{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "6f1ee665", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "", "version_major": 2, "version_minor": 0 }, "text/plain": [ "interactive(children=(FloatSlider(value=2.0, description='freq', max=5.0, min=0.1), Output()), _dom_classes=('…" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAA5QklEQVR4nO3dd3hcd5no8e87o14sWd2WJRdZbnG33O0kdhKwISEkC0uyl5DAQm4o97IsCxt272Urz7JsfbiwYQMBwrKbAkkgJE5xih3HlmXLvciSVWxLlqwyalZvv/vHzGQVRbIlTzlzZt7P8+jRzJlz5rxOZvSe83t/RYwxKKWUilwOqwNQSillLU0ESikV4TQRKKVUhNNEoJRSEU4TgVJKRbgoqwO4ERkZGWbOnDlWh6GUUrZy5MiRFmNM5tjttkwEc+bMobS01OowlFLKVkTk4njbtWlIKaUinCYCpZSKcJoIlFIqwmkiUEqpCKeJQCmlIpxfEoGI/FREmkTk9ASvi4h8X0QqReSkiKwe9doOESn3vPaoP+JRSik1ef66I/g5sOMar+8ECj0/DwOPAYiIE/ih5/UlwP0issRPMSmllJoEvyQCY8w7QOs1drkb+IVxOwikisgMYB1QaYypNsYMAE979o0YDR29/EfxBaqau6wORYU5Ywxd/UNWh6FCULAGlOUCtaOe13m2jbd9/XhvICIP476bID8/PzBRBpExhqcO1fJ3u8q46vlyrpuTxqfW5vGRZTOIj3FaHKGyK2MMB6pcVDRepba1l0utPdS19VDb2kP3wDB3r5zJ9z6xnNgo/Ywpt2AlAhlnm7nG9g9uNOZx4HGAoqIiW6+mc9HVzaPPnaK42sXGeel8c8dCSmpaeeZwLV//1Qn+8sUz3L1qJvetzWdpborV4Sqb+afXK/jB25UAxEc7yU9LIC8tno0F6QyPGH5RfBFX1wA/emANSbG2nFxA+VmwPgV1QN6o57OAeiBmgu1haXjE8LP9Nfzj6+VEOxz83b3LuG9tHiLCqvzp/M+b572XEH5VWscvD17i23cu4XNb5lodurKJZw/X8oO3K/n9oll8c8ci0hNjEHn/9dbyWan86XMnuf/xg/zss2vJSIq1KFoVKoLVffRF4DOe3kMbgA5jTANwGCgUkbkiEgPc59k37Fxy9XDvYwf425fL2DI/g91/fAv3r8t/35dURNgwL51/+dRKDv3Z7dy2KIvvvnKOM/UdFkau7OLd8y382Qun2FqYwXfuWUZGUuwHkgDAJ9bM4sefWcP5pqt84rEDXHL1WBCtCiX+6j76FFAMLBSROhH5QxF5REQe8eyyC6gGKoEfA18CMMYMAV8BXgPKgGeNMWf8EVMoGRkx/O+nj1HT3MX371/Fjz9TRE5K3DWPSUmI5h8+uYLUhGi++vRxegeGgxStsqOKxqt88ZdHKMhM4of/YzXRzmt/tbcvyua/vrCB9t5B7n3sgF5sRDix4+L1RUVFxk6zjz516BLfev4U//z7K7h39awpHbvvfDMPPHGIz2yczV/fvTRAESo7a7raxz0/PMDA8Ai/+fJmclPjJ31sZdNVPvPEITr7hnjiwSLWz0sPYKTKaiJyxBhTNHa7jiwOsNbuAf7+1XOsm5vGPatyp3z81sJMPr9lLr8ovsibZY0BiFDZWc/AEJ9/spTW7gF++uDaKSUBgPlZyTz3pU1kJcfyx8+eoH9I7zwjkSaCAPv7V87R1TfE33586bjttZPxjR0LWZSTzDd/fZLmq/1+jlDZ1fCI4atPH+fU5Q6+f/8qls26sR5mM1Li+eu7l3K5vZf/Krnk5yiVHWgiCKAjF9t4prSWz22Zy4Ls5Bt+n9goJ9+/fxVd/UN849cnsGNznvK/n+2vYffZRr595xLuWJLt03ttKcxg8/x0fvBWpQ46i0CaCAJkaHiE//ub0+RMi+OrtxX6/H4LspP5848uZk95M78oHneRIRVB+gaH+fd3qtk8P53PbvZP9+JvfngRru4BnthX45f3U/ahiSBA/uPgRc42dPLtu5aQ6KdBOw9smM22hZl8Z1cZ5Veu+uU9lT09d7SO5qv9fPnW+X57zxV5qexcmsOP91Xj6tImyEiiiSAAmjr7+OfXK9hamMHOpTl+e18R4XufWEFSbBTf2VXmt/dV9jI0PMKP9laxIi+VjQX+7eXz9Q8tpGdgiH/bU+XX91WhTRNBAHxnVxn9QyP89d03XiCeSGZyLA9tmsM7Fc06UV2EevlUA7WtvXzp1gK/f77mZyXxyTV5/EfxRS639/r1vVXo0kTgZweqWvjt8XoeuWUeczMSA3KO+9flE+N08IsDFwLy/ip0GWN4bE8VhVlJ3LHYtwLxRL56eyEI/OvuioC8vwo9mgj87O9fLWfW9Hi+tM1/bbdjZSbHcueKGfz6SB2dfYMBO48KPW+da+Lclat88dYCHA7/3g14zUyN5zMbZvPc0TrON2otKhJoIvCjs/WdnKht53Ob5xIXHdgpfh/aNIfugWF+XVoX0POo0GGM4YdvV5KbGs9dK2YG9Fxf2jafhJgo/vH18oCeR4UGTQR+9PThS8REObh39dRHEE/V8lmprM5P5cniC4yM6LiCSFBS08rRS+08csu8684l5Ku0xBgevnker51p5NiltoCeS1lPE4Gf9A0O88Kxy+xcmkNqQkxQzvnQ5rlcdPWwp6IpKOdT1vq3PVVkJMXwyaK86+/sB3+4ZS7piTF6VxABNBH4ya5TDVztG+K+tcFbPW3n0hyyp8Xys/0XgnZOZY1TdR28U9HM57YEvtnRKzE2ij/cOpf9lS4utHQH5ZzKGpoI/OTpQ7XMSU9gw7y0oJ0z2ung0+tns+98C5VN2pU0nD22t5LkuCg+vWF2UM97z6pcROCFY5eDel4VXJoI/KCyqYtDF1r51Np8v/frvp7713u6khZfCOp5VfBUNXfxyukrfGbjbKbFRQf13DNS4tlckMELxy7rHFdhTBOBHzxz+BJRDuETa6a21oA/ZCTFcteKmdqVNIz9ZF8NMU6H3+YUmqp7VuVyqbWHIxe1aByu/LVC2Q4RKReRShF5dJzXvyEixz0/p0VkWETSPK9dEJFTntfss9qMR//QMM8dvczti7PJTLZm7deHNs2hZ2CYX2lX0rDTPzTMyyfr+eiyGZatLbxjaQ7x0U6eO6rNQ+HK50QgIk7gh8BOYAlwv4gsGb2PMeYfjDErjTErgW8Be40xraN22eZ5/QMr54S63Wcbae0e4L51wenJMZ5ls1JYM3s6Tx64wLB2JQ0r+ypa6OwbCvi4gWtJjI1ix9IcXj5ZT9+gLlwTjvxxR7AOqDTGVBtjBoCngbuvsf/9wFN+OG9IeOZwLbmp8WwtzLQ0joc2zeFSaw97yrUraTh56WQ9qQnRbJ6fYWkc967OpbNviLfO6ecrHPkjEeQCtaOe13m2fYCIJAA7gOdGbTbA6yJyREQenugkIvKwiJSKSGlzc7MfwvZdbWsP+8638PtFeTgDNNx/snZ4upI+qWsVhI2+wWF2n21kx005xERZW87bVJBB9rRYntfmobDkj0/XeH8BJ2qfuAvYP6ZZaLMxZjXupqUvi8jN4x1ojHncGFNkjCnKzLT26tvrmcO1OAQ+WRT8IvFY0U4Hv7d6FvsrW2jtHrA6HOUHb59rontg2NJmIS+nQ/j4ylz2lDfpWgVhyB+JoA4Y3UA+C6ifYN/7GNMsZIyp9/xuAl7A3dQU8oaGR/jVkVpuWZDJzCkuGB4oO5fOYHjE8MZZXeQ+HPzuZD0ZSTGsnxu8sSnXcs/qXIZGDC+dbLA6FOVn/kgEh4FCEZkrIjG4/9i/OHYnEUkBbgF+O2pboogkex8DHwJO+yGmgHu7vJnGzn7uWxe8kcTXszR3GrOmx/PKaf2i2l1Xv7s9/iPLZhAV4HmFJmtRzjSWzJjG80e1d1q48fkTZowZAr4CvAaUAc8aY86IyCMi8sioXe8BXjfGjB6rng28KyIngEPAy8aYV32NKRiePnSJzORYti/KsjqU94gIO27KYX+lS8cU2NybZY30DY5w53Lrm4VGu3d1LifqOnQke5jxy6WGMWaXMWaBMabAGPMdz7YfGWN+NGqfnxtj7htzXLUxZoXn5ybvsaGuvWeAPRXN3Ls6N+CzQE7VjqU5DAyP8Lb27rC1351oIGdaHEWzp1sdyvt8bMVMHAIvHNO7gnASWn/FbGJPeTPDI4YdN/lvPWJ/WZ0/nczkWF49fcXqUNQN6ugd5J2KZj66fEbAFp+5UVnT4thamMlvjtXr9OdhRBPBDdh9tpHM5FhWzEq1OpQPcDiED9+UzZ7yZnoHdPCPHb1+5goDwyMh0VtoPPeuzuVyey8lNa3X31nZgiaCKeofGmZvRTO3L84Kuas1r51LZ9A7OMxeXafAll462UBeWjwrZqVYHcq4PrQkh8QYpzYPhRFNBFN0sLqVrv4hbg/QwuH+sG5uGqkJ0do8ZEOt3QO8W9nCnctnBn0m28mKj3Gyc9kMdp26olNOhAlNBFP0xtlG4qOdlg/5v5Zop4M7FmfzZlkT/UP6RbWTV09fYXjEcFeI9RYa664VM+nqH+JAVYvVoSg/0EQwBcYY3ihrZGthRtBWibpRO5flcLV/iANVLqtDUVPwuxP1zMtMZPGMZKtDuab1c9OIj3bq3ENhQhPBFJyp76Sho487loRus5DX5vkZJMVG8eopbR6yi6bOPg7WuLgrhJuFvOKinWwpzODtc826YE0Y0EQwBbvPNuIQQmoQ2URio5xsX5TF62evMDQ8YnU4ahJ2nWrAGLhrxQyrQ5mU7YuyuNzeS0WjDi6zO00EU7D7bCNrZk8n3aIFQqZqx9Ic2noGOXRBu/nZwcunGliUk8z8rNBuFvLattB9QaTNQ/aniWCSLrf3crahM6R7C41168JMYqMc2nvIBtq6Byi92MaHQ3CQ4kRyUuJYMmOajmIPA5oIJsk7o6cd6gNeCTFR3LIgk9fOXNFRoCFuX2ULxriTt51sX5TFkUttdPTo3FZ2polgkt4oa2ReZiLzMpOsDmVKdi7LobGzn2O17VaHoq5hb3kz0xOiWR6Co9WvZduiLIZHDHvPh8ZiUerGaCKYhM6+QQ5Wu2x1N+C1fVE20U7hVZ2aOmSNjBj2VjSztTDT8pXupmplXippiTHaPGRzmggmYW95M4PDhjtsVB/wSomPZlNBBq+cvqLd/EJU2ZVOWrr6uWWBvZqFwL1y2S0LMtlT3sSwNj/aliaCSXijrJH0xBhW5YfWlMCT9aGbsqlr66WqWbv5haI95e5mla0LQne0+rVsW5RFW88gx7X50bb8kghEZIeIlItIpYg8Os7rt4pIh4gc9/x8e7LHWm3QM7f/9kVZtrtt97q50H2l+U6FTgcQivZWNHPTzGlkJcdZHcoNucXTpKXNQ/blcyIQESfwQ9yLzy8B7heRJePsus8Ys9Lz89dTPNYyh2ta6ewb4nYb1ge88tISmJuRyD4t6IWczr5Bjl5ss2WzkFdKQjRr8qfreAIb88cdwTqg0rPa2ADwNHB3EI4NitfPNhIb5WBroT1v2722zM/gYHWrTkIXYg5UuhgaMbZOBOBuHjrb0MmVjj6rQ1E3wB+JIBeoHfW8zrNtrI0ickJEXhGRm6Z4rCW8k8xtmZ9BQkyU1eH4ZGthBr2Dwxy92G51KGqUvRXNJMdGsTrElqScKu+0K2+X612BHfkjEYzXcD62+8BRYLYxZgXw/4DfTOFY944iD4tIqYiUNjcHp4njfFMXdW29tm4W8tpYkI7TIdo8FEKMMbxT0czm+Rkht/b1VC3ITiI3NV6bh2zKH5++OiBv1PNZQP3oHYwxncaYLs/jXUC0iGRM5thR7/G4MabIGFOUmRmc2+h9593F1ZttftsOkBwXzer81Pf+Tcp6lU1dXG7v5RabjSYej4iwbVEm+ytbtPnRhvyRCA4DhSIyV0RigPuAF0fvICI54plXV0TWec7rmsyxVtpf2cLcjERyU+OtDsUvthZmcrq+g9buAatDUbibhSA8LjTA3TzUMzBMSbVOcmg3PicCY8wQ8BXgNaAMeNYYc0ZEHhGRRzy7fQI4LSIngO8D9xm3cY/1NSZ/GBweoaTaxeb56VaH4jdbCzMwxp3glPX2VjRTmJUUNhcaG+dlEBvl0OYhG/JLBdTT3LNrzLYfjXr8A+AHkz02FJyobad7YJgtIbwk5VQtn5XKtLgo9p1v5q4Vob0UYrjrGRiipLqVz2ycbXUofhMf42RTQTpvlzfxF2ZJyC+uo/6bvStUAfRuZQsi7quccOF0CJvnZ7DvfItON2GxkupWBoZHuHVh6C9yNBXbF2Vx0dVDdUu31aGoKdBEMIH9lS0sz00hJSHa6lD8amthJg0dfVQ16xfVSnvKm4iPdlI0x97dRsfyJrZ9Fdo7zU40EYyjq3+IY5fa2RxGzUJe3oFx2o3UWnsrmtlYkE5ctNPqUPwqLy2B/LQE9le5rA5FTYEmgnEcqnGP9gzHRPDf001owdgqF1q6ueDqsf1o4olsKkjnYLVLZyO1EU0E43j3vIvYKAdrbD7acyLu6SZcDAzpovZWeMdzNxauiWBjQTpX+4Y4U99hdShqkjQRjONAVQtr56SF3W2719bCDHoGhjl6qc3qUCLS3vJmZqcnMCcj0epQAmJTgftO+oA2D9mGJoIxmq72ce7K1bBsFvLS6Sas0z80zIEqF7eG6d0AQGZyLAuyk3S8io1oIhij2HMVE07jB8bS6Sasc+xSO72Dw2wpDN9EAO67gsMXWrX50SY0EYzx7vkWUhOiWTJzmtWhBNTWwkxOXe6gTaebCKriKhcOgXVz06wOJaA2FqTTNziiq5bZhCaCUYwx7K9sYeO8dNuuRjZZW7zTTVTpXUEwFVe7uGlmCinx4TU+ZawN89JxiLvepkKfJoJRalq6qe/oC+v6gNfy3BT3dBO6fGXQ9A0Oc/xSOxsLwmf+qomkxEezNDeFA5VaMLYDTQSj7I+A+oBXlNPhmW6iWaebCJIjF9sYGB5h47zwTwTgbh46VttGz8CQ1aGo69BEMMr+8y3kpsYzOz3B6lCCYmthJvU63UTQFFe5cDqEtWFeH/DaVJDB4LCh9IJ2Uw51mgg8hkcMB6pa2DI/I2JmTfROsV1crbfvwVBc7WJZbgpJsfZe9nSy1s6ZTrRTdDyBDWgi8Dh9uYPOviE223yR+qnIT0tgZkocBzURBFx3/xAnaiOjPuCVEBPFqrzpWjC2AU0EHu96Br9siqAvqoiwYV46JdUurRMEWOnFNoZGTMTUB7w2FqRz+nIHHT2DVoeirsEviUBEdohIuYhUisij47z+P0TkpOfngIisGPXaBRE5JSLHRaTUH/HciP2VLSzKSSYjKdaqECyxYV46LV0DVDV3WR1KWCuuchHtlLCbdvp6NhWkM2KgpEbvOkOZz4lARJzAD4GdwBLgfhFZMma3GuAWY8xy4G+Ax8e8vs0Ys9IYU+RrPDeib3CY0ottEdFbaKwN87x1Al1nNpCKq12smJVKQkxk1Ae8VuVPJy7aoXWCEOePO4J1QKUxptoYMwA8Ddw9egdjzAFjjLfrwEFglh/O6zelF9oYGBqJqPqAV15avNYJAuxq3yCnL3dEVH3AKybKwdo5aVonCHH+SAS5QO2o53WebRP5Q+CVUc8N8LqIHBGRhyc6SEQeFpFSESltbvbvZGnF1S04HcK6OZHRrW80rRME3uELrQxHYH3Aa1NBBhWNXTRf7bc6FDUBfySC8fpajvsXRUS24U4Efzpq82ZjzGrcTUtfFpGbxzvWGPO4MabIGFOUmenfCbsOVreyfFYKiRHSrW8srRMEVnGVixing9Vhur7F9Xg7YGg35dDlj0RQB+SNej4LqB+7k4gsB34C3G2Mee8TYYyp9/xuAl7A3dQUNL0Dw5ysa2f93Mi8WgOtEwRacbWLVfmpYbu+xfUszU0hOS6KYm0eCln+SASHgUIRmSsiMcB9wIujdxCRfOB54AFjTMWo7Ykikux9DHwIOO2HmCbt6KU2BocN6+dFXrOQl9YJAqejZ5Az9Z0RWR/wcjrczY/7dd6hkOVzIjDGDAFfAV4DyoBnjTFnROQREXnEs9u3gXTg38Z0E80G3hWRE8Ah4GVjzKu+xjQVB6vdw/6LIvS2HbROEEglNS6MIWLrA16bCtK51NpDbWuP1aGocfilUdwYswvYNWbbj0Y9/jzw+XGOqwZWjN0eTCXVrSydOY3kuPCeFvh6NsxL5/ljl6ls6qIwO9nqcMJGcbV7/euV+alWh2Ip7/KVxVUu8tIiYy4vO4nokcV9g8Mcr21/r408knn/G2jzkH8VV7komjOd2KjIrA94LchOIiMpRj9fISqiE8HRS+5pgSO5PuD133UCLRj7S2v3AOeuXGVDBHdE8BIR1s1No6RGP1+hKKITQUl1Kw6BoggcPzCWt05wUOsEflPiufqN5ELxaOvnpnO5vVfrBCEoohPBQc+ygdMivD7gtWFeOq7uASqbdDyBPxRXu4iPdrJ8VqrVoYQE75233hWEnohNBH2DwxyrbWd9hCwSMhlaJ/Avb30gJipiv2bvsyArmdSE6PfulFToiNhP6InadgaGRrRQPIrWCfyn+Wo/55u6tFloFIdnGhe9Iwg9EZsIDla3IkLELBs4GVon8B/vtMuRPn5grPXz3OMJGjp6rQ5FjRKxiaCkxsXinGmkxGt9YDStE/hHSXUrCTFOluWmWB1KSPE2xZboXWdIichE0D80zJGLbdosNA6tE/hHSY2LNbOnE+WMyK/YhBbPmEZyXJQuVBNiIvJTerKug/4hHT8wHq0T+K61e4CKxi690BiHd7p3vSMILRGZCEqqXYigPYbGoXUC3x3yXO3q52t86+elUd3STVNnn9WhKI+ITAQHq1tZmJ1MakKM1aGEJK0T+OZgdStx0Q4dPzAB75Tv2nsodERcIhgcHtH6wHX89/oE2o57I0pqWlmdr+MHJnLTzGkkxWqdIJRE3Cf1ZF0HvYPDbND6wITy0uKZkRKn7bg3oKNnkHNXOiN6oaPriXI6WDN7un6+QkjEJQJvb5h1+kWdkIiwfm6aZy59rRNMxeELrRiDdkS4jvXz0jjf1IWrS9cxDgURlwhKatz1gbRErQ9cy/r31jHutjoUWympca9PvDIv1epQQpr3jumQ1glCgl8SgYjsEJFyEakUkUfHeV1E5Pue10+KyOrJHutPg8MjlF5o1au1SXhv4I+2405JSU0rK/Mid33iyVo+K4X4aKcWjEOEz4lARJzAD4GdwBLgfhFZMma3nUCh5+dh4LEpHOs3py930DMwrO23kzA3I5HM5Fhtx52Cq32DnL7coRcakxDtqRPowMXQ4I87gnVApTGm2hgzADwN3D1mn7uBXxi3g0CqiMyY5LF+47360C/q9WmdYOpKL7YxYtALjUlaPzeNc1eu0tY9YHUottDY2cfnfn6YE7Xtfn9vfySCXKB21PM6z7bJ7DOZYwEQkYdFpFRESpubm28o0MGhEYpmTycjKfaGjo806+el09jZz0WXLiQyGSXVrUQ5hNWzU60OxRbWe7opH7qgd52TcbDaxVvnmnCI+P29/ZEIxotq7CXkRPtM5lj3RmMeN8YUGWOKMjMzpxii2/+6rZBff3HTDR0biTZonWBKSmpcLJ+VQkJMlNWh2MKKvBRioxza/DhJJTWtJMdGsWTmNL+/tz8SQR2QN+r5LKB+kvtM5lhlkflZSaQnxugXdRJ6BoY4Vdfx3lWuur7YKCer8lP1QmOSDla7FzpyOkLzjuAwUCgic0UkBrgPeHHMPi8Cn/H0HtoAdBhjGiZ5rLKILjg+eUcvtjM0YnR+oSlaPzedsw2ddPQOWh1KSGu62kd1c3fAZkTwOREYY4aArwCvAWXAs8aYMyLyiIg84tltF1ANVAI/Br50rWN9jUn5z4Z5uuD4ZJTUuHAIFM3RRDAV6+elYQyUap3gmrx35YG64/RLY6YxZhfuP/ajt/1o1GMDfHmyx6rQMXrB8by0BIujCV0l1a0szU0hKVbrA1OxOn86MU4HJTWt3LY42+pwQlZJjYvEGCdLA1AfgAgcWaymRhccv76+wWGO17Zrs9ANiIt2siIvRT9f11FS3UrRnLSALXSkiUBdky44fn3HLrUzMDyi4wdu0IZ56Zy63MHVPq0TjKelq5/zTV0BHf+kiUBdly44fm0lNe6FjtbqHcEN2TAvnREDpRfarA4lJHnnYwrk1PmaCNR16YLj11ZS3crinGmkxEdbHYotrc6fTrRTdLqJCRysdpEQ42RZbkrAzqGJQF2XLjg+sYGhEY5eatNpS3wQH+NkZV6qJoIJlFS3smb2dKIDVB8ATQRqEnTB8YmdrGunf0jrA77aqHWCcbV2D1DeeDXgKypqIlCToguOj89bRF+n9QGfaJ1gfIc8d+GBXlFRE4GaFF1wfHzFVS4W5ehCR75a5RlPoM1D73ewupW4aAfLclMDeh5NBGpSdMHxD+ofGqb0YmvAb9sjgdYJxnew2sWa2dOJiQrsn2pNBGpSdMHxDzpR20Hf4AgbCzQR+MOGeWlaJxilvcdTHwhC/UkTgZo0XXD8/Yqr3OMHgvFFjQRaJ3i/QzWtGBO4+YVG00SgJk0XHH+/4uoWlsyYRkqCjh/wB60TvN/B6lZioxysyAvc+AEvTQRq0nTB8f/WNzjM0UvtbNT6gN9oneD9SmpcrM6fTmyUM+Dn0kSgJi3a6aBoznSKq/SLevRSGwNDWh/wN60TuHX0DHK2oTNoAxU1Eagp2VSQQXnjVZqvRnad4GCVe/0BnV/Iv7RO4Hb4grs+EKweaZoI1JRs8lwBR/rte3G1i2W5KUyL0/qAP2mdwK2kxkVMlIOVealBOZ9PiUBE0kRkt4ic9/yePs4+eSLytoiUicgZEfnqqNf+UkQui8hxz89HfIlHBd5NM93zDh2oarE6FMv0DrjXH9igzUJ+p3UCt4PVrazKSyUuOvD1AfD9juBR4E1jTCHwpuf5WEPA140xi4ENwJdFZMmo1//FGLPS86MrlYW4KKeD9XPTORDBdYLSi60MDhstFAdIpNcJOvsGOVPfEZRuo16+JoK7gSc9j58EPj52B2NMgzHmqOfxVdxrE+f6eF5loc3z07no6qGuLTLXMS6uchHlENbq+sQBEel1gtILrYwY2BDE+pOviSDbGNMA7j/4QNa1dhaROcAqoGTU5q+IyEkR+el4TUujjn1YREpFpLS5udnHsJUvNhVkAERs76HiahfLZ6WQqOsTB8Tq2ZFdJyiuchHjdLAqf8I/h3533UQgIm+IyOlxfu6eyolEJAl4DvgjY0ynZ/NjQAGwEmgA/mmi440xjxtjiowxRZmZmVM5tfKzBdlJpCfGRGTzUFf/ECfrOrTbaADFRTtZmR+5dYJ3K10UzZlOfExw6gMA172kMcbcPtFrItIoIjOMMQ0iMgNommC/aNxJ4D+NMc+Peu/GUfv8GHhpKsEra4gIGwvSOVDVgjEGEbE6pKA5fKGV4RHDxnkZVocS1jbMS+cHb53nat8gyRHUM6ulq5+yhk6+8eGFQT2vr01DLwIPeh4/CPx27A7i/ivxBFBmjPnnMa/NGPX0HuC0j/GoINk8P4PGzn6qW7qtDiWoDla5iHYKa2YH77Y9Em2YlxaRdQLvXfbm+cG90PA1EXwXuENEzgN3eJ4jIjNFxNsDaDPwALB9nG6i3xORUyJyEtgGfM3HeFSQeMcTRFrzUHG1i1V5wb1tj0SrI3Q8wYHKFpLjogK6PvF4fKp2GWNcwG3jbK8HPuJ5/C4wbtuBMeYBX86vrJOflkBuajwHKlt4YMNsq8MJis6+QU5f7uAr2wutDiXsRWKdwBjDvvMtbCpIx+kIbnOrjixWN8RbJyiudjEyYqwOJygOVbu79en4geDwrmPc0RMZ4wkutfZwub2XLUFuFgJNBMoHm+en094zSNmVzuvvHAaKq93D/lflp1odSkTYWpjBiCFiRrG/W+n+d27SRKDsxNtzJlLGExRXuViTPz1ow/4j3Yq8VJJjo3jnfGQkgv2VLcxIiWNeRmLQz62JQN2wnJQ45mUmsr8y/L+o7T0DlF3p1PEDQRTtdLCxIJ1955sxJrybH4dHDAeqXGyen2FJd2xNBMonmwrSOVTTyuDwiNWhBNTBave0wJoIgmtrYQZ1bb1cdIX3dCZn6ztp7xm0pD4AmgiUjzYXZNA9MMzJug6rQwmog9Uu4qOdrJiVanUoEWVroXsWgX3nw3tamf1V3vqANRcamgiUT7wLZxSHeUHv3coWiuZMJyZKvzLBNDs9gby0+LCvE+yvbGFBdhJZyXGWnF8/1con0xNjWDJjGvsrw7dgXNfWQ2VTF7cs0Dmugk1E2FqYSXGVK2ybH/sGhzlU0xr00cSjaSJQPttUkM6RS230DQ5bHUpAvFPhvhq9daEmAivcXJhBV/8QJ2rbrQ4lII5ebKN/aMSy+gBoIlB+sHl+BgNDIxy9GJ7zwuytaCI3NZ6CzCSrQ4lIGwsycAhh2zz0bmULTocEdSGasTQRKJ+tnZuG0yFhOe/QwNAI+ytd3LwgM6JmWQ0lKfHRrMhLDduC8f7KFlblpZJk4foWmgiUz5Jio1gxK+W9ng/h5OilNrr6h7RZyGJbCzM5UdsedtNNdPQMcupyhyWjiUfTRKD8Yovni9rWPWB1KH61t6KZKIe8N9uqssbNYTrdRHG1ixGDpfUB0ESg/GT7oixGjPsPZzjZW97MmtnTI2pxlFDknW5iX5iNYt9f2UJCjJOVeamWxqGJQPnF8twUMpJieOvcuIvU2VJTZx9nGzq5RZuFLBftdLChIJ13KsJruon9lS2sn5tm+fgUn84uImkisltEznt+j7tsk4hc8CxAc1xESqd6vAp9Dodwy4Is9lY0MxQm/b29vVR0/EBouDnMppu43N5LdUu3peMHvHxNQ48CbxpjCoE3Pc8nss0Ys9IYU3SDx6sQt31RFh29gxwLk/7eeyuayUyOZcmMaVaHogi/6Sa8kzWGQyK4G3jS8/hJ4ONBPl6FkK0LMohySFg0Dw2PGPadb+bmQu02GirCbbqJfedbyEiKYWF2stWh+JwIso0xDQCe31kT7GeA10XkiIg8fAPHKxuYFhdN0ZzpvB0GieBEXTvtPYPabTSEiAhb5ofHdBODwyPsKW/i1oVZOIK8LOV4rpsIROQNETk9zs/dUzjPZmPMamAn8GURuXmqgYrIwyJSKiKlzc3hcWsYjrYvyuLclatcbu+1OhSf7C1vxiHWd+tT7xcu000cqmnlat8QdyzJtjoUYBKJwBhzuzFm6Tg/vwUaRWQGgOf3uJeCnsXsMcY0AS8A6zwvTep4z7GPG2OKjDFFmZl6lRaqti9y39TZ/a5gb0UzK/JSmZ4YY3UoapRNYTLdxO6zjcRGOdhaGBoXGr42Db0IPOh5/CDw27E7iEiiiCR7HwMfAk5P9nhlLwWZSeSlxds6EbR1D3Cirl17C4WglAT7TzdhjGH32Ua2zM8gIca6aSVG8zURfBe4Q0TOA3d4niMiM0Vkl2efbOBdETkBHAJeNsa8eq3jlX2JCNsXZrG/qsW2s5Huq2zBGO02GqrsPt2Et+n09hBpFgIfE4ExxmWMuc0YU+j53erZXm+M+YjncbUxZoXn5yZjzHeud7yyt22LsugbHKG42p6T0O0pb2J6QjTLdTWykHTrwkxGDLxV3mh1KDfkjbPuuG9bHDp9Y3RksfK7DfPSiY922rJ5aGTE8E5FC1sLM3GGQG8O9UErZ6WSPS2WV09fsTqUG7K7rJGVeamWrUY2Hk0Eyu/iop1snp/OW+eabDcdwNmGTlq6+rVZKIQ5HMKOm3LYW9FMz8CQ1eFMyZWOPk7WdYRMbyEvTQQqILYtyqKurZfKpi6rQ5kS76R5WxeERm8ONb4PL82hb3CEveX2Khq/UeZuFtJEoCLCtoXu9k+7jTLeW9HMTTOnhdRtu/qgdXPSSEuM4RWbNQ+9UdbI7PQECrNCa7U7TQQqIGamxrMoJ9lWiaClq58jF9veS2IqdEU5HdyxOJu3zjXRP2SP3mld/UMcqHRx++LskJu2RBOBCpjti7IovdhGR689uvm9cvoKwyOGjy6fYXUoahJ2LMuhq3/ovcnbQt2+imYGhkdCrlkINBGoANq+KOu9ydvs4KUT9czPSmJRjvWTgKnr21SQTnJsFK+cskfz0O6zjaQmRFM0O/Rm29dEoAJmVf50UhOieass9JuHGjv7OHShlTuXzwi523Y1vtgoJ7ctzmJ3WWPIr4ExNDzCW+VNbF+YRZQz9P7shl5EKmw4HcItCzLZU9HM8EhodyN9+WQDxsCdy2daHYqagh1Lc2jvGaSkJrTHopZebKO9ZzCkRhOPpolABdQdS7Jp7R6gJMRHGf/uZD2LZ0xjfoj15lDXdsuCLOKjnSE/uOyNs43EOB3cHKLjUzQRqIC6fXE2ybFRPH/sstWhTKi2tYdjl9q5a4UWie0mPsbJrQszee3MFUZC9K7TGMPuskY2FqSTFBsak8yNpYlABVRctJOdy3J45VQDvQOh2c3v5VMNANy5TJuF7GjH0hyarvZzrLbN6lDGVdnUxUVXT0j2FvLSRKAC7t7Vs+geGOb1s6F5+/7SyXpW5KWSn55gdSjqBmxflEWM0xGyvYd2e0YT375YE4GKYOvmpJGbGs9zR0Oveai6uYvTlzu5S8cO2FZyXDSb56fzyukrITm31etnGlk+K4WclNAdra6JQAWcwyHcsyqXd88309TZZ3U47/PSSXezkA4is7edS2dwub2XM/WdVofyPucbr3K8tp2PLgvtz5cmAhUU96zOZcTAb4/XWx3K+7x0sp51c9KYkRJvdSjKB7cvycbpEF453WB1KO/z9OFaop3C762ZZXUo1+RTIhCRNBHZLSLnPb8/MGRORBaKyPFRP50i8kee1/5SRC6Peu0jvsSjQldBZhIr8lJDqvdQ+ZWrVDR2caf2FrK9tMQY1s9NC6lupP1Dwzx/tI47lmSTkRRrdTjX5OsdwaPAm8aYQuBNz/P3McaUG2NWGmNWAmuAHtwL2Hv9i/d1Y8yuscer8HHvqlzKGjopawiN2/eXTtbjEHezgrK/HUtzqGru5nzjVatDAeC1M4209Qxy39p8q0O5Ll8Twd3Ak57HTwIfv87+twFVxpiLPp5X2dBdK2YS5RBeCIG7AmMMvztRz8aCdDKTQ/tqTU3OjptycDqEXx+pszoUAJ45fIlZ0+PZMj/017bwNRFkG2MaADy/rzd/733AU2O2fUVETorIT8drWvISkYdFpFRESpub7TGJmXq/tMQYbl2YxW+OXbZ8yokz9Z1ccPVwl04pETaypsXx4ZuyefpwreVjVi66utlf6eJTRXk4bLDk6XUTgYi8ISKnx/m5eyonEpEY4GPAr0ZtfgwoAFYCDcA/TXS8MeZxY0yRMaYoMzM0h2mr6/u91bk0Xe23fOrg352oJ8oh7FiaY2kcyr8e2jSXjt5BfnPc2rvOZw7X4hD4RFFoF4m9rpsIjDG3G2OWjvPzW6BRRGYAeH5fa5rJncBRY0zjqPduNMYMG2NGgB8D63z756hQt31xFtPioixtHjLG8NLJBrYWZpCaEGNZHMr/1s6ZzpIZ0/j5/guWjSkYHB7hV0fq2LYwyza90XxtGnoReNDz+EHgt9fY937GNAt5k4jHPcBpH+NRIS42ysmdK2by6ukrdPdbs/D4vvMtXG7v5WMrtVko3IgID22eQ3njVYotmujwrXNNNF/t5751oV8k9vI1EXwXuENEzgN3eJ4jIjNF5L0eQCKS4Hn9+THHf09ETonISWAb8DUf41E2cO+qXHoHhy3r6vdveyrJnhbLR0J8kI+6MR9bMZO0xBh+vv+CJed/5nAt2dNi2bbQPk3YPiUCY4zLGHObMabQ87vVs73eGPORUfv1GGPSjTEdY45/wBizzBiz3BjzMW/hWYW3NbOnk5+WwPPHgt+748jFNg5Wt/KFrfOIjXIG/fwq8OKindy3No83yhqpbe0J6rkbOnrZU97EJ9fkheQCNBOxT6QqbIi4p5w4UOWivr03qOd+bE8lqQnR3G+j23Y1dZ/eMBsR4ZcHg9tT/dnDdYwY+NTavKCe11eaCJQlPrFmFg4RHn+nOmjnPHelkzfKmvjsprkkhui88Mo/ZqbGs+OmHJ46dImegeDUooZHDM+W1rJlfgZ5afaayVYTgbJEXloCv1+Ux3+WXAza7ftje6pIjHHy4KbZQTmfstZDm+fQ2TfEb44FZ36rfeebudzey33r7HU3AJoIlIW+elshDhH+5Y2KgJ/rkquH352o5w/W52uX0QhRNHs6N82cxs8P1ASlK+kzh2tJS4wJ6QVoJqKJQFkmJyWOhzbN4YVjlym/Etj5Yf79nSqiHA4+v3VeQM+jQoeI8NCmOVQ0dlFcFdiupBdautl9tpHfW51ry04ImgiUpb54awFJsVH8w2vlATtHU2cfvzpSx++tmUX2tNBdHET5312erqQ/O3AhYOcwxvAXL54hLtpp2wsNTQTKUqkJMTxySwFvlDVy5GJrQM7xxLs1DA2P8Mgt9vySqhsXF+3kD9blB7Qr6WtnrrC3opmv3bHAthcamgiU5T67eQ4ZSbH8/avlfm/L7egZ5JcHL3Ln8pnMTk/063sre/j0htk4RPi3PZV+f+/u/iH+6ndnWZSTzIMb7dsJQROBslxCTBRfvW0+h2pa2Vvh35llf1F8ge6BYb54a4Ff31fZR05KHJ/bPIenDtXyZlnj9Q+Ygu+/dZ6Gjj6+c89SWw0gG8u+kauw8qm1+eSnJfC9V8sZ8dMU1T0DQ/zswAW2L8pi8YxpfnlPZU9/8uGFLMpJ5pu/Pknz1X6/vOf5xqs8sa+GT66ZxZrZaX55T6toIlAhISbKwdc/tICzDZ28dMr3mUaMMfzty2W0dg/w5W16NxDpYqOcfP/+VXT1D/GNX5/wuQnSGMP/+c1pEmOjeHTnIj9FaR1NBCpk3LV8Jotykvmn18sZHB7x6b0ef6ea/yq5xBdvLbD91ZryjwXZyfz5Rxezp7yZXxT7NvXEb4/XU1LTyjd3LCQ9xNcjngxNBCpkOBzCn+5YxEVXD//vzfM3fNW261QDf/fKOe5cPoNvfGihn6NUdvbAhtlsX5TFd3aVUXGDaxt39g3yty+XsWJWii3WI54MTQQqpNy6MJN7V+Xy/bcq+ZuXyqZcLzh6qY2vPXOcNbOn84+fXGGLZQJV8IgI3/vEcqbFRfG/nzpG3+DUl7T859crcHX38zcfX4ozTD5fmghUSBER/vGTK/js5jn8dH8NX3v2OANDk2smuuTq4QtPlpKTEsePP1NEXLT9RniqwMtIiuUfPrmCc1euTmkgozGGZw5f4hfFF/j0+tksn5UauCCDTKdgVCHH4RC+fecSMpNj+d6r5bR2D/DYp9eQdI0ZQ9t7Bnjo54cYNoafPbSWtESdT0hNbNvCLB7aNIcn3q1hy/wMti3Kuub+l1w9fOuFk+yvdLF+bhp/8uHwanL06Y5ARD4pImdEZEREiq6x3w4RKReRShF5dNT2NBHZLSLnPb+n+xKPCh8iwpdunc/3PrGcA1Uu/uDHB3F1jd/tr39omP/5H0eoa+3l8QeKmJeZFORolR09unMRC7KT+OzPD/Opfy/mhWN1H2gqGh4xPPFuDR/+13c4UdvB3358KU99YQMp8dEWRR0Y4ks3KhFZDIwA/w78iTGmdJx9nEAF7qUq64DDwP3GmLMi8j2g1RjzXU+CmG6M+dPrnbeoqMiUln7gVCpMvVnWyJf/6ygzUuL52h0LaOzoo7ath0utPdS29lDb1svA0Aj/+qmVfHxVrtXhKhtp6x7gqcOXeOZwLRddPSTHRXHPqlw+tTaPGKeDbz53kmOX2tm2MJPv3LOMman2WIx+IiJyxBjzgYt2nxLBqDffw8SJYCPwl8aYD3uefwvAGPN3IlIO3GqMafAsZL/HGHPdey5NBJHnyMVWPvfzUjp6BwFIjosiPy2BvOkJ5KcnsH5uGrcttt/0vyo0jIwYSmpaeebwJXadvsLA0AgOgZT4aP7irpu4e+VMROxfGJ4oEQSjRpAL1I56Xges9zzO9q5T7EkGEzbUicjDwMMA+fnh0WVLTd6a2Wm89fVbaOjoI296AikJ4XVrrqzlcAgbC9LZWJDOX/UM8sKxOho6+/jC1nlkhME4geu5biIQkTeAnHFe+nNjzG8ncY7x0uiUb0OMMY8Dj4P7jmCqxyv7S0+KDYvBOyq0pSRE89DmuVaHEVTXTQTGmNt9PEcdMHrttlmAd+24RhGZMappqMnHcymllJqiYIwjOAwUishcEYkB7gNe9Lz2IvCg5/GDwGTuMJRSSvmRr91H7xGROmAj8LKIvObZPlNEdgEYY4aArwCvAWXAs8aYM563+C5wh4icx92r6Lu+xKOUUmrq/NJrKNi015BSSk3dRL2GdIoJpZSKcJoIlFIqwmkiUEqpCKeJQCmlIpwti8Ui0gzc6BJDGUCLH8Oxgt3/DRq/9ez+b7B7/GDNv2G2MSZz7EZbJgJfiEjpeFVzO7H7v0Hjt57d/w12jx9C69+gTUNKKRXhNBEopVSEi8RE8LjVAfiB3f8NGr/17P5vsHv8EEL/hoirESillHq/SLwjUEopNYomAqWUinARlQhEZIeIlItIpWeNZFsRkZ+KSJOInLY6lhshInki8raIlInIGRH5qtUxTYWIxInIIRE54Yn/r6yO6UaIiFNEjonIS1bHciNE5IKInBKR4yJiu9knRSRVRH4tIuc834WNlscUKTUCEXECFbinu67DvU7C/caYs5YGNgUicjPQBfzCGLPU6nimyrP40AxjzFERSQaOAB+3y/8DcS9am2iM6RKRaOBd4KvGmIMWhzYlIvLHQBEwzRhzp9XxTJWIXACKjDG2HFAmIk8C+4wxP/Gs0ZJgjGm3MqZIuiNYB1QaY6qNMQPA08DdFsc0JcaYd4BWq+O4UcaYBmPMUc/jq7jXp8i1NqrJM25dnqfRnh9bXUmJyCzgo8BPrI4lEonINOBm4AkAY8yA1UkAIisR5AK1o57XYaM/QuFGROYAq4ASi0OZEk+zynHcy6ruNsbYKn7gX4FvAiMWx+ELA7wuIkdE5GGrg5mieUAz8DNP89xPRCTR6qAiKRHIONtsdTUXLkQkCXgO+CNjTKfV8UyFMWbYGLMS99rb60TENk10InIn0GSMOWJ1LD7abIxZDewEvuxpMrWLKGA18JgxZhXQDVher4ykRFAH5I16PguotyiWiOVpW38O+E9jzPNWx3OjPLfze4Ad1kYyJZuBj3na2J8GtovIL60NaeqMMfWe303AC7ibfe2iDqgbdSf5a9yJwVKRlAgOA4UiMtdToLkPeNHimCKKp9j6BFBmjPlnq+OZKhHJFJFUz+N44HbgnKVBTYEx5lvGmFnGmDm4P/9vGWM+bXFYUyIiiZ6OBniaVD4E2KYXnTHmClArIgs9m24DLO8sEWV1AMFijBkSka8ArwFO4KfGmDMWhzUlIvIUcCuQISJ1wF8YY56wNqop2Qw8AJzytLMD/JkxZpd1IU3JDOBJTw80B/CsMcaWXTBtLBt4wX1NQRTwX8aYV60Nacr+F/CfngvSauCzFscTOd1HlVJKjS+SmoaUUkqNQxOBUkpFOE0ESikV4TQRKKVUhNNEoJRSEU4TgVJKRThNBEopFeH+P4AaeBCe4DuKAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "from ipywidgets import interact\n", "import ipywidgets as widgets\n", "\n", "import matplotlib.pyplot as plt\n", "import numpy as np\n", "\n", "def plot(freq):\n", " x = np.linspace(0, 2*np.pi)\n", " y = np.sin(x * freq)\n", " plt.plot(x, y)\n", "\n", "interact(plot, freq = widgets.FloatSlider(value=2, min=0.1, max=5, step=0.1))" ] }, { "cell_type": "code", "execution_count": null, "id": "367f6eb5", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.5" } }, "nbformat": 4, "nbformat_minor": 5 }