bT9Ly/cxqTgfM11bWkREJNpUpiUpfPXivrRKNR6YtTboKBE1vaSc9NQUrh6aF3QUERGRpKQyLUkht10mt55byIuLt7B2x4Gg40TE0ZpaXlhUzrjBXemUlR50HBERkaSkMi1J48sX9iUrPY3731wTdJSImLVyJ3sOV+vEQxERkQCpTEvS6JSVzr+e35uZH21n2ZZ9QcdptmklZXTvkMn5/bKDjiIiIpK0VKYlqdx+fm/aZ6Zx/xvxfXR6274jvLumgs8Ozyc1RSceioiIBEVlWpJKh9at+NKn+jJr1U4Wbt4TdJwme25BOXUO1w/XEA8REZEgqUxL0rnt3EI6Z6Vz3+vxeXS6rs6ZVlLOmD5dKOjSJug4IiIiSU1lWpJOVkYaX72oL++XVjJn/a6g45y2eRt3s3n3YSaNyA86ioiISNJTmZak9LnRvchtl8F9r6/B3YOOc1qmzS+jXUYa4wd3DzqKiIhI0lOZlqSU2SqVr1/Sj3kbd/Pe2sqg45yy/VXVzFy2jQlDe9A6PTXoOCIiIklPZVqS1qQRPcnr2Jqfv746bo5O/2XJNqqq63RtaRERkRjRrDJtZteb2XIzqzOz4hOsN97MVptZqZnd05xtikRKRloqd1xaxJLyfby5cmfQcU7JMyVlDOjajiH5HYKOIiIiIjT/yPQy4Frg3cZWMLNU4BGIPURTAAAgAElEQVTgCmAQcJOZDWrmdkUi4tpheRR2acPPX19NXV1sH51evf0AS8r2MmlET8x0bWkREZFY0Kwy7e4r3X31SVYbCZS6+3p3PwZMBSY2Z7sikZKWmsKd4/qzavsBZi7bFnScE5peUkarVOPqoT2CjiIiIiJh0RgznQeU1XtcHl7WIDObbGYlZlZSUVHR4uFEPj2kB/27tuW+N9ZQU1sXdJwGHaup44VFWxh7Rle6tM0IOo6IiIiEnbRMm9mbZrasgVuLHF1290fdvdjdi3NyclpiEyL/IDXFuHNsf9ZXHOKlxVuDjtOgt1btYNehYzrxUEREJMaknWwFdx/bzG1sAeo3gPzwMpGYcfngbgzu0Z4HZq1lwtAetEqNrQvdTCspp1v7TC7sr18wRUREYkk0GsN8oMjMeptZOnAjMCMK2xU5ZSkpxt2X9Wfz7sM8u6A86Dj/YMf+Kt5ZvZPrhueRmqITD0VERGJJcy+Nd42ZlQNjgFfM7LXw8h5mNhPA3WuAKcBrwEpgmrsvb15skci7eEAu5xR05MFZa6mqrg06zieeW1hOncP1wzXEQ0REJNY092oeL7h7vrtnuHtXd788vHyru19Zb72Z7t7f3fu6+w+bG1qkJZgZ37psANv2VTF13uag4wDg7kwvKWdk784UZmcFHUdERESOE1sDQ0UCdm7fLozu05mH317HkWPBH52ev3EPGyoPcYNOPBQREYlJKtMi9ZgZd182gMqDR/nj7I1Bx2FaSRltM9K44qxuQUcRERGRBqhMixxnRGFnPtU/h1//bR0HqqoDy3GgqppXlm7jM2d3p036SS+8IyIiIgFQmRZpwN2X9WfP4Wr+8MHGwDK8snQbR6prdW1pERGRGKYyLdKAIfkduWxQV3777nr2Hj4WSIZpJWUU5bZlaM+OgWxfRERETk5lWqQRd13Wn4PHavjte+ujvu3SnQdYuHkvk4p7YqZrS0vkmdl4M1ttZqVmdk8Dz99lZivMbKmZzTKzXkHkFBGJdSrTIo0Y2K09V53VnT98sJHKg0ejuu1pJeWkpRjXDMuL6nYlOZhZKvAIcAUwCLjJzAYdt9oioNjdhwDPAj+NbkoRkfigMi1yAt8c25+q6lp+/c66qG2zuraO5xeWc+kZuWS3zYjadiWpjARK3X29ux8DpgIT66/g7m+7++HwwzlAfpQziojEBZVpkRPol9uWa87J509zNrFjf1VUtvn2qp1UHjymEw+lJeUBZfUel4eXNeZ24NWGnjCzyWZWYmYlFRUVEYwoIhIfVKZFTuKOS4uorXMeebs0KtubVlJGbrsMPtU/JyrbEzkRM/scUAz8rKHn3f1Rdy929+KcHP2bFZHkozItchIFXdowaURPnp63mfI9h0/+Bc2wc38Vb6+u4Lrh+aSl6r+ntJgtQP2PPvLDy/6BmY0F/gOY4O7RPXFARCRO6Ke1yCn4+iX9MDMemtWyR6efX7SF2jrn+uEaniotaj5QZGa9zSwduBGYUX8FMzsH+A2hIr0zgIwiInFBZVrkFHTv0JpbRhXw7MJyNlQeapFtuDvTSsoYUdiJPjltW2QbIgDuXgNMAV4DVgLT3H25md1rZhPCq/0MaAtMN7PFZjajkZcTEUlqKtMip+grF/UlPTWFB95c0yKvv2DTHtZXHOJ6nXgoUeDuM929v7v3dfcfhpd9z91nhO+Pdfeu7j40fJtw4lcUEUlOKtMipyi3XSa3nlvIS0u2smbHgYi//rSSMrLSU7nqrO4Rf20RERFpGSrTIqfhSxf2ISs9jfvfiOzR6UNHa/jL0m18ekgPsjLSIvraIiIi0nJUpkVOQ6esdP71/N68umw7y7bsi9jrvrJ0G4eP1TJphE48FBERiScq0yKn6fbze9OhdSvui+DR6WklZfTJyWJYQaeIvaaIiIi0PJVpkdPUoXUrJl/Yh7dW7WTh5j3Nfr11FQcp2bSHG4p7YmYRSCgiIiLRojIt0gS3nVtIl6x07nu9+Uenp5eUk5piXDPsRLM5i4iISCxSmRZpgqyMNL5yUV/eL61k9rpdTX6dmto6nltYzsUDcsltlxnBhCIiIhINKtMiTfS50b3o2j6D+95Yjbs36TXeWV1BxYGj3DBC15YWERGJRyrTIk2U2SqVKZcUMX/jHt5dW9mk15hWUkZ22wwuGpAT4XQiIiISDSrTIs1wQ3FP8jq25uevn/7R6YoDR3lr1U6uG5ZHq1T9VxQREYlH+gku0gzpaSncMbaIpeX7eGPFjtP62hcWlVNT55o+XEREJI6pTIs007Xn5NE7O4v73lhDXd2pHZ12d6aVlDO8Vyf65bZt4YQiIiLSUlSmRZopLTWFb44tYtX2A7zy0bZT+ppFZXsp3XmQScWa8VBERCSeqUyLRMBnhvSgf9e23P/mGmpq6066/rT5ZbRulcpVQ3pEIZ2IiIi0FJVpkQhISTHuGtef9RWHeHHx1hOue/hYDS8v2cpVQ7rTNiMtSglFRESkJahMi0TI5YO7MbhHex6YtYbqExydnvnRdg4dq9W1pUVERBKAyrRIhJgZ37psAGW7jzC9pLzR9aaVlNE7O4viXp2imE5ERERaQrPKtJldb2bLzazOzIpPsN5GM/vIzBabWUlztikSyy4akMOwgo489NZaqqpr/+n5DZWHmLdhN9cX52NmASQUERGRSGrukellwLXAu6ew7sXuPtTdGy3dIvHu46PT2/ZV8fS8zf/0/PSSMlJTjM8O01U8REREEkGzyrS7r3T31ZEKI5IIzu2XzZg+XXjk7XUcPlbzyfKa2jqeW1jORf1zyG2fGWBCERERiZRojZl24HUzW2Bmk0+0oplNNrMSMyupqKiIUjyRyLr7sv5UHjzKH2dv+mTZu2sr2LH/qGY8FBERSSAnLdNm9qaZLWvgNvE0tnO+uw8DrgC+ZmYXNraiuz/q7sXuXpyTk3MamxCJHcWFnbloQA6//ts6DlRVAzBtfjldstK5ZGBuwOlEREQkUk5apt19rLuf2cDtpVPdiLtvCf+5E3gBGNn0yCLx4e5xA9h7uJrH3t/IroNHeXPlDq4dlkd6mi6iIyIikihafMYIM8sCUtz9QPj+ZcC9Lb1dkaCdld+Bywd35Xfvraemro6aOtcQDxERkQTT3EvjXWNm5cAY4BUzey28vIeZzQyv1hV438yWAPOAV9z9r83Zrki8uHNcfw4eq+Ght0oZ2rMj/bu2CzqSiIiIRFCzjky7+wuEhm0cv3wrcGX4/nrg7OZsRyReDezWnk8P6cHLS7YySUelRUREEk6LD/MQSXb3XDGQ9plpXH1Oj6CjiIiISISpTIu0sLyOrfnhNWcFHUNERERagC4rICIiIiLSRCrTIiIiIiJNpDItIiIiItJEKtMiIiIiIk2kMi0ikoTMbLyZrTazUjO7p4HnM8zsmfDzc82sMPopRURin8q0iEiSMbNU4BHgCmAQcJOZDTputduBPe7eD7gf+El0U4qIxAeVaRGR5DMSKHX39e5+DJgKTDxunYnAE+H7zwKXmplFMaOISFyI6etML1iwoNLMNp3mlxUAm1siT4zoAOwLOkQL0b7Fr0Tev6a+p/SKdJAIygPK6j0uB0Y1to6715jZPqALUFl/JTObDEwOPzxqZstaJHHsyua4v5MkkGz7nGz7C8m5zwOa+oUxXabdPed0v8bMKty9uCXyxAIze9TdJ598zfijfYtfibx/if6e0lzu/ijwKICZlSTb35X2OfEl2/5C8u5zU782EYd57A06QAt7OegALUj7Fr8Sef8S8T1lC9Cz3uP88LIG1zGzNEKfPuyKSjoRkTiSiGU6UT9qBsDdE7a0aN/iV4LvXyK+p8wHisyst5mlAzcCM45bZwZwa/j+Z4G33N2jmFFEJC7E9DCPJno06AAiklAS7j0lPAZ6CvAakAo85u7LzexeoMTdZwC/B/5kZqXAbkKF+2QS7u/qFGifE1+y7S9on0+L6UCDiIiIiEjTJOIwj4TR0KQKZvZkeNkyM3vMzFoFnbMpGtm335vZEjNbambPmlnboHM21YkmxDCzB83sYFDZmquR793jZrbBzBaHb0ODzikiIhINOjIdo8KTKqwBxhG6bNV84CagEHg1vNpTwLvu/qsgMjbVCfat3N33h9e5D9jp7j8OLGgTNbZ/7r7CzIqBO4Br3D3uflk4wffu34C/uPuzAcYTERGJurg/Mt3IUbIp4cduZtlBZ2yiBidVcPeZHgbMI3QWfrxpbN8+LtIGtAbi9Te9BvcvXER/Rqh4xqtTmewjbjXyfmJm9kMzW2NmK83sG0HnDFqyTUV+Cvt7l5mtCH+qNsvMYvka46fkZPtcb73rwj9r4/4yaqeyz2Y2Kfy9Xm5mT0U7Y6Sdwr/tAjN728wWhf99XxlEzkgJf6K/s7Hr4Yff7x8M/30sNbNhp/K6cV2mrfEpcT8AxgKnO+FLLGloUoW8jx+Eh3f8C/DXKOeKhEb3zcz+AGwHBgIPRT9aRDS2f1OAGe6+LZBUkXGif5c/DL/53G9mGdGP1jwneD+5jdAl4ga6+xmEfoFIWif4e6ovYaYiP8X9XQQUu/sQQrNF/jS6KSPrFPcZM2tH6JO2udFNGHmnss9mVgR8BzjP3QcD34x60Ag6xe/zfwLT3P0cQich/zK6KSPucWD8CZ6/AigK3yYDp/TJf1yXaRo/wrnI3TcGG63F/ZLQEI/3gg4SSe7+BaAHsBK4IeA4kdQGuJ74/QXhZL5D6BegEUBn4N+DjdMkjR11/wpwr7vXAbj7zgAzxoJkm4r8pPvr7m+7++HwwznE5yeG9Z3qJ1D/TegXpapohmshp7LP/wd4xN33QEK8F5zKPjvQPny/A7A1ivkizt3fJXR1osZMBP4YHgAwB+hoZt1P9rrxXqZPePQ2zjU6qYKZ/ReQA9wVQK5IOOGEEe5eS+g/9XVRzhUpDe3fOqAfUGpmG4E2FrrkWLxp8Hvn7tvCbz5HgT8QepOON429n/QFbjCzEjN7NXx0KpmdyvvuP0xFTuha3V2iki7yTvfnzO38/byWeHXSfQ5//N3T3V+JZrAWdCrf5/5AfzP7wMzmmNmJjnDGg1PZ5+8DnzOzcmAm8PXoRAtMk3plvJfpRNbgpApm9kXgckIntNUFmrDpGtu3fvDJmOkJwKoAMzZHQ/v3ort3c/dCdy8EDoc/Ao83jX3vusMn37urgQbHo8WpDKAqPLXub4HHAs4jMcrMPgcUEzo3ImGZWQpwH3B30FmiLI3Qx/8XETrx+rdm1jHQRC3vJuBxd88HriR07Xl1x+PE+6QtpzIlblw6waQKSwiNBZ8d/tT0eXe/N8Cop62hfSM0rOM9M2sPGLCE0Mfrcaex713AsSLiBP8u3zKzHELfu8XAl4PM2USNvZ+UA8+Hl71A6Mh7MjudqcjLLf6nIj+lnzNmNhb4D+BT4U9o4tnJ9rkdcCbwTvjnUDdCv1RPcPeSqKWMrFP5PpcDc929GthgZmsIlev50YkYcaeyz7cTHmPs7rPNLBPIBuJ9iEtjmtYr3T1ub4R+GVgP9AbSCRWwwfWe3whkB51TN910i/1bY+8nwI+Bfw2vcxEwP+issfj3dNw6XwN+Hb5/I6ETmALP3oL7ew6hoVxFQeeN1j4ft/47hE7ADDx7C3+fxwNPhO9nExoO0CXo7C28z68Ct4Xvn0FozLQFnb2Z+10ILGvkuavC+2zAaGDeqbxmXB+Z9saPkn2D0OXHugFLzWymu38xyKwiEttO8H7yY+BJM7sTOAgk9XvJCf6emjsVeUw6xf39GdAWmB4+UrvZ3ScEFrqZTnGfE8op7vNrwGVmtgKoBb7t7vH6icup7vPdhIaz3EnoZMTbPNw645GZPU3ooEh2eBz4fwGtANz914TGhV8JlAKHgS+c0uvG8d+JiIiIiEigNIhcRERERKSJVKZFRERERJpIZVpEREREpInitkyb2cGgM4iIiIhIcovbMi0iIiIiErS4LtNm1tbMZpnZQjP7yMwmhpcXmtlKM/utmS03s9fNrHXQeUVEREQkscTtpfHCwzw6Am3cfb+ZZQNzCM1G1IvQNQKL3X2xmU0DZrj7n4NLLCIiIiKJJq4nbSE0Q82PzOxCoA7IA7qGn9vg7ovD9xcQmvFGRERERCRi4r1M3wLkAMPdvdrMNgKZ4eeO1luvFtAwDxERERGJqLgeMw10AHaGi/TFhIZ3iIiIiIhERVwemTazNEJHnp8EXjazj4ASYFWgwUREREQkqcTlCYhmdjbwW3cfGXQWEREREUlecTfMw8y+DDwN/GfQWUREREQkucXlkWkRERERkVgQF0emzaynmb1tZivCk7DcEV7e2czeMLO14T87hZcPNLPZZnbUzL5V73UyzWyemS0Jv84PgtonEREREYl/cXFk2sy6A93dfaGZtSN03eirgduA3e7+YzO7B+jk7v9uZrmEruxxNbDH3f83/DoGZLn7QTNrBbwP3OHucwLYLRERERGJc3FxZNrdt7n7wvD9A8BKQhO0TASeCK/2BKHyjLvvdPf5QPVxr+PufjD8sFX4Fvu/TYiIiIhITIqLMl2fmRUC5wBzga7uvi381Hb+Pvvhib4+1cwWAzuBN9x9bgtFFREREZEEF1dl2szaAs8B33T3/fWf89B4lZMeZXb3WncfCuQDI83szBYJKyIiIiIJL27KdHiM83PAk+7+fHjxjvB46o/HVe881ddz973A28D4SGcVERERkeQQF2U6fOLg74GV7n5fvadmALeG798KvHSS18kxs47h+62BcWjWRBERERFponi5msf5wHvAR0BdePF3CY2bngYUAJuASe6+28y6EZpevH14/YPAIKCQ0ImKqYR+kZjm7vdGb09EREREJJHERZkWEREREYlFcTHMQ0REREQkFqlMi4iIiIg0kcq0iIiIiEgTqUyLiIiIiDSRyrSIiIiISBOpTIuIiIiINJHKtIiIiIhIE6lMi4iIiIg0kcq0iIiIiEgTqUyLiIiIiDSRyrSIiIiISBOpTIuIiIiINJHKtIiIiIhIE6lMi4iIiIg0kcq0iIiIiEgTqUyLiIiIiDSRyrSIiIiISBOpTIuIiIiINJHKtIiIiIhIE6lMi4iIiIg0kcq0iIiIiEgTqUyLiIiIiDSRyrSIiIiISBOpTIuIiIiINJHKtIiIiIhIE6lMi4iIiIg0kcq0iIiIiEgTqUyLiIiIiDSRyrQkFTPbaGZHzOygme0xs1fMrGfQuURERCQ+qUxLMvqMu7cFugM7gIcCziMiIiJxSmVakpa7VwHPAoOCziIiIiLxSWVakpaZtQFuAOYEnUVERETiU1rQAUQC8KKZ1QBZQAVwecB5REREJE7pyLQko6vdvSOQCUwB/mZm3QLOJCIiInFIZVqSlrvXuvvzQC1wftB5REREJP5omIckLTMzYALQCVgZcBwRERGJQyrTkoxeNrNawIFNwK3uvjzgTCIiIhKHzN2DziAiIiIiEpc0ZlpEREREpIlUpkVEkoyZPWZmO81sWSPPm5k9aGalZrbUzIZFO6OISLxQmRYRST6PA+NP8PwVQFH4Nhn4VRQyiYjEJZVpEZEk4+7vArtPsMpE4I8eMgfoaGbdo5NORCS+xPTVPLKzs72wsDDoGCIip23BggWV7p4TdI4mygPK6j0uDy/bdvyKZjaZ0NFrsrKyhg8cODAqAUVEIqk579kxXaYLCwspKSkJOoaIyGkzs01BZ4gGd38UeBSguLjY9Z4tIvGoOe/ZGuYhIiLH2wL0rPc4P7xMRESOozItIiLHmwF8PnxVj9HAPnf/pyEeIiIS48M8REQk8szsaeAiINvMyoH/AloBuPuvgZnAlUApcBj4QjBJRURin8q0iEiScfebTvK8A1+LUhwRkbimYR4iIiIiIk2UcGU6dEBFRERERKTlJVSZXrF1P1f/8kM2VB4KOoqIiIiIJIGEKtP7q6rZtOsQEx5+n7dW7Qg6joiIiIgkuIQq06P7dOHlKefTs1Mbbn+ihAfeXEtdnYZ9iIiIiEjLSKgyDdCzcxue+8q5XD00j/vfXMPkPy1gf1V10LFEREREJAElXJkGaJ2eyn2Tzub7nxnE26t3cvXDH1C680DQsUREREQkwSRkmQYwM247rzdPfXEU+6uqmfjwB/x1mSbwEhEREZHISdgy/bFRfbrw8tfPp1/Xdnz5zwv56V9XUatx1CIiIiISAQlfpgG6d2jNtC+N5sYRPfnlO+v4wuPz2Xv4WNCxJEm4O2t2aJiRiIhIIkqKMg2QkZbKj68bwo+uOYvZ6yqZ8PAHrNi6P+hYkgRmLNnKZfe/y9/WVAQdRURERCIsacr0x24eVcDUyWM4WlPLtb/6gJcWbwk6kiS4mR+Fxurf9/pqzdApIiKSYJKuTAMM79WJl79+PmfldeCOqYv5n7+soKa2LuhYkoCqqmt5d00lPTpksqR8H2+t2hl0JBEREYmgpCzTALntMnnyi6O5dUwvfvf+Bv7l9/PYdfBo0LEkwby/tpIj1bX88NqzKOjchvveWKOj0yIiIgkkacs0QHpaCj+YeCb/e/3ZLNi8h8889D4fle8LOpYkkNdXbKddZhrn9c3mjkuLWL51P68t11T3IiIiiSKpy/THPjs8n+e+fC5mxnW//pDpJWVBR5IEUFvnzFq5k0sG5pKelsLEoT3ok53F/W+s0TT3IiIiCUJlOuys/A7MmHIexb068e1nl/J/X1zGsRqNo5amW7h5D7sOHWPcoK4ApKWmcMfYIlbvOMBMTSAkIiKSEFSm6+nSNoM//utIJl/Yhz/N2cTNv53Dzv1VQceSOPX68u2kp6bwqf45nyz79JAeFOW25RdvrtXkQSIiIglAZfo4aakpfPfKM3jwpnNYvnU/n37ofRZs2hN0LIkz7s7rK3Zwbr8utMts9cny1BTjznH9Kd15kJeXbA0woYiIiESCynQjJpzdg+e/ei6ZrVK58dHZPDl3k67CIKds7c6DbNp1+JMhHvWNH9yNgd3a8cCstboko4iISJxTmT6BM7q3Z8aU8zi3bzb/8cIy7nnuI6qqa4OOJXHg9eXbARh3xj+X6ZQU465x/dlQeYgXFmnSIBERkXgWkTJtZuPNbLWZlZrZPQ08f5eZrTCzpWY2y8x6RWK70dCxTTqP3TaCKRf345mSMm74zWy27j0SdCyJcW+s2ME5BR3JbZ/Z4PPjBnXlrLwOPPjWWqp1dFpERCRuNbtMm1kq8AhwBTAIuMnMBh232iKg2N2HAM8CP23udqMpNcX41uUD+PXnhrOu4hCfeeh95qzfFXQsiVHb9h1hSfm+Bod4fMwsdHS6bPcRnl1QHsV0cjrWVRxkQ+WhoGOIiEgMi8SR6ZFAqbuvd/djwFRgYv0V3P1tdz8cfjgHyI/AdqNu/JndePFr59KhTStu+d1cHnt/g8ZRyz95c0VoUpbLBnU74XoXDchhaM+OPDRrLUdrNHwo1rg7333+I258dLY+PRARkUZFokznAfVnOSkPL2vM7cCrjT1pZpPNrMTMSioqKiIQL7L65bbjpa+dxyUDc7n3Lyu485nFHDmmIiR/9/qKHfTJyaJfbtsTrmdm3H1Zf7buq2LafE0UFGteXbaduRt2841Li2iVqtNLRESkYVH9CWFmnwOKgZ81to67P+ruxe5enJOT09hqgWqX2YrffG44d4/rz0tLtnLdrz6kbPfhk3+hJLx9R6qZvW7XCYd41Hd+v2xGFHbi4bdLdXJrDKmqruWHr/z/9u48vq66zv/465OtSZvuTbpkaWmbLmlZCknZ1y6yFkShxXEGHZRxFEUZZ4YZHUZRfzrjuIyCCy4jOmopqFikSEIBsUqhKS1L0n1Nl9ykTfc0SZN8fn/klokladLk5p67vJ+Px3303pOTc94nSe/93O/9nPNdx7Qxg1lUWhh0HBERiWGRKKZ3AwUdHueHl/0FM5sLfAZY4O5NEdhvoFJSjI/PKeLHd5ZSfaCBmx5awR83xd5IukTXixtqaWnzbls8TmrvnZ5K6HATv3hlZz+nk5565KWt7D54nM8tmEFqigUdR0REYlgkiulVQJGZnWVmGcAiYGnHFcxsFvB92gvp2gjsM2ZcPS2Xp+65jNGDM7nzx6/y3Re3qI86iZVXhRiVPYBZBcN6/D0XTxrJxRNH8p0Xt6hlKAbsOXic77y4mRvOHstFE0cGHUdERGJcn4tpd28B7gGeBdYBS9y90sweNLMF4dW+CmQDj5vZWjNb2sXm4tKEUYP49Ucv4bqzx/Ifv1/Px37xGseaWoKOJVHW1NLKixvqmFecS8oZjmbeN38K+4428bOV2/snnPTYV55Zjzvcf920oKOIiEgcSIvERtx9GbDslGUPdLg/NxL7iWWDBqTx0B2zODd/KF95Zj2bQkd55G9KOGvUoKCjSZS8vGU/R5taetzi0VHphBFcXjSK7/1hK++7cDzZAyLyX1PO0Krt9Sx9fQ+fuGYyBSMGBh1HRETigE5RjyAz4+4rJvHTv72QfUebWPDQCpavCwUdS6KkvCrEwIxULp7Uu9aA++ZNof5YM4/+eXtkg0mPtLU5n3+qkrFDM/nIVZOCjiMiInFCxXQ/uKxoFEvvuYzCEQO569EK/vu5TbS1qY86kbW1OeVVIa6amkNmemqvtjGrcDjXTMvlkZe2crjxRIQTSnceX13NW7sPc/910xiYkfifDPRg5tpCM3vBzNaEZ6+9PoicIiKxTsV0PykYMZBf/f0l3Dorj288t5G7f7ZaBVICe33XQWqPNPWqxaOj++ZN4dDxE/zPiu2RCSY9crjxBF99dgMl44ez4NxxQcfpdz2cufaztJ8DM4v2E8u/E92UIiLxQcV0P8pMT+Vrt5/L524q5sUNtdzy0J/YFDoSdCzpB+VVIVJTjKun5vZpOzPzhjK/eDQ/XLGVQw168xUtDz2/mf3Hmvn3m2ZglhSXwut25lrAgSHh+0OBPUCfNTsAACAASURBVFHMJyISN1RM9zMz4wOXnsXPP3QhhxtPcMvDf+KZN/cGHUsirKwqxEUTRzB0YHqft/WpeVM40tjCD1dsjUAy6c7WuqP8z5+2cfsFBZydPzToONHSk5lrPwe838x20X6C+cejE01EJL6omI6SCyeO5Hcfv5yi0YP5+5+/xn/+fj2t6qNOCFvrjrK59mifWzxOmj52CDecPZYfr9hG/bHmiGxTuvbFp9eRmZbKp981NegoseYO4Cfung9cD/zMzN7xmmFmd5tZhZlV1NVp4ioRST4qpqNozNBMHvu7i7hjdgHfeXELH/zJKg42qFiKd+VV7VdsmdvDKcR74pNzi2g40cojL2l0uj+9sKGW59fX8ok5ReQMHhB0nGjqycy1dwFLANz9ZSATGHXqhtz9EXcvcfeSnJycfoorIhK7VExH2YC0VL586zl8+dazWbllPzc9tIKqPYeDjiV9UFYVYmbeEPKGZUVsm0WjB7Pg3HE8+uft1B1pith25f80t7Txhd9VcdaoQdx5yYSg40RbtzPXAjuBOQBmNp32YlpDzyIip1AxHZA7Zhey+O8uormljVu/+yd+u/bUQSGJB3VHmnht54GItXh0dO+cIppaWvn+H7ZEfNsCP315O1vrjvFvN04nIy25ngp7OHPtPwAfNrPXgV8CH3B39aaJiJwiuV5BYsz5hcN56uOXcU7eMO5dvJYv/K6Klta2oGPJGVi+LoQ7zItgi8dJE3OyefesfH62cgehw40R334y23e0if9evomrpuZwzbTI/+7igbsvc/cp7j7J3b8UXvaAuy8N369y90vd/Vx3P8/dy4JNLCISm1RMByx3cCY///CFfOCSCfxoxTbe/6NX2HdUH+vHi7KqEAUjspg2ZnC/bP/eOUW0tDnffVGj05H0tbINHG9u5bM3nHppZRERkTOjYjoGpKem8LkFM/jabeeyZudBFnx7BW/sOhh0LOnGsaYWVmzex/ziMf12beLCkQO57YJ8fvHKTvYcPN4v+0g2b+0+xOJV1dx5yQQm52YHHUdEROKciukY8p4L8vnV31+CmfHe773Mkorq7r9JAvPSxjqaW9r6pcWjo3uumYzjPPzC5n7dTzJwdx58qooRAzP4xJyioOOIiEgCUDEdY2bmDeWpj19G6YTh/NMTb/BvT75Fc4v6qGNRWVWI4QPTKRk/vF/3kz98IAtLC1hSUU11fUO/7ivR/e6Nvby6vZ5Pv2sqQ7P6PsGOiIiIiukYNGJQBo9+cDZ3XzGRn63cwft+sJJanYAWU060tvH8+lqumTaatNT+/2/0sasnY2Y89LxGp3vreHMrX162jhnjhnB7SUH33yAiItIDKqZjVFpqCv96/XS+fccsKvcc5sZvr2D1jvqgY0nYqm31HDp+gvkzonMliLFDs3jf7EKeeG0X2/cdi8o+E833X9rCnkON/PtNM0hN6Z8edxERST4qpmPcTeeO4zcfu4SsjFQWPbKSFzbUBh1JaG/xyExP4Yqi6M349tGrJ5Geanzr+U1R22ei2H3wON/7wxZuPGcss88aEXQcERFJICqm48C0MUNY+rHLyBuWxcP6mD9w7k55VYjLJueQlZEatf3mDs7kry8az5NrdrO59mjU9psIvrxsHQD/cv30gJOIiEiiUTEdJ4YOTOd9FxZSseMAm2uPBB0nqVXuOczug8ej1uLR0UeunERmeirfWq7R6Z56dVs9v3tjLx+5clJEp3wXEREBFdNx5dbz80lLMR5bpUvmBamsKkSKwZxpuVHf98jsAdx5yQSeemMPG2r0pqo7rW3O55ZWMm5oJn93xaSg44iISAJSMR1HRmUPYF7xaH712m5dLi9A5VUhSsaPYGT2gED2f/flExmUkcZ/L98YyP7jyZKKaqr2HuZfrp8e1ZYcERFJHiqm48zC0gLqjzVTXhUKOkpSqq5vYN3ew4G0eJw0fFAGf3vpBJa9WUPlnkOB5Yh1h46f4L+e3cDsCSO48ZyxQccREZEEpWI6zlxelEPesCwWr9oZdJSkVBZ+E9Pfsx52567LJzI4M41vPqfe6a58a/km6huaeeCm4n6b7l1ERETFdJxJTTFuK8lnxeZ9mg0vAOVVNUwdPZjxIwcFmmNoVjofvnwi5VUh3th1MNAssWhz7VEe/fN2FpUWMDNvaNBxREQkgamYjkO3hWdve3z1roCTJJcDx5p5dVt9oC0eHX3w0gkMG5jON8rVO32qLz5dRVZGKp+ePzXoKCIikuBUTMehvGFZXFGUw+MV1bS2edBxksby9bW0OcwvHhN0FAAGZ6Zz9xUTeWFDHat3HAg6Tsx4fn2IFzfUce+cosBOEhURkeShYjpOLSotYO+hRl7aWBd0lKRRXlXD2KGZzMwbEnSUt9158QRGDsrgm89pdBqguaWNL/xuHRNzBvE3F08IOo6IiCQBFdNxas700YzKztCJiFFyvLmVP2ysY17x6Jg6mW3QgDQ+cuUk/rhpH69uqw86TuAe/fN2tu07xr/dWExGmp7eRESk/+nVJk5lpKXwnvPzWb6ultojjUHHSXgrNu+j8URbzLR4dPT+i8aTM3gAXy/fEHSUQNUdaeJbyzdxzbRcrp4a/Ql1REQkOUWkmDaza81sg5ltNrP7O/n6ADN7LPz1V8xsQiT2m+xuLy2gpc359Wu7g46S8MqrahicmcaFE0cEHeUdsjJS+ehVk1i5tZ4/b94XdJzA/NezGzh+opXP3jA96CgiIpJE+lxMm1kq8DBwHVAM3GFmxaesdhdwwN0nA98A/qOv+xWYlJPN7AkjeGxVNe46EbG/tLY5y9fVcs20XNJTY/PDnDtmFzJmSCZfL9+YlH8Lb+46xJLV1Xzw0glMzMkOOo6IiCSRSFQGs4HN7r7V3ZuBxcDNp6xzM/Bo+P4TwByLpcbTOLawtIBt+47xivpl+81rOw+w/1hz4BO1nE5meiofu2YyFTsO8NKm5Bqddnc+/1QlIwdl8PE5RUHHERGRJBOJYjoPqO7weFd4WafruHsLcAgYGYF9J73rzx7L4Mw0HltV3f3K0itllTVkpKZw5ZScoKOc1sKSAvKGZSXd6PTS1/dQseMA//iuqQzJTA86joiIJJmY+8zazO42swozq6ir02XfupOVkcot5+Wx7M29HGo4EXSchOPulFWFuGTySAbHeKGWkZbCx6+ZzOvVB3l+fW3QcaKiobmFrzyznpl5Q3jvBQVBxxERkSQUiWJ6N9DxVSw/vKzTdcwsDRgK7O9sY+7+iLuXuHtJTk5sjwTGioWlBTS1tPHb13UiYqRtqj3Kjv0NMd3i0dF7LsincMTApBmd/t4ftrL3UCOfu2kGqSnqHBMRkeiLRDG9Cigys7PMLANYBCw9ZZ2lwJ3h++8FnvdkeKWPkpl5Q5mZN4RfvqoTESOtrLIGgHnT46OYTk9N4RNziqjcc5hnK0NBx+lXuw408P0/bGHBueMomRB7V1kREZHk0OdiOtwDfQ/wLLAOWOLulWb2oJktCK/2I2CkmW0G7gPecfk86ZtFpYWs23uYN3cfCjpKQimrCjGrcBi5QzKDjtJjt5w3jomjBvGN8o20JfB0819eth4zuP+6aUFHERGRJBaRnml3X+buU9x9krt/KbzsAXdfGr7f6O63uftkd5/t7lsjsV/5PwvOG0dmegqLdSJixOw9dJw3dh2KmxaPk9JSU7h3bhEbQkdY9tbeoOP0i5Vb9/P0m3v56FWTGTcsK+g4IiKSxGLuBETpnSGZ6dxw9jiWrt1DQ3NL0HESwnNV7W0SsTjrYXduPGccRbnZfPO5TbQm2Oh0a5vz+aeqyBuWxd1XTAw6joiIJDkV0wlk0ewCjja18PQbiTkaGW1lVSEm5gxicm78TQKSmmJ8cu4UNtce5anX9wQdJ6IWr9rJur2H+dfrp5OZnhp0HBERSXIqphNIyfjhTMoZpFaPCDh0/AQvb9kfdy0eHV03cwzTxgzmv5dvoqW1Leg4EXGo4QT/9ewGLjxrBNefHX+fGIiISOJRMZ1AzIxFpYWs3nGATaEjQceJay9uqKWlzeOyxeOklBTjU/OmsG3fMX6zJjEum/jN5Rs5dPwED9xUjCZRFRGRWKBiOsG8+/w80lNNMyL2UVlViFHZA5hVMCzoKH0yv3g0M/OG8K3nN3EizkenN4WO8NOXd7BodiEzxg0NOk7cM7NrzWyDmW02s06vsGRmt5tZlZlVmtkvop1RRCQeqJhOMKOyBzCveDS/XrObppbWoOPEpaaWVv6woY55xbmkxPlEIGbGffOmUF1/nCdW7wo6Tq+5Ow/+ropBGan8w7wpQceJe2aWCjwMXAcUA3eYWfEp6xQB/wJc6u4zgE9GPaiISBxQMZ2AFpYWUn+smeeqkmNK6Uh7ect+jja1xHWLR0dXT83lvIJhfHv5prh9g7V8XS1/3LSPT86dwsjsAUHHSQSzgc3uvtXdm4HFwM2nrPNh4GF3PwDg7npCERHphIrpBHTZ5FHkDcti8aqdQUeJS2VVIQZlpHLxpJFBR4mIk6PTew41siQO23+aWlr54tNVTM7N5q8vHh90nESRB3T8Y9gVXtbRFGCKmf3JzFaa2bWdbcjM7jazCjOrqKur66e4IiKxS8V0AkpNMW4vKeCPm/ZRXd8QdJy40tbmPFcV4sqpOQl12bXLi0ZROmE4D72wmcYT8TU6/ZM/bWf7/gb+7cZi0lP1lBVFaUARcBVwB/ADM3vHSQTu/oi7l7h7SU5OTpQjiogET69MCeq2knzM4PGK+BuJDNLruw5Se6QpYVo8TjJrv7JH6HATv3glfj6xqD3SyLef38zc6blcOUWFWgTtBgo6PM4PL+toF7DU3U+4+zZgI+3FtYiIdKBiOkGNG5bFlVNyWFKxK+FmwOtPZVUhUlOMq6fmBh0l4i6ZNIqLJ47kOy9u4XhzfIxOf/X3G2hqaeUzNxR3v7KciVVAkZmdZWYZwCJg6SnrPEn7qDRmNor2to+t0QwpIhIPVEwnsEWlBdQcbuSljepj7KnyqhAXTRzB0IHpQUfpF/fNn8K+o038bOX2oKN06/Xqgzy+ehd/e9lZnDVqUNBxEoq7twD3AM8C64Al7l5pZg+a2YLwas8C+82sCngB+Ed33x9MYhGR2KViOoFdM200o7Iz+OWr8fOxfpC21B1lc+3RhGvx6Kh0wgguLxrF9/6wlaNNLUHH6ZK78/mnKhmVPYB7rp4cdJyE5O7L3H2Ku09y9y+Flz3g7kvD993d73P3Ync/290XB5tYRCQ2qZhOYBlpKbzngnyWr6+l9khj0HFiXnlVCIC5cTyFeE/cN28K9ceaefTP24OO0qXfrt3DazsP8k/XTmVwZmJ+SiAiIolBxXSCW1hSQGub86vViTGddH8qrwoxM28IecOygo7Sr2YVDueaabk88tJWDjeeCDrOOxxrauHLz6zjnPyhvPf8/KDjiIiInJaK6QQ3MSeb2WeN4LFVO3HXiYhdqTvSxGs7DyR0i0dHn5o7hUPHT/A/K7YHHeUdvvviFkKHm/j3m2bE/QyUIiKS+FRMJ4FFpQVs39/AK9vqg44Ss5avC+EO8xK8xeOks/OHMr94ND9csZVDDbEzOl1d38Ajf9zKLeeN44Lxw4OOIyIi0i0V00ngupljGZyZxmKdiNilsqoQBSOymDZmcNBRouZT86ZwpLGFH66Inaud/b9l60g14/7rpgcdRUREpEdUTCeBrIxU3j0rj2Vv1cTUKGSsONbUworN+5hfPAaz5GkrmD52CDecPZYfr9hG/bHmoOPw5y37eOatGj529STGDM0MOo6IiEiPqJhOEgtLC2huaePJtToR8VQvbayjuaUtaVo8Ovrk3CIaTrTyyEvBjk63tLbx4FNV5A/P4kOXTww0i4iIyJlQMZ0kZowbytl5Q/nlqzoR8VRlVSGGD0ynJAl7dItGD2bBueN49M/bqTvSFFiOX66qZn3NET57w3Qy01MDyyEiInKmVEwnkYWlBayvOcIbuw4FHSVmnGhtY/m6EHOmjyYtNTn/O9w7p4imlla+/4ctgez/YEMzXyvbwMUTR/KuGclxNRUREUkcyVk9JKkF540jKz2Vxauqg44SM1Ztq+dwY0tStnicNDEnm3fPyudnK3cQOhz9yX2++dwmDh8/wQM3FSdVz7qIiCQGFdNJZEhmOjecM5ala3dzLIanko6msqoQmekpXFGUE3SUQN07p4iWNue7L0Z3dHpj6Ag/W7mDv7pwPNPHDonqvkVERCJBxXSSWVRawLHmVp5+c2/QUQLn7pRV1nB5UQ5ZGcndp1s4ciC3XZDPL17ZyZ6Dx6OyT3fnwaeqyB6Qxn3zpkRlnyIiIpGmYjrJXDB+OJNyBvGYWj2o3HOYPYcak7rFo6N7rpmM4zz8wuao7K+8KsSKzfv41Nwihg/KiMo+RUREIk3FdJIxMxaVFrJ6xwE2ho4EHSdQZVUhUgzmTMsNOkpMyB8+kIWlBSypqKa6vqFf99XU0soXn17HlNHZvP+i8f26LxERkf6kYjoJ3Xp+HumplvSj02WVNZSMH8HI7AFBR4kZH7t6MmbGQ8/37+j0j1ZsY2d9Aw/cOCNpr6IiIiKJQa9iSWhk9gDmF4/h16/toqmlNeg4gaiub2B9zRHmz1CLR0djh2bxvtmFPPHaLrbvO9Yv+wgdbuSh5zczr3g0lxWN6pd9iIiIRIuK6SS1sLSAAw0nKK8KBR0lEGXh41a/9Dt99OpJpKca33p+U79s/z9/v4GWVuezN0zvl+2LiIhEU5+KaTMbYWblZrYp/O87ppAzs/PM7GUzqzSzN8xsYV/2KZFx2eRR5A3LStpWj7LKGqaOHsz4kYOCjhJzcgdn8tcXjefJNbvZXHs0ottes/MAv3ptF3ddfpZ+9iIikhD6OjJ9P7Dc3YuA5eHHp2oA/sbdZwDXAt80s2F93K/0UUqKcXtJAX/ctK/fTzaLNQeONbNqe71aPE7jI1dOIjM9lW8tj9zodFub8/mnqsgZPICPXT05YtsVEREJUl+L6ZuBR8P3HwVuOXUFd9/o7pvC9/cAtUByz5ARI24rySfFYElFco1OL19fS5vD/GJNXd2VkdkDuPOSCTz1xh421ETmqi9Prt3N2uqD/PO108gekBaRbYqIiAStr8X0aHc/OftHDXDaoT4zmw1kAF1Os2Zmd5tZhZlV1NXV9TGenM64YVlcOSWHxyt20dLaFnScqCmrrGHs0Exm5mnGvdO5+/KJDMpI47+Xb+zzto42tfCVZ9ZzbsEwbp2VF4F0IiIisaHbYtrMnjOztzq53dxxPXd3wE+znbHAz4APunuXlZu7P+LuJe5ekpOjAez+trC0kJrDjby0KTneuBxvbuWlTXXMKx6NmQUdJ6YNH5TB3146gWVv1lC551CftvWdFzZTe6SJf7+pmJQU/dxFRCRxdFtMu/tcd5/Zye23QChcJJ8slms724aZDQGeBj7j7isjeQDSN3Om5zIqO4PFryZHq8eKzftoPNGmFo8euuvyiQzOTOObz/W+d3rn/gZ++Mdt3Dorj/ML33GOsoiISFzra5vHUuDO8P07gd+euoKZZQC/AX7q7k/0cX8SYempKbzngnyWr6+l9nBj0HH6XXlVDYMz07hw4oigo8SFoVnpfPjyiZRXhXhj18FebeOLT1eRlmr883XTIpxOREQkeH0tpr8CzDOzTcDc8GPMrMTMfhhe53bgCuADZrY2fDuvj/uVCFpYUkBrm/PEa7uCjtKvWtuc59bVcs20XNI1616PffDSCQwbmM43ys+8d3rFpn2UVYX42NWTGT0ksx/SiYiIBKtPFYW773f3Oe5eFG4HqQ8vr3D3D4Xv/6+7p7v7eR1uayMRXiJjYk42F541gsdWVdPe+p6YVu84QP2xZrV4nKHBmencfcVEXthQx+odB3r8fS2tbTz4u0oKRwzkrsvO6seEIiIiwdHwnACwaHYBO/Y3sHJrfdBR+k15VQ0ZqSlcOVUntp6pOy+ewMhBGXzzuZ6PTv/8lZ1sDB3lMzdMJzM9tR/TiYiIBEfFtABw3cyxDM5M47FVO4OO0i/cnbKqEJdMHqlrHPfCoAFpfOTKSfxx0z5e3db9G64Dx5r5evlGLp08kvmasl1ERBKYimkBIDM9lXfPymPZWzUcbGgOOk7EbQwdZcf+BrV49MH7LxpPzuABfL18Q7frfuO5jRxtauGBG2foEoQiIpLQVEzL2xaWFtDc0saTa3YHHSXiyqtqAJg7PTfgJPErKyOVj141iZVb6/nz5n1drre+5jD/u3IH77+wkKljBkcxoYiISPSpmJa3zRg3lHPyh7I4AU9ELKsKMatwGLm6okSf3DG7kDFDMvl6+cZO/0bcnc8vrWJIVjqfmjclgIQiIiLRpWJa/sLC0gLW1xzhjV19m/Euluw9dJw3dh1innp3+ywzPZWPXTOZih0HeGnTO0enn60M8fLW/dw3bwrDBmYEkFBERCS6VEzLX1hw7jiy0lNZnEAnIj5XFQJQv3SELCwpIG9Y1jtGpxtPtPKlZVVMHT2Y980uDDCh9ISZXWtmG8xss5ndf5r13mNmbmYl0cwnIhIvVEzLXxicmc4N54xl6do9HGtqCTpORJRVhZiYM4jJudlBR0kIGWkpfPyaybxefZDn19e+vfxHK7ZRXX+cB24qJk2T4sQ0M0sFHgauA4qBO8ysuJP1BgP3Aq9EN6GISPzQK568wx2zCzjW3MrTb+wNOkqfHTp+gpe37FeLR4S954J8CkcMfHt0uuZQIw+/sJl3zRjNpZNHBR1Pujcb2OzuW929GVgM3NzJel8A/gNojGY4EZF4omJa3uH8wuFMzs1OiFaPFzfU0tLmavGIsPTUFD4xp4jKPYd5tjLEf/x+PS1tzmeuf8fgpsSmPKC6w+Nd4WVvM7PzgQJ3f/p0GzKzu82swswq6urqIp9URCTGqZiWdzAzFpUW8NrOg2wMHQk6Tp+UVYUYlT2AWQXDgo6ScG45bxwTRw3ic0sr+c2a3Xz48rMoHDkw6FgSAWaWAnwd+Ifu1nX3R9y9xN1LcnI0u6iIJB8V09Kpd8/KIz3VWPxqdfcrx6imllZeXF/LvOJcUlI0cUikpaWmcO/cImoONzJ6yAA+etXkoCNJz+0GCjo8zg8vO2kwMBN40cy2AxcBS3USoojIO6mYlk6NzB7A/OIx/HrNLppaWoOO0ysvb9nPseZWtXj0oxvPGcf7Lyrka7edxyBN0x5PVgFFZnaWmWUAi4ClJ7/o7ofcfZS7T3D3CcBKYIG7VwQTV0QkdqmYli4tml3AwYYTlFWGgo7SK2VVIQZlpHLxpJFBR0lYqSnGF285m8uKdNJhPHH3FuAe4FlgHbDE3SvN7EEzWxBsOhGR+KKhJOnSpZNGkTcsi8dWVXPTueOCjnNG2tqc8qoQV07NITM9Neg4IjHH3ZcBy05Z9kAX614VjUwiIvFII9PSpZQUY2FpASs276O6viHoOGfk9V0HqTvSpBYPERER6VcqpuW03ntBPikGj62KrxMRy6pCpKUYV0/NDTqKiIiIJDAV03Ja44ZlceWUHB5fXU1La1vQcXqsrLKGCyeOYOjA9KCjiIiISAJTMS3dWjS7kNDhJv6wMT4mZNhSd5QtdcfU4iEiIiL9TsW0dOuaabmMyh7A4jhp9Sivar/6iKYQFxERkf6mYlq6lZ6awnsvyOf59bXUHm4MOk63yqtCzMwbwrhhWUFHERERkQSnYlp6ZGFpAa1tzuOrdwUd5bRqjzTy2s4DavEQERGRqFAxLT1y1qhBXHjWCJZUVNPW5kHH6dLydbW4q8VDREREokPFtPTYHbML2bG/gZXb9gcdpUvlVSEKRmQxbczgoKOIiIhIElAxLT127cwxDMlMi9lrTh9tamHF5n3MLx6DmQUdR0RERJKAimnpscz0VN49K49n3qrhYENz0HHe4aWNdTS3tKnFQ0RERKJGxbSckYWlhTS3tPGbNbuDjvIO5VUhhg9Mp2T88KCjiIiISJJQMS1npHjcEM7JH8riV6txj50TEU+0trF8XYg500eTlqo/axEREYkOVR1yxhaVFrIhdITXdx0KOsrbXt1Wz+HGFrV4iIiISFT1uZg2sxFmVm5mm8L/dvkZu5kNMbNdZvZQX/crwbnp3LFkpafy2KqdQUd5W3lViMz0FK4oygk6ioiIiCSRSIxM3w8sd/ciYHn4cVe+ALwUgX1KgAZnpnPjOWNZunYPx5pago6Du1NWWcPlRTlkZaQGHUdERESSSCSK6ZuBR8P3HwVu6WwlM7sAGA2URWCfErBFsws41tzK797YE3QUKvccZs+hRrV4iIiISNRFopge7e57w/draC+Y/4KZpQBfAz4dgf1JDDi/cDiTc7NZHAPXnC6rCpFiMGdabtBRREREJMn0qJg2s+fM7K1Objd3XM/bL+/Q2SUePgosc/ddPdjX3WZWYWYVdXV1PToIiT4zY1FpAWt2HmRDzZFAs5RV1lAyYQQjswcEmkNERESST4+KaXef6+4zO7n9FgiZ2ViA8L+1nWziYuAeM9sO/BfwN2b2lS729Yi7l7h7SU6OTiaLZbeen096qgU6I2J1fQPra44wXy0eIiIiEoBItHksBe4M378T+O2pK7j7X7l7obtPoL3V46fufroTFSUOjBiUwfwZY/j1ml00nmgNJENZVQhA/dIiIiISiEgU018B5pnZJmBu+DFmVmJmP4zA9iWGLSot4GDDibeL2mgrq6xh2pjBjB85KJD9i4iISHLrczHt7vvdfY67F4XbQerDyyvc/UOdrP8Td7+nr/uV2HDppFHkD88K5JrT9ceaWbW9XqPSIiIiEhjNgCh9kpJiLCwp4E+b97Nzf0NU9/38+lraHOYXj4nqfkVEREROUjEtffbeknxSDJZURPdExLLKGsYOzWRm3pCo7ldERETkJBXT0mdjh2Zx1dRcHl9dTUtrOIOQpAAAEihJREFUW1T2eby5lZc21TGveDRmFpV9ioiIiJxKxbRExMLSAkKHm3hxQ3SuDb5i8z4aT7SpxUNEREQCpWJaIuKaabmMyh4QtRkRyyprGJyZxoUTR0RlfyIiIiKdUTEtEZGemsJtJfm8sKGW0OHGft1Xa5uzfH0t10zLJT1Vf8IiIiISHFUiEjG3lxTQ2uY8sbrbWeP7ZPWOA9Qfa1aLh4iIiAROxbREzFmjBnHRxBE8tqqatjbvt/2UVdaQkZrClVM13byIiIgES8W0RNSi0kJ21jewcuv+ftm+u1O+LsQlk0eSPSCtX/YhIiIi0lMqpiWirp05hiGZaf12IuLG0FF27G9Qi4dIH5nZtWa2wcw2m9n9nXz9PjOrMrM3zGy5mY0PIqeISKxTMS0RlZmeyq3n5/P7t2o4cKw54tsvq6wBYO703IhvWyRZmFkq8DBwHVAM3GFmxaestgYocfdzgCeA/4xuShGR+KBiWiJuYWkBza1tPLl2d8S3Xb4uxKzCYeQOyYz4tkWSyGxgs7tvdfdmYDFwc8cV3P0Fd28IP1wJ5Ec5o4hIXFAxLRE3fewQzs0fyuJXq3GP3ImIew4e541dh9TiIdJ3eUDHXqxd4WVduQt4prMvmNndZlZhZhV1ddGZtElEJJaomJZ+sbC0kA2hI6ytPhixbT63LgTAvOLREdumiJyemb0fKAG+2tnX3f0Rdy9x95KcHF1hR0SSj4pp6RcLzhvHwIxUHovgiYjlVSEm5gxicm52xLYpkqR2AwUdHueHl/0FM5sLfAZY4O5NUcomIhJXVExLv8gekMaN54xl6et7ONrU0uftHTp+gpe37FeLh0hkrAKKzOwsM8sAFgFLO65gZrOA79NeSNcGkFFEJC6omJZ+s7C0kIbmVp5+Y0+ft/Xihlpa2lwtHiIR4O4twD3As8A6YIm7V5rZg2a2ILzaV4Fs4HEzW2tmS7vYnIhIUtOsF9Jvzi8cRlFuNr98tZqFpYV92lZZVYhR2QOYVTAsQulEkpu7LwOWnbLsgQ7350Y9lIhIHNLItPQbM2NhaQFrqw+yvuZwr7fT1NLKi+trmVecS0qKRTChiIiISN+omJZ+dev5+WSkpvTpRMQ/b9nPseZW9UuLiIhIzFExLf1qxKAM5s8YzW/W7KbxRGuvtlFeFWJQRioXTxoZ4XQiIiIifaNiWvrdotJCDjac4NnwVOBnoq3NKa8KceXUHDLTU/shnYiIiEjvqZiWfnfJpJHkD8/qVavH2l0HqTvSpBYPERERiUkqpqXfpaQYC0sK+POW/ezYf+yMvre8KkRainH11Nx+SiciIiLSeyqmJSpuKykgxWBJxZmNTpdV1nDhxBEMHZjeT8lEREREek/FtETFmKGZXD01l8crdtHS2taj79lSd5QtdcfU4iEiIiIxS8W0RM3C0gJqjzTxwoa6Hq1fXhUC0KyHIiIiErNUTEvUXD0tl5zBA3hs1c4erV9WWcPMvCGMG5bVz8lEREREekfFtERNemoK770gn+fX11JzqPG069YeaWRN9UG1eIiIiEhMUzEtUbWwpIA2h1+9tuu06y1fV4s7zJ+hFg8RERGJXX0qps1shJmVm9mm8L/Du1iv0MzKzGydmVWZ2YS+7Ffi14RRg7h44kgeW1VNW5t3uV5ZZQ0FI7KYOnpwFNOJiIiInJm+jkzfDyx39yJgefhxZ34KfNXdpwOzgdo+7lfi2KLZBeysb+Dlrfs7/frRphb+tGU/84vHYGZRTiciIiLSc30tpm8GHg3ffxS45dQVzKwYSHP3cgB3P+ruDX3cr8Sxd80Yw9CsdBZ3MSPiSxvraG5pY76u4iEiIiIxrq/F9Gh33xu+XwN0Vv1MAQ6a2a/NbI2ZfdXMUrvaoJndbWYVZlZRV9ezS6hJfMlMT+Xds/J49q0aDhxrfsfXyyprGD4wnQvGd9o1JCIiIhIzui2mzew5M3urk9vNHddzdwc6a4JNAy4HPg2UAhOBD3S1P3d/xN1L3L0kJyfnTI5F4sjC0gKaW9v4zZrdf7H8RGsbz6+vZc700aSl6vxYERERiW3dVivuPtfdZ3Zy+y0QMrOxAOF/O+uF3gWsdfet7t4CPAmcH8mDkPgzfewQzi0YxmOrqml/H9bu1W31HG5s0UQtIiIiEhf6OvS3FLgzfP9O4LedrLMKGGZmJ4eZrwGq+rhfSQCLSgvYEDrCmuqDby8rq6whMz2FK4r0qYSIiIjEvr4W018B5pnZJmBu+DFmVmJmPwRw91baWzyWm9mbgAE/6ON+JQHcdO44Bmak8tir7SciujvlVSEuL8ohK6PLtnoRERGRmJHWl2929/3AnE6WVwAf6vC4HDinL/uSxJM9II0bzxnLU2/s4d9uKmb7vmPsOdTIJ+dNCTqaiIiISI/oDC8J1KLZhTQ0t/K71/dQVllDisGcablBxxIRERHpkT6NTIv01ayCYUwZnc3iVdU0nmilZMIIRmYPCDqWiIiISI9oZFoCZWYsLC1kbfVB1tcc0UQtIiIiEldUTEvg3j0rj4zwNaV1STwRERGJJ2rzkMCNGJTBu2flsbnuKONHDgo6joiIiEiPqZiWmPDlW88OOoKIiIjIGVMxLTEhJcWCjiAiIiJyxtQzLSIiIiLSSyqmRURERER6ScW0iIiIiEgvqZgWEUlCZnatmW0ws81mdn8nXx9gZo+Fv/6KmU2IfkoRkdinYlpEJMmYWSrwMHAdUAzcYWbFp6x2F3DA3ScD3wD+I7opRUTig4ppEZHkMxvY7O5b3b0ZWAzcfMo6NwOPhu8/AcwxM112R0TkFCqmRUSSTx5Q3eHxrvCyTtdx9xbgEDAyKulEROJITF9nevXq1fvMbMcZflshsLM/8sSIobS/qCUiHVv8SuTj6+1zyvhIB4lFZnY3cHf4YZOZvRVkngCMAvYFHSLKku2Yk+14ITmPeWpvvzGmi2l3zznT7zGzOncv6Y88scDMHnH3u7tfM/7o2OJXIh9fgj6n7AYKOjzODy/rbJ1dZpZG+xum/aduyN0fAR4BMLOKBPxZnZaOOfEl2/FC8h5zb783Eds8DgYdoJ89FXSAfqRji1+JfHyJ+JyyCigys7PMLANYBCw9ZZ2lwJ3h++8Fnnd3j2JGEZG4ENMj072UqB81A+DuCVu06NjiV4IfX8I9p7h7i5ndAzwLpAI/dvdKM3sQqHD3pcCPgJ+Z2WagnvaCW0RETpGIxfQjQQcQkYSSkM8p7r4MWHbKsgc63G8EbjvDzSbkz6obOubEl2zHCzrmM2L61E5EREREpHcSsWc6YXQ2Q5mZ/Ty87C0z+7GZpQedsze6OLYfmdnrZvaGmT1hZtlB5+yt080uZ2bfMrOjQWXrqy5+dz8xs21mtjZ8Oy/onCIiItEQ98V0Fy/s94Qfu5mNCjpjb5xmhrKfA9OAs4Es4EOBheyl0xzbp9z9XHc/h/ZLkd0TYMxeO93scmZWAgwPMF6fdDNz3j+6+3nh29rAQvZBF88nZmZfMrONZrbOzD4RdM6gJdtU5D043vvMrCo8ELDczOL+sojdHXOH9d4Tfq2N+ys/9OSYzez28O+60sx+Ee2MkdaDv+1CM3vBzNaE/76vDyJnpIQHIWu7uoRn+Pn+W+Gfxxtmdn5PthvXxfRpXtj/BMwFzvQa1bGk0xnK3H2ZhwGv0n5Jq3jT1bEdhvY/ZtrfKMRrD1Knxxf+e/0q8E+BpuubnsycF5dO83zyAdovETfN3afTfsxJq5s3VCclzFTkPTzeNUBJeCDgCeA/o5sysnp4zJjZYOBe4JXoJoy8nhyzmRUB/wJc6u4zgE9GPWgE9fD3/FlgibvPov0k5O9EN2XE/QS49jRfvw4oCt/uBr7bk43GdTFN10XZGnffHmy0PjvtDGXh9o6/Bn4f5VyR0OWxmdn/ADW0j75/O/rRIqKr47sHWOruewNJFRmn+7v8Uvid/DfMbED0o/VZV28U/h540N3bANy9NsCMsSDZpiLv9njd/QV3bwg/XEl8DnJ01NM3zV+g/Y1SYzTD9ZOeHPOHgYfd/QAkxHNBT47ZgSHh+0OBPVHMF3Hu/hLtVyfqys3AT8NjliuBYWY2trvtxnsx3ZMpcRPVd4CX3P2PQQeJJHf/IDAOWAcsDDhOJA2k/coI8foGoTv/QvsboFJgBPDPwcbpla6eTyYBC82swsyeCY9OJbNkm4r8TF9n7gKe6ddE/a/bYw5//F3g7k9HM1g/6snveQowxcz+ZGYrzex0I5zxoCfH/Dng/Wa2i/ar/3w8OtEC06u6Mt6L6UTW5QxlZvbvQA5wXwC5IuG0s6+5eyvt75DfE+VckdLZ8W0BJgObzWw7MNDar98bbzr93bn73vA7+Sbgf2gf8UgUA4DG8GxgPwB+HHAeiVFm9n6ghPZ2roRlZinA14F/CDpLlKXR/vH/VcAdwA/MbFigifrfHcBP3D0fuJ72a8+rdjxFvP9AejIlbrzqdIYyM/sQ8C7gjpMfO8ehro5tMrzdM70AWB9gxr7o7PiedPcx7j7B3ScADeF+0njT1e9uLLz9u7sF6PTkjhjX1fPJLuDX4WW/Ac6Jcq5YcyZTkWOnmYo8TvTodcbM5gKfARaE31TGs+6OeTAwE3gxPDhwEe3PA/F8EmJPfs+7aG/VO+Hu24CNtBfX8aonx3wXsATA3V8GMoG4vLBDD/Wqroz3YronU+LGpfBHoydnKFtH+wkAlcD3gNHAy9Z+CbIHTrOZmNTZsYX/fdTM3gTeBMYCDwYWsg9O87uLe6c5tp93+N2NAr4YXMpe6+r55Eng6vA6V9L+AprMkm0q8m6P18xmAd+nvZCO9z5a6OaY3f2Qu4/qMDiwkvZjrwgmbkT05O/6SdpHpbH2K4VNAbZGM2SE9eSYdwJzAMxsOu3FdF1UU0bXUuBvwlf1uAg41KPznNw9rm+0f+ywkfaP0T8TXvYJ2t9BttDeLP/DoHPqpptusX/r4vlkGPA07W8UXgbODTpn0Lcufk4P0l5QQfsL7uPAZtqvOjQx6Mz9fLzPASFgbfi2NOjM/X3Mp6z7Iu1XMwk8dz//no329paq8PPBoqAzR+GYT14h7fXw3/b8oDP38Xh/CewFToTrxLuAjwAf6fA7fjj883izp3/XmgFRRERERKSX4r3NQ0REREQkMCqmRURERER6ScW0iIiIiEgvxW0xbWZHg84gIiIiIsktbotpEREREZGgxXUxbWbZZrbczF4zszfN7Obw8glmts7MfmBmlWZWZmZZQecVERERkcQSt5fGC7d5DAMGuvvh8AXUV9I+G9F42q9vWuLua81sCe3X/fzf4BKLiIiISKJJCzpAHxnw/8zsCqANyKN9dkCAbe6+Nnx/NTAh+vFEREREJJHFezH9V0AOcIG7nzCz7bTPvAXQ1GG9VkBtHiIiIiISUXHdMw0MBWrDhfTVtLd3iIiIiIhERVyOTJtZGu0jzz8HnjKzN4EKYH2gwUREREQkqcTlCYhmdi7wA3efHXQWEREREUlecdfmYWYfAX4JfDboLCIiIiKS3OJyZFpEREREJBbE3ci0iIiIiEisiIti2swKzOwFM6sKz2h4b3j5CDMrN7NN4X+Hh5dPM7OXzazJzD7dYTuZZvaqmb0e3s7ngzomEREREYl/cdHmYWZjgbHu/pqZDaZ9EpZbgA8A9e7+FTO7Hxju7v9sZrm0XybvFuCAu/9XeDsGDHL3o2aWDqwA7nX3lQEcloiIiIjEubgYmXb3ve7+Wvj+EWAd7bMd3gw8Gl7tUdqLZ9y91t1XASdO2Y67+9Hww/TwLfbfTYiIiIhITIqLYrojM5sAzAJeAUa7+97wl2r4v6nET/f9qWa2FqgFyt39lX6KKiIiIiIJLq6KaTPLBn4FfNLdD3f8mrf3q3Q7yuzure5+HpAPzDazmf0SVkREREQSXtwU0+Ee518BP3f3X4cXh8L91Cf7qmt7uj13Pwi8AFwb6awiIiIikhziopgOnzj4I2Cdu3+9w5eWAneG798J/Lab7eSY2bDw/SxgHpqCXERERER6KV6u5nEZ8EfgTaAtvPhfae+bXgIUAjuA29293szGABXAkPD6R4FiYALtJyqm0v5GYom7Pxi9IxERERGRRBIXxbSIiIiISCyKizYPEREREZFYpGJaRERERKSXVEyLiIiIiPSSimkRERERkV5SMS0iIiIi0ksqpkVEREREeknFtIiIiIhIL/1/xbnNwR1vbqAAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.rcParams[\"figure.figsize\"] = [12,9]\n",
"fig, axes = plt.subplots(nrows=2, ncols=2)\n",
"plt.subplots_adjust(hspace=0.4)\n",
"df1['A'].plot(ax=axes[0,0]); axes[0,0].set_title('A')\n",
"df1['B'].plot(ax=axes[1,0]); axes[1,0].set_title('B')"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0 3\n",
"2 4\n"
]
}
],
"source": [
"for x,y in ((0,3),(2,4)):\n",
" print (x,y)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}